1
|
Cheema SMK, Schneider CM, Morin JF, Chevallier P, Stockmann TJ, Kerton FM, MacQuarrie SL. Biochar boost: revolutionizing functionalization of a difficult material. Chem Commun (Camb) 2025. [PMID: 39810633 DOI: 10.1039/d4cc04991h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The challenge with synthetically modified biochars is that they are notoriously difficult to characterize, and a new characterization approach that circumvents the challenges posed by overlapping bands in IR spectra is needed. We report multinuclear NMR approaches successful in the easy identification and quantification of covalently-bound functional groups on the biochar surface using 31P{1H} CPMAS NMR spectroscopy.
Collapse
Affiliation(s)
- Sara M K Cheema
- Department of Chemistry, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, A1B 3X7, Canada.
| | - Celine M Schneider
- Department of Chemistry, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, A1B 3X7, Canada.
| | | | - Pascale Chevallier
- Départment de Chimie Université Laval, Québec, Québec City, G1V 0A6, Canada
| | - T Jane Stockmann
- Department of Chemistry, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, A1B 3X7, Canada.
| | - Francesca M Kerton
- Department of Chemistry, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, A1B 3X7, Canada.
| | - Stephanie L MacQuarrie
- Department of Chemistry, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, A1B 3X7, Canada.
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada.
| |
Collapse
|
2
|
Dong Y, Zhang X, Wang X, Xie C, Liu J, Cheng Y, Yue Y, You X, Li Y. Modified biochar affects CO 2 and N 2O emissions from coastal saline soil by altering soil pH and elemental stoichiometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176283. [PMID: 39278479 DOI: 10.1016/j.scitotenv.2024.176283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The application of biochar in degraded farmland improves soil productivity while achieving the recycling of agricultural waste. The collapse of the physical structure of coastal saline soils will greatly reduce the carbon sequestration potential of biochar. Phosphorus- and magnesium-modified biochar greatly improve the stability of biochar, which endows them with the potential to greatly improve the organic carbon pool of coastal saline soil. However, changes in the properties of modified biochar increase the uncertainty of microbial driven CO2 and N2O release by affecting soil chemistry properties. In this study, through laboratory soil microcosmic experiment, we investigated the effects of magnesium-modified biochar (BCMg) and phosphorus-modified biochar (BCP) on CO2 and N2O releases from coastal saline soils, and further uncovered their potential mechanisms. Compared with unapplied biochar (CK) and unmodified biochar (BC) treatment, BCMg reduced both the releases of CO2 and N2O, and BCP decreased N2O release but enhanced CO2 release. pH is the medium through which BCMg affects the release of CO2 and N2O. Specifically, BCMg increased soil pH above 8.5, which reduced the metabolic activity of the microbial community, and the abundance of bacteria directly or indirectly involved in N2O production, thereby decreasing the releases of CO2 and N2O. The amendment of BCP changed soil elemental stoichiometry causing microbial N-limitation. Increasing CO2 release and decreasing N2O release were strategies for microorganisms to cope with N-limitation. These findings suggested that BCMg is superior to BCP in mitigating greenhouse gas emissions, providing a basis for the application of modified biochar to improve the carbon pool and reduce greenhouse gas emissions of coastal saline soil.
Collapse
Affiliation(s)
- Yang Dong
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Xin Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Chenghao Xie
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Jiantao Liu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Yanmin Yue
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| |
Collapse
|
3
|
Qiu Z, Liu Y, Cheng W, Ding C. Leaching Peculiarity of Uranium-Containing Layered Double Hydroxide Sediment Varied with Environmental Anions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22256-22264. [PMID: 39399978 DOI: 10.1021/acs.langmuir.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In this research, we focus our attention on the leaching peculiarity of uranium-containing Mg-Al layered double hydroxide (LDH) which is one kind of waste sediment in uranium tailings, generated by the alkalinization of uranyl raffinate. The effect of inorganic (CO32-, SO42-, PO43-) and organic (C2O42-, C6H6O72-, C6H16O24P62-) anions were investigated. Atomic force microscopy result showed that the thickness of CO32--LDH increased to 8.6 nm compared to original LDH whose thickness was 6.7 nm. Compared with the control sample (5.58 μm), the grain size with C6H16O24P62- anion grew to 7.04 μm. A large amount of CO32- can stay in LDH, up to 1.78 mol percent, while the C6H16O24P62- anion was only 0.41 mol percent. X-ray diffraction results showed that the anions could change the crystal structure of LDH, especially the C6H18O24P6 anion, and theoretical calculation also conformed this result. The leaching tests showed that the introduction of anions improved the leaching efficiency of UO22+ from LDH. The introduction of anions destroyed the super buffer property of LDH. Theoretical calculation results indicated that the anions could grab UO22+ and help the UO22+ escape from the LDH. This research gave guidance for long-term disposal of uranium-containing tailings.
Collapse
Affiliation(s)
- Ze Qiu
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Yingzhangyang Liu
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Wencai Cheng
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Congcong Ding
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| |
Collapse
|
4
|
Ge Q, Dong C, Wang G, Zhang J, Hou R. Production, characterization and environmental remediation application of emerging phosphorus-rich biochar/hydrochar: a comprehensive review. RSC Adv 2024; 14:33649-33665. [PMID: 39444945 PMCID: PMC11497801 DOI: 10.1039/d4ra03333g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Owing to the high carbon and phosphorus contents, large specific surface area and slow P release capacity of P-rich biochar/hydrochar (CHAR), its application in aquatic (or soil) environments and positive effects on heavy metal (HM) adsorption (or immobilization) have drawn global attention. To provide an overall picture of P-rich CHAR, this review includes a systematic analysis of the current knowledge on the preparation methods, characterization techniques, influencing factors and environmental applications of P-rich CHAR reported in the last ten years. The key findings and recommendations from this review are as follows: (1) there is still a knowledge gap concerning the regulatory mechanism of the key active components of P-rich CHAR at the molecular level. The dominant factors influencing these active components should be elucidated. (2) P-rich CHAR has a high capacity to immobilize most HMs (e.g., Cd, Cu, and Pb). However, it performs poorly with several HMs (e.g., As). Future studies should focus on the interactions between P-rich CHAR and HMs found in soil/water. (3) To meet the long-term requirements for plant growth, more attention should be given to improving the slow-release capacity and utilization efficiency of available P. (4) There is a potential risk of P loss (or eutrophication) due to rainfall and runoff, although P-rich CHAR exhibits excellent performance in terms of HM immobilization and carbon retention. Several reasonable suggestions are provided to solve these problems. In summary, P-rich CHAR has promising prospects in environmental remediation if these shortcomings are overcome.
Collapse
Affiliation(s)
- Qilong Ge
- Department of Architecture and Environmental Engineering, Taiyuan University Taiyuan 030032 China
| | - ChunJuan Dong
- Department of Architecture and Environmental Engineering, Taiyuan University Taiyuan 030032 China
| | - GuoYing Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Jing Zhang
- Department of Architecture and Environmental Engineering, Taiyuan University Taiyuan 030032 China
| | - Rui Hou
- South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| |
Collapse
|
5
|
Dhanasekaran A, Priyadarshini N, Perumal I, Suresh G, Sagadevan S. Hydroxyapatite derived from eggshell embedded on functionalized g-C 3N 4 for synergistic extraction of U(VI) from aqueous solution. CHEMOSPHERE 2024; 364:143018. [PMID: 39111674 DOI: 10.1016/j.chemosphere.2024.143018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/09/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
In this paper, we report hydroxyapatite derived from egg-shell biowaste embedded on diglycolamic acid functionalized graphitic carbon nitride nanocomposite (abbreviated as HAp@D-gCN). The compositional and morphological characteristics of HAp@D-gCN were evaluated using scanning electron microscope, X-ray diffraction, BET, FTIR techniques and surface charge using zeta potential measurement. The sorption of U(VI) species on HAp@D-gCN was investigated through batch studies as a function of pH, contact time, initial U(VI) concentration, adsorbent dosage and ionic strength. The adsorption of U(VI) onto HAp@D-gCN was confirmed by FTIR, XRD and EDS elemental mapping. Adsorption kinetics follow pseudo second order model and it attains equilibrium within 20 min. Adsorption isotherm data correlates well with Langmuir isotherm model with a maximum sorption capacity of 993.6 mg of U(VI) per gram of HAp@D-gCN at 298K. U(VI) can be leached from the loaded adsorbent using 0.01 M Na2CO3 as desorbing agent and its sorption capacity remains unaffected even after 4 adsorption-desorption cycles. Hence, the present study reveals that HAp@D-gCN nanocomposite could serve as an environmental friendly material with potential application in environmental remediation.
Collapse
Affiliation(s)
- A Dhanasekaran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 600127, Tamil Nadu, India
| | - N Priyadarshini
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Ilaiyaraja Perumal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 600127, Tamil Nadu, India.
| | - G Suresh
- Department of Physics, Aarupadai Veedu Institute of Technology, Vinayaka Mission's Research Foundation (DU), Chennai, 603104, Tamil Nadu, India
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, Universiti of Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| |
Collapse
|
6
|
Xu T, Wang G, Yin Q, Zhou Z, Deng N. Sulfur/zinc co-doped biochar for stabilization remediation of mercury-contaminated soil: Performance, mechanism and ecological risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116601. [PMID: 38896905 DOI: 10.1016/j.ecoenv.2024.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
In this study, a novel sulfur/zinc co-doped biochar (SZ-BC) stabilizer was successfully developed for the remediation of mercury-contaminated soil. Results from SEM, TEM, FTIR and XRD revealed that biochar (BC) was successfully modified by sulfur and zinc. In the batch adsorption experiments, the sulfur-zinc co-pyrolysis biochar displayed excellent Hg(II) adsorption performance, with the maximum adsorption capacity of SZ-BC (261.074 mg/g) being approximately 16.5 times that of BC (15.855 mg/g). Laboratory-scale static incubation, column leaching, and plant pot experiments were conducted using biochar-based materials. At an additional dosage of 5 % mass ratio, the SZ-BC exhibits the most effective stabilization of mercury in soil, leading to a significant reduction in leaching loss compared to the control group (CK) by 51.30 %. Following 4 weeks of incubation and 2 weeks of leaching with SZ-BC, the residual mercury in the soil increased by 27.84 %. As a result, potential ecological risk index of mercury decreased by 92 % compared to the CK group. In the pot experiment, SZ-BC significantly enhanced the growth of Chinese cabbage, with biomass and root dry weight reaching 3.20 and 2.80 times that of the CK group, respectively. Additionally, the Translocation Factor (TF) and Bioconcentration Factor (BF) were reduced by 44.86 % and 74.43 %, respectively, in the SZ-BC group compared to the CK group. Moreover, SZ-BC can effectively improve enzyme activities and increase microbial communities in mercury-contaminated soils. The mechanisms of adsorption and stabilization were elucidated through electrostatic adsorption, ion exchange, surface complexation, and precipitation. These findings provide a potentially effective material for stabilizing soils contaminated with mercury.
Collapse
Affiliation(s)
- Tianrui Xu
- School of Water Resources & Environmental Engineering, East China University of, Technology, Nanchang 330013, China
| | - Guanghui Wang
- School of Water Resources & Environmental Engineering, East China University of, Technology, Nanchang 330013, China; Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, Nanchang 330013, China.
| | - Qiuling Yin
- School of Water Resources & Environmental Engineering, East China University of, Technology, Nanchang 330013, China
| | - Zhongkui Zhou
- School of Water Resources & Environmental Engineering, East China University of, Technology, Nanchang 330013, China; Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, Nanchang 330013, China
| | - Nansheng Deng
- School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China
| |
Collapse
|
7
|
Dhanasekaran A, Perumal I. Uranium adsorption efficiency of diglycolamic acid functionalized graphitic carbon nitride adsorbent: Kinetic, isotherm, and thermodynamic studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:280-294. [PMID: 39044350 DOI: 10.1080/10934529.2024.2380956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
This study proposes the use of diglycolamic acid-functionalized graphitic carbon nitride (HDGA-gCN) as an adsorbent for uranium removal. Our experiments showed that at pH 6.0, HDGA-gCN had a high adsorption capacity of 263.2 mg g-1 and achieved equilibrium in 30 min. The adsorption isotherm was well-fitted by the Langmuir model, and the adsorption kinetics followed a pseudo-second-order equation. U(VI) adsorption on HDGA-gCN is due to electrostatic interactions between the amine, diglycolamic acid, and uranium species. The thermodynamic parameters indicate that adsorption is spontaneous and exothermic. The loaded U(VI) can be desorbed using 0.1 M Na2CO3, and HDGA-gCN exhibited an exceptional adsorption percentage for U(VI) compared to other coexisting ions. HDGA-gCN had faster kinetics, adsorption capacity, and reusability, making it suitable for U(VI) remediation.
Collapse
Affiliation(s)
- A Dhanasekaran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Ilaiyaraja Perumal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
8
|
Ali Babeker TM, Lv S, Wu J, Zhou J, Chen Q. Insight into Cu (II) adsorption on pyrochar and hydrochar resultant from Acacia Senegal waste for wastewater decontamination. CHEMOSPHERE 2024; 356:141881. [PMID: 38575078 DOI: 10.1016/j.chemosphere.2024.141881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
Acacia Senegal waste (ASW) is remaining biomass following gum Arabic harvesting and has no use mentioned in the literature as of yet. This study aims to convert ASW into valuable biochar via two comparative thermal and hydrothermal techniques, which include pyrochar ASW at 300 °C (PC ASW300) and hydrochar ASW at 180 °C (HC ASW180), respectively, for Cu (II) adsorption from aqueous solutions. SEM-EDS, FTIR, XRD, and XPS were used to characterize the biochar. Adsorption performance was studied as a function of pH, contact time, and adsorbent concentration. Adsorption kinetics were best fit for a pseudo-second-order model. And thermodynamics studies revealed that Cu (II) on biochar was endothermic, spontaneous, and best fitted to the Langmuir isotherm model. Pyrochar adsorption capacity (31.93 mg g-1) was seven times that of hydrochar (5.45 mg g-1). ASW treated with phosphorus (PC H3PO4 and HC H3PO4) prior to the carbonization altered the pore structure and surface functional groups as well (O-P-O, P-CH3, and P-OH) of biochar. It was found that treating with phosphorous acid increased adsorption capacity to 141.7 mg g-1 and 22.24 mg g-1 for PC H3PO4 and HC H3PO4, respectively. The surface functional groups of biochar resulted from lignin, alkaloids, and polysaccharides combined with Cu (II) during the adsorption process via surface complexation accompanied by π-electron interaction and Cu (II) reduction. These findings shed light on the ASW biochar potential as a new green cost-effective adsorbent and drew an insightful understanding of Cu (II) adsorption performance and mechanism. It is concluded that ASW-derived biochar is highly effective and a promising alternative for Cu (II) decontamination from wastewater.
Collapse
Affiliation(s)
- Tawasul Mohammed Ali Babeker
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Industrial Research and Consultancy Center, Ministry of Industry, Khartoum, Sudan
| | - Shaoyan Lv
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Jinglian Wu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Juan Zhou
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China
| | - Quanyuan Chen
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|
9
|
Wijitwongwan RP, Intasa-Ard SG, Ogawa M. Hybridization of layered double hydroxides with functional particles. Dalton Trans 2024; 53:6144-6156. [PMID: 38477615 DOI: 10.1039/d4dt00292j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Layered double hydroxides (LDHs) are a class of materials with useful properties associated with their anion exchange abilities as well as redox and adsorptive properties for a wide range of applications including adsorbents, catalysts and their supports, electrodes, pigments, ceramic precursors, and drug carriers. In order to satisfy the requirements for each application as well as to find alternative applications, the preparation of LDHs with the desired composition and particle morphology and post-synthetic modification by the host-guest interactions have been examined. In addition, the hybridization of LDHs with various functional particles has been reported to design materials of modified, improved, and multiple functions. In the present article, the preparation, the heterostructure and the application of hybrids containing LDHs as the main component are overviewed.
Collapse
Affiliation(s)
- Rattanawadee Ploy Wijitwongwan
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Soontaree Grace Intasa-Ard
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
10
|
Han W, Zhang M, Zhao Y, Chen W, Sha H, Wang L, Diao Y, Tan Y, Zhang Y. Tetracycline removal from soil by phosphate-modified biochar: Performance and bacterial community evolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168744. [PMID: 38007113 DOI: 10.1016/j.scitotenv.2023.168744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Since the remediation performance of soil tetracycline pollution by original biochar is not ideal, many modified methods have been proposed to improve its performance. Considering the cost, complex modification process and environmental friendliness, many modified biochar are difficult to be used in soil environments. In this work, biochar derived from corn stover was modified using phosphate to increase the adsorption ability of soil tetracycline and alleviate the negative effects caused by tetracycline. The results showed that pyrolysis temperatures and anion types of phosphate (PO43-, HPO42-, H2PO4-) played important roles in the performance of modified biochar. Compared with original biochar, phosphate modified biochar not only improved the adsorption capacity, but also changed the adsorption behavior of tetracycline. Via SEM, BET and FTIR techniques, the intrinsic reasons for the increase of adsorption capacity were explained by the change of morphological structures as well as functional groups of the modified biochar. K3PO4 and high temperature (800 °C) maximally improved the surface morphology, increased the pore structure, changed the surface functional groups of biochar, and then increased the adsorption capacity of tetracycline (124.51 mg/g). Subsequently, the optimal material (K3PO4-800) was selected and applied for tetracycline contaminated soil remediation. Compared to the soil without remediation, K3PO4-800 modified biochar effectively reduced the effective concentration of tetracycline in soil, and improved soil K and P nutrition, and reshaped microbial communities. Our study showed that K3PO4-800 modified biochar was not only a good tetracycline resistant material, but also a good soil amendment.
Collapse
Affiliation(s)
- Wei Han
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Meng Zhang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Ying Zhao
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Weichang Chen
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Huixin Sha
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Yiran Diao
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Yuanji Tan
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China.
| |
Collapse
|
11
|
Jin Y, Cheng Z, He Y, Xu J, Shi J. Dynamic response of cadmium immobilization to a Ca-Mg-Si soil conditioner in the contaminated paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168394. [PMID: 37956833 DOI: 10.1016/j.scitotenv.2023.168394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Soil conditioners are often used to immobilize soil heavy metals. Understanding the transfer of Cd in soil-plant system to different application rates and modes of soil conditioners application is essential for food safety. The stabilization persistence of soil conditioners in immobilizing Cd, to date however, is still limited. In this study, the stabilization persistence of a Ca-Mg-Si soil conditioner (SC) was assessed based on a six-year Cd-contaminated paddy field study with growth of two rice local main varieties (Yongyou17-YY and Xiushui14-XS) and four application rates (1500 kg ha-1 (low), and 3000 kg ha-1 (high) for the first year only, and 1500 kg ha-1 and 3000 kg ha-1 every year). Results showed that continuous SC application with high rate increased soil pH, simultaneously with more water soluble and exchangeable Cd was transferred to Fe-Mn oxides bound and carbonate-bound Cd in the first 3-4 years; while the low rate was only effective with growth of YY that were applied for a shorter period of time. Statistical analysis indicated that the stability effect of SC was integratedly affected by soil pH, SC application rate, and meteorological factors (precipitation and temperature). Especially, soil fractionation contributed the most changes of Cd availability in soil, while meteorological factors, SC application rate and crop varieties altogether exhibited the great effect on Cd accumulation in grain. Our finding demonstrated the potential long-term stabilization of SC in soil Cd immobilization, with the performance needed for further verification on the basis of different soil types.
Collapse
Affiliation(s)
- Yi Jin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Zhongyi Cheng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jiachun Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
12
|
Murtaza G, Ahmed Z, Valipour M, Ali I, Usman M, Iqbal R, Zulfiqar U, Rizwan M, Mahmood S, Ullah A, Arslan M, Rehman MHU, Ditta A, Tariq A. Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants. Sci Rep 2024; 14:217. [PMID: 38167973 PMCID: PMC10762257 DOI: 10.1038/s41598-023-50623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The pollution of soil and aquatic systems by inorganic and organic chemicals has become a global concern. Economical, eco-friendly, and sustainable solutions are direly required to alleviate the deleterious effects of these chemicals to ensure human well-being and environmental sustainability. In recent decades, biochar has emerged as an efficient material encompassing huge potential to decontaminate a wide range of pollutants from soil and aquatic systems. However, the application of raw biochars for pollutant remediation is confronting a major challenge of not getting the desired decontamination results due to its specific properties. Thus, multiple functionalizing/modification techniques have been introduced to alter the physicochemical and molecular attributes of biochars to increase their efficacy in environmental remediation. This review provides a comprehensive overview of the latest advancements in developing multiple functionalized/modified biochars via biological and other physiochemical techniques. Related mechanisms and further applications of multiple modified biochar in soil and water systems remediation have been discussed and summarized. Furthermore, existing research gaps and challenges are discussed, as well as further study needs are suggested. This work epitomizes the scientific prospects for a complete understanding of employing modified biochar as an efficient candidate for the decontamination of polluted soil and water systems for regenerative development.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China.
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO, 80217, USA
| | - Iftikhar Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh, Pakistan
| | - Muhammad Usman
- Department of Botany, Government College University, Katcheri Road, Lahore, 54000, Punjab, Pakistan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rizwan
- School of Energy Science and Engineering, Central South University, Changsha, 410011, China
| | - Salman Mahmood
- Faculty of Economics and Management, Southwest Forestry, Kunming, Yunnan, 650224, China
| | - Abd Ullah
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| | - Muhammad Arslan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Muhammad Habib Ur Rehman
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology (IPBB), MNS-University of Agriculture, Multan, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal Dir (U), KPK, Sheringal, Pakistan.
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Akash Tariq
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| |
Collapse
|
13
|
Yu X, Xiong F, Zhou C, Luo Z, Zhou Z, Chen J, Sun K. Uranium bioprecipitation mediated by a phosphate-solubilizing Enterobacter sp. N1-10 and remediation of uranium-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167688. [PMID: 37820798 DOI: 10.1016/j.scitotenv.2023.167688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Uranium (U) pollution in soils is prevalent worldwide and poses a significant health risk that will require remediation approaches. However, traditional U bioreduction by sulfate reducing bacteria (SRB) are sensitive to oxygen and are not suitable for treating aerobic topsoil. Bioprecipitation of U into uranyl phosphate (UP) mediated by phosphate-solubilizing microorganism (PSM) is not affected by oxygen. In this study, PSM strains were isolated and used for U-contaminated soil remediation. Microbial metabolites and the mechanism of PSM bioprecipitation were revealed. The results showed that strain Enterobacter sp. N1-10 had the highest phosphate-solubilizing capacity (dissolved P was 409.51 ± 8.48 mg/L). Uranium bioprecipitation was investigated by culturing the bacterium in the presence of 50 mg/L U and in the cell-free culture supernatant. The results showed that strain N1-10 had a high U removal rate (99.45 ± 0.43 %) after adding 50 mg/L U to the culture medium. A yellow precipitate was immediately formed when uranyl nitrate solution was added to the cell-free culture supernatant. The analysis indicated that bacterium produced lactic acid (37.58 mg/L), citric acid (4.76 mg/L), succinic acid (2.03 mg/L), and D-glucuronic acid (1.94 mg/L); the four organic acids solubilized Ca3(PO4)2 to form stable uranyl phosphate precipitate. The application of strain N1-10 and Ca3(PO4)2 significantly decreased the bioavailability of soil U (43.54 ± 0.52 %). In addition, pot experiments showed that PSM N1-10 and Ca3(PO4)2 promoted plant growth and markedly reduced U accumulation by pakchoi. These results demonstrate that PSM N1-10 and Ca3(PO4)2 exhibit a great potential for U bioremediation.
Collapse
Affiliation(s)
- Xiaoxia Yu
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, China; State Key Laboratory of Nuclear Resources and Environmental, East China University of Technology, NanChang 330013, Jiangxi, China.
| | - Feng Xiong
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, China
| | - Chenchen Zhou
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, China
| | - Zhijian Luo
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, China; State Key Laboratory of Nuclear Resources and Environmental, East China University of Technology, NanChang 330013, Jiangxi, China
| | - Zhongkui Zhou
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, China; State Key Laboratory of Nuclear Resources and Environmental, East China University of Technology, NanChang 330013, Jiangxi, China
| | - Jinying Chen
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, China; State Key Laboratory of Nuclear Resources and Environmental, East China University of Technology, NanChang 330013, Jiangxi, China
| | - Kaixuan Sun
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, China; State Key Laboratory of Nuclear Resources and Environmental, East China University of Technology, NanChang 330013, Jiangxi, China.
| |
Collapse
|
14
|
Li A, Ye C, Jiang Y, Deng H. Enhanced removal performance of magnesium-modified biochar for cadmium in wastewaters: Role of active functional groups, processes, and mechanisms. BIORESOURCE TECHNOLOGY 2023; 386:129515. [PMID: 37468011 DOI: 10.1016/j.biortech.2023.129515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
In this study, a series of biochar products with different active functional groups were developed by one-pot coprecipitation method, including magnesium-modified biochar (MgBC) and functional group-grafted MgBC (Cys@MgBC, Try@MgBC, and Glu@MgBC), for effective adsorption of cadmium (Cd(II)) from wastewaters. These biochars exhibited excellent removal performance for Cd(II), particularly Cys@MgBC, whose maximum Cd(II) adsorption capacity reached 223.7 mg g-1. The highly active and weakly crystalline Mg could adsorb Cd(II) through precipitation and ion exchange, which was further promoted by the introduced functional groups through complexation and precipitation. After 120 d of natural process, the immobilization efficiency of Cd(II) by Cys@MgBC, Try@MgBC, and Glu@MgBC was still maintained at 98.7%, 95.2%, and 82.7% respectively. This study proposes and clarifies the complexation mechanism of functional group-grafted Mg-modified biochar for heavy metals, providing new insights into the practical application of these biochars.
Collapse
Affiliation(s)
- Anyu Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Chenghui Ye
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Yanhong Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Hua Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
15
|
Mahmood M, Wang Y, Ahmed W, Mehmood S, Ayyoub A, Elnahal ASM, Li W, Zhan X. Exploring biochar and fishpond sediments potential to change soil phosphorus fractions and availability. FRONTIERS IN PLANT SCIENCE 2023; 14:1224583. [PMID: 37636081 PMCID: PMC10450619 DOI: 10.3389/fpls.2023.1224583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
Phosphorus (P) availability in soil is paradoxical, with a significant portion of applied P accumulating in the soil, potentially affecting plant production. The impact of biochar (BR) and fishpond sediments (FPS) as fertilizers on P fixation remains unclear. This study aimed to determine the optimal ratio of BR, modified biochar (MBR), and FPS as fertilizer replacements. A pot experiment with maize evaluated the transformation of P into inorganic (Pi) and organic (Po) fractions and their contribution to P uptake. Different percentages of FPS, BR, and MBR were applied as treatments (T1-T7), T1 [(0.0)], T2 [FPS (25.0%)], T3 [FPS (25.0%) + BR (1%)], T [FPS (25%) +MBR (3%)], T5 [FPS (35%)], T6 [FPS (35%) +BR (1%)], and T7 [FPS (35%) + MBR (1%)]. Using the modified Hedley method and the Tiessen and Moir fractionation scheme, P fractions were determined. Results showed that various rates of MBR, BR, and FPS significantly increased labile and moderately labile P fractions (NaHCO3-Pi, NaHCO3-Po, HClD-Pi, and HClC-Pi) and residual P fractions compared with the control (T1). Positive correlations were observed between P uptake, phosphatase enzyme activity, and NaHCO3-Pi. Maximum P uptake and phosphatase activity were observed in T6 and T7 treatments. The addition of BR, MBR, and FPS increased Po fractions. Unlike the decline in NaOH-Po fraction, NaHCO3-Po and HClc-Po fractions increased. All Pi fractions, particularly apatite (HClD-Pi), increased across the T1-T7 treatments. HClD-Pi was the largest contributor to total P (40.7%) and can convert into accessible P over time. The T5 treatment showed a 0.88% rise in residual P. HClD-Pi and residual P fractions positively correlated with P uptake, phosphatase activity, NaOH-Pi, and NaOH-Po moderately available fractions. Regression analysis revealed that higher concentrations of metals such as Ca, Zn, and Cr significantly decreased labile organic and inorganic P fractions (NaHCO3-Pi, R 2 = 0.13, 0.36, 0.09) and their availability (NaHCO3-Po, R 2 = 0.01, 0.03, 0.25). Excessive solo BR amendments did not consistently increase P availability, but optimal simple and MBR increased residual P contents in moderately labile and labile forms (including NaOH-Pi, NaHCO3-Pi, and HClD-Pi). Overall, our findings suggest that the co-addition of BR and FPS can enhance soil P availability via increasing the activity of phosphatase enzyme, thereby enhancing plant P uptake and use efficiency, which eventually maintains the provision of ecosystem functions and services.
Collapse
Affiliation(s)
- Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, China
| | - Yunting Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, China
| | - Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, China
| | - Anam Ayyoub
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ahmed S. M. Elnahal
- Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, China
| | - Xin Zhan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Marine Science, Hainan University, Haikou, China
| |
Collapse
|
16
|
Wang Y, Zhang Y, Liu X, Sun S, Qin S, Huang J, Chen B. Fabrication of phosphoric-crosslinked chitosan@g-C 3N 4 gel beads for uranium(VI) separation from aqueous solution. Int J Biol Macromol 2023:124998. [PMID: 37236563 DOI: 10.1016/j.ijbiomac.2023.124998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
In this work, a novel g-C3N4 filled, phosphoric-crosslinked chitosan gel bead (P-CS@CN) was successfully prepared to adsorb U(VI) from water. The separation performance of chitosan was improved by introducing more functional groups. At pH 5 and 298 K, the adsorption efficiency and adsorption capacity could reach 98.0 % and 416.7 mg g-1, respectively. After adsorption, the morphological structure of P-CS@CN did not change and adsorption efficiency remained above 90 % after 5 cycles. P-CS@CN exhibited an excellent applicability in water environment based on dynamic adsorption experiments. Thermodynamic analyses demonstrated the value of ΔG, manifesting the spontaneity of U(VI) adsorption process on P-CS@CN. The positive values of ΔH and ΔS showed that the U(VI) removal behavior of P-CS@CN was an endothermic reaction, indicating that the increase of temperature was great benefit to the removal. The adsorption mechanism of P-CS@CN gel bead could be summarized as the complexation reaction with the surface functional groups. This study not only developed an efficient adsorbent for the treatment of radioactive pollutants, but also provided a simple and feasible strategy for the modification of chitosan-based adsorption materials.
Collapse
Affiliation(s)
- Yan Wang
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China.
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xiaolin Liu
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| | - Sen Sun
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| | - Shiyi Qin
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| | - Jiaqi Huang
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| | - Bowei Chen
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| |
Collapse
|
17
|
Behavior of uranium immobilization with hydroxyapatite and dissolution stability of the immobilization product. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Lyu P, Li L, Huang X, Xie J, Ye J, Tian Y, Huang J, Zhu C. Ternary Ca-Mg-Al layered double-hydroxides for synergistic remediation of As, Cd, and Pb from both contaminated soil and groundwater: Characteristics, effectiveness, and immobilization mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130030. [PMID: 36170797 DOI: 10.1016/j.jhazmat.2022.130030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/02/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Layered double hydroxides (LDH) are the cost-effective and high-efficiency materials for remediation of potentially toxic elements (PTEs) in contaminated soil and groundwater. Herein, the effectiveness and mechanisms of a ternary Ca-Mg-Al LDH (CMAL) for the synergistic remediation of As, Cd, and Pb were investigated in contaminated soils and simulative groundwaters for the first time. The immobilization efficiencies of As, Cd, and Pb in both black soil (BS) and red soil (RS) amended by CMAL at 5 wt% were all > 75%. CMAL amendment transferred more mobile As, Cd, and Pb fractions in soils to immobile species than did Ca-Al LDH and Mg-Al LDH treatments. Furthermore, using a pump-and-treat technology, 82-98% of these 3 PTEs from contaminated groundwater were successfully immobilized in both CMAL treated BS and RS top-soils. Meanwhile, leaching of Ca, Mg, and Al from CMAL was minimal indicating the material was stable. The excellent immobilization performance of CMAL for these PTEs was attributed to the coating of soil microparticles by CMAL nanosheets that allowed complexation of Ca-O-As/Cd or Mg-O-As/Cd/Pb formation, co-precipitation of Ca/Fe-As and Cd(OH)2, and formation of Ca-bridged ternary complex (FeO-Ca-As/Cd). The adverse effect of oppositive pH/Eh-dependence between As and Cd/Pb was overshadowed by these mechanisms and thus allowed As immobilization. Immobilization of As, Cd, and Pb by CMAL amendment was more favorable for RS soil due to its lower reduction potential and more participation of metal-(hydr)oxides for complexation. Overall, the ternary-LDH is a promising synergistic remediation strategy for multi-PTEs contaminated soil and groundwater.
Collapse
Affiliation(s)
- Peng Lyu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lianfang Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaoya Huang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinni Xie
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Ye
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunlong Tian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinli Huang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
19
|
Liu M, Tan X, Zheng M, Yu D, Lin A, Liu J, Wang C, Gao Z, Cui J. Modified biochar/humic substance/fertiliser compound soil conditioner for highly efficient improvement of soil fertility and heavy metals remediation in acidic soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116614. [PMID: 36419293 DOI: 10.1016/j.jenvman.2022.116614] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Fertile and uncontaminated soil with appropriate pH is crucial in terms of the agricultural sustainable development. Herein, a compound soil conditioner containing chitosan modified straw biochar (CBC), kitchen waste compost product-derived humic substance (HS), NPK compound fertiliser (NPK-CF) was prepared to simultaneously adjust acidic soil pH, improve fertility, and immobilize heavy metal. The results exhibited that the best Pb and NH4+ adsorption performance was obtained in CBC with chitosan:biochar of 1:5. Then, the acid soil pH was improved from 5.03 to 6.66 in the presence of CBC/HS (5:5) with 3% addition weight (the mass ratio of conditioner to soil). Meanwhile, compared with the control, the contents of organic matter, available nitrogen, and available phosphorus significantly increased by 52.4%, 92.6%, and 136.3%, respectively. Moreover, Pb was highly efficient immobilised by CBC, and the concentration of Pb in the soil was decreased by 55.2%. The optimal growth trend of ryegrass was obtained in the presence of 3% addition weight (the mass ratio of conditioner to soil) CBC/HS (CBC:HS = 5:5) combined with 60% of the recommended NPK-CF application weight, which was mainly contributed by the improvement of the soil microbial abundance and community structure diversity. The addition of CBC/HS could effectively reduce the addition of NPK-CF and contribute to simultaneous controlling nitrogen loss, releasing phosphorus, immobilising Pb, adjusting pH, improving soil quality and controlling nonpoint pollution.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Mingxia Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Dayang Yu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jiaoxian Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Chunyan Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Zhiyun Gao
- Chinese Academy of Environmental Planning, Joint Research Center for Eco-environment of the Yangtze River Economic Belt, Beijing, 100012, China.
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
20
|
Bao Z, Shi C, Tu W, Li L, Li Q. Recent developments in modification of biochar and its application in soil pollution control and ecoregulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120184. [PMID: 36113644 DOI: 10.1016/j.envpol.2022.120184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Soil pollution has become a real threat to mankind in the 21st century. On the one hand, soil pollution has reduced the world's arable land area, resulting in the contradiction between the world's population expansion and the shortage of arable land. On the other hand, soil pollution has seriously disrupted the soil ecological balance and significantly affected the biodiversity in the soil. Soil pollutants may further affect the survival, reproduction and health of humans and other organisms through the food chain. Several studies have suggested that biochar has the potential to act as a soil conditioner and to promote crop growth, and is widely used to remove environmental pollutants. Biochar modified by physical, chemical, and biological methods will affect the treatment efficiency of soil pollution, soil quality, soil ecology and interaction with organisms, especially with microorganisms. Therefore, in this review, we summarized several main biochar modification methods and the mechanisms of the modification and introduced the effects of the application of modified biochar to soil pollutant control, soil ecological regulation and soil nutrient regulation. We also introduced some case studies for the development of modified biochars suitable for different soil conditions, which plays a guiding role in the future development and application of modified biochar. In general, this review provides a reference for the green treatment of different soil pollutants by modified biochar and provides data support for the sustainable development of agriculture.
Collapse
Affiliation(s)
- Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Chunzhen Shi
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
21
|
Fu H, Wang S, Zhang H, Dai Z, He G, Li G, Ding D. Remediation of uranium-contaminated acidic red soil by rice husk biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77839-77850. [PMID: 35688975 DOI: 10.1007/s11356-022-20704-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Uranium (U) in the U-contaminated acidic red soil exhibits high mobility. In the present study, rice husk was used to produce biochar to remediate U-contaminated red soil under acid precipitation. Firstly, batch adsorption experiments showed that the dissolution of alkaline substance in biochar could buffer the pH value of acidic solution. The equilibrium pH value had a crucial influence on biochar adsorption capacity of U, and the neutral equilibrium pH value was favorable for adsorption. Then, the incubation experiments of red soil with biochar were performed, and the Synthetic Precipitation Leaching Procedure (SPLP) extraction of amended red soil showed that the short-term leachability of U was decreased from 26.53% in control group (without biochar) to 1.40% in 10% biochar-amended red soil. Subsequently, the sequential extraction showed that the fraction of U was mainly transformed from exchangeable and Fe/Mn oxide fraction to carbonate fraction after biochar amendment, and the total amount of exchangeable U and carbonate fraction U in soil was increased slightly. Finally, simulated acid rain leaching experiments showed that the capability of amended red soil to resist acid rain acidification was enhanced. And the long-term leachability of U in amended red soil was decreased from 26.37% in control group to 3.18% in the 10% biochar-amended red soil under the simulated acid rain leaching conditions. In conclusion, biochar has passivation effect on U in U-contaminated red soil, which can reduce the long-term and short-term mobility of U in acidic environments. This study provided an experimental basis for the application of biochar in remediation and improvement of U-contaminated acidic red soil.
Collapse
Affiliation(s)
- Haiying Fu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Shuai Wang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Zhongran Dai
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Guicheng He
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Guangyue Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China.
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
22
|
Li M, Wang Y, Shen Z, Chi M, Lv C, Li C, Bai L, Thabet HK, El-Bahy SM, Ibrahim MM, Chuah LF, Show PL, Zhao X. Investigation on the evolution of hydrothermal biochar. CHEMOSPHERE 2022; 307:135774. [PMID: 35921888 DOI: 10.1016/j.chemosphere.2022.135774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The objective of this study was to visualize trends and current research status of hydrothermal biochar research through a bibliometric analysis by using CiteSpace software. The original article data were collected from the Web of Science core database published between 2009 and 2020. A visual analysis network of national co-authored, institutional co-authored and author co-authored articles was created, countries, institutions and authors were classified accordingly. By visualizing the cited literature and journal co-citation networks, the main subject distribution and core journals were identified respectively. By visualizing journal co-citations, the main research content was identified. Further the cluster analysis revealed the key research directions of knowledge structure. Keyword co-occurrence analysis and key occurrence analysis demonstrate current research hotspots and new research frontiers. Through the above analysis, the cooperation and contributions of hydrothermal biochar research at different levels, from researchers to institutions to countries to macro levels, were explored, the disciplinary areas of knowledge and major knowledge sources of hydrothermal biochar were discovered, and the development lineage, current status, hotspots and trends of hydrothermal biochar were clarified. The results obtained from the study can provide a reference for scholars to gain a deeper understanding of hydrothermal biochar.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China; College of New Energy and Environmental Engineering, Nanchang Institute of Technology, Nanchang, 330044, PR China
| | - Yang Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Mingshu Chi
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Chen Lv
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Chenyang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Li Bai
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Hamdy Khamees Thabet
- Chemistry Department, Faculty of Arts and Science, Northern Border University, Rafha, 91911, PO 840, Saudi Arabia.
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Xiaolin Zhao
- Shenzhen Automotive Research Institute, Beijing Institute of Technology, Shenzhen, 518118, Guangdong, China
| |
Collapse
|
23
|
Cheng W, Tang H, Kai T, Zhao R, Wang J, Ding C. Design anion regulated layered double hydroxide and explore its theoretical mechanism of immobilizing uranium. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129352. [PMID: 35897180 DOI: 10.1016/j.jhazmat.2022.129352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
It is momentous to comprehensively understand the anion's effect during the formation of Mg-Al layered double hydroxide (LDH), especially relating to the long-term disposal of uranium-containing (UO22+) residue. In this research, the CO32-, PO43- and SO42- anions were inserted into the LDH's interlayer driven by its reconstructive memory effect. The UO22+ removal capacity increased in order (typically SO42- < PO43- < CO32-). This was further confirmed by the bond length of U-S, U-P and U-C data acquired by theoretical calculation. The SEM-EDS showed anion-regulated LDH materials got fleecy and facilitated the insertion of anions. The increased average pore size and volume of calcined LDH provided convenient access for anions to easily enter interlayer. XRD results showed inserted interlayer anions could increase the interlayer spacing and expose more active sites, which was conducive to the removal of UO22+. The FTIR combined with theoretical calculation results certified anions could grasp UO22+. XPS results gave a compelling evidence that the amount of anion insertion was proportional to UO22+ removal capacity. In short, the anions could significantly improve LDH to the removal of UO22+ by the mechanism of surface and interlayer complexation. What was discovered can better evaluate the environmental behavior of UO22+ influenced by anion factors.
Collapse
Affiliation(s)
- Wencai Cheng
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Huiping Tang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Tang Kai
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Ruixuan Zhao
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Junfeng Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Congcong Ding
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China; National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
24
|
Chen X, Zhu X, Fan G, Wang X, Li H, Li H, Xu X. Enhanced adsorption of Pb(
II
) by phosphorus‐modified chicken manure and Chinese medicine residue co‐pyrolysis biochar. Microsc Res Tech 2022; 85:3589-3599. [DOI: 10.1002/jemt.24210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Xi Chen
- School of Resources and Civil Engineering Northeastern University Shenyang China
| | - Xiaoxuan Zhu
- School of Resources and Civil Engineering Northeastern University Shenyang China
| | - Guangjian Fan
- School of Resources and Civil Engineering Northeastern University Shenyang China
| | - Xu Wang
- School of Resources and Civil Engineering Northeastern University Shenyang China
| | - Haibo Li
- School of Resources and Civil Engineering Northeastern University Shenyang China
| | - Hui Li
- Shenyang Ecological Environment Affairs Service Center Heping Branch Center Shenyang China
| | - Xinyang Xu
- School of Resources and Civil Engineering Northeastern University Shenyang China
| |
Collapse
|
25
|
Lv Y, Tang C, Liu X, Chen B, Zhang M, Yan X, Hu X, Chen S, Zhu X. Stabilization and mechanism of uranium sequestration by a mixed culture consortia of sulfate-reducing and phosphate-solubilizing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154216. [PMID: 35247412 DOI: 10.1016/j.scitotenv.2022.154216] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
In this study, a highly efficient phosphate-solubilizing bacteria (PSB) (Pantoea sp. grinm-12) was screened out from uranium (U) tailings, and the carbon and nitrogen sources of mixed culture with sulfate-reducing bacteria (SRB) were optimized. Results showed that the functional expression of SRB-PSB could be promoted effectively when glucose + sodium lactate was used as carbon source and ammonium nitrate + ammonium sulfate as nitrogen source. The concentration of PO43- in the culture system could reach 107.27 mg·L-1, and the sulfate reduction rate was 81.72%. In the process of biological stabilization of U tailings by mixed SRB-PSB culture system, the chemical form of U in the remediation group was found to transfer to stable state with the extension of remediation time, which revealed the effectiveness of bioremediation on the harmless treatment of U tailings. XRD, FT-IR, SEM-EDS, high-throughput sequencing, and metagenomics were also used to assist in revealing the microstructure and composition changes during the biological stabilization process, and explore the microbial community/functional gene response. Finally, the stabilization mechanism of U was proposed. In conclusion, the stabilization of U in U tailings was realized through the synergistic effect of bio-reduction, bio-precipitation, and bio-adsorption.
Collapse
Affiliation(s)
- Ying Lv
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Chuiyun Tang
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Xingyu Liu
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China.
| | - Bowei Chen
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
| | - Mingjiang Zhang
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
| | - Xiao Yan
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Xuewu Hu
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Susu Chen
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Xuezhe Zhu
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| |
Collapse
|
26
|
Liu Y, Chen Y, Li Y, Chen L, Jiang H, Li H, Luo X, Tang P, Yan H, Zhao M, Yuan Y, Hou S. Fabrication, application, and mechanism of metal and heteroatom co-doped biochar composites (MHBCs) for the removal of contaminants in water: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128584. [PMID: 35359100 DOI: 10.1016/j.jhazmat.2022.128584] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The potential risk of various contaminants in water has recently attracted public attention. Biochars and modified biochars have been widely developed for environmental remediation. Metal and heteroatom co-doped biochar composites (MHBCs) quickly caught the interest of researchers with more active sites and higher affinity for contaminants compared to single-doped biochar by metal or heteroatoms. This study provides a comprehensive review of MHBCs in wastewater decontamination. Firstly, the main fabrication methods of MHBCs were external doping and internal doping, with external doping being the most common. Secondly, the applications of MHBCs as adsorbents and catalysts in water treatment were introduced emphatically, which mainly included the removal of metals, antibiotics, dyes, pesticides, phenols, and other organic contaminants. Thirdly, the removal mechanisms of contaminants by MHBCs were deeply discussed in adsorption, oxidation and reduction, and degradation. Furthermore, the influencing factors for the removal of contaminants by MHBCs were also summarized, including the physicochemical properties of MHBCs, and environmental variables of pH and co-existing substance. Finally, futural challenges of MHBCs are proposed in the leaching toxicity of metal from MHBCs, the choice of heteroatoms on the fabrication for MHBCs, and the application in the composite system and soil remediation.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, China
| | - Xinli Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ping Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Suzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
27
|
Effects of phosphorus-modified biochar as a soil amendment on the growth and quality of Pseudostellaria heterophylla. Sci Rep 2022; 12:7268. [PMID: 35508663 PMCID: PMC9066396 DOI: 10.1038/s41598-022-11170-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/18/2022] [Indexed: 11/20/2022] Open
Abstract
Phosphorus (P) deficiency in agricultural soil is a worldwide concern. P modification of biochar, a common soil conditioner produced by pyrolysis of wastes and residues, can increase P availability and improve soil quality. This study aims to investigate the effects of P-modified biochar as a soil amendment on the growth and quality of a medicinal plant (Pseudostellaria heterophylla). P. heterophylla were grown for 4 months in lateritic soil amended with P-modified and unmodified biochar (peanut shell) at dosages of 0, 3% and 5% (by mass). Compared with unmodified biochar, P-modified biochar reduced available heavy metal Cd in soil by up to 73.0% and osmotic suction in the root zone by up to 49.3%. P-modified biochar application at 3% and 5% promoted the tuber yield of P. heterophylla significantly by 68.6% and 136.0% respectively. This was different from that in unmodified biochar treatment, where tuber yield was stimulated at 3% dosage but inhibited at 5% dosage. The concentrations of active ingredients (i.e., polysaccharides, saponins) in tuber were increased by 2.9–78.8% under P-modified biochar amendment compared with control, indicating the better tuber quality. This study recommended the application of 5% P-modified biochar for promoting the yield and quality of P. heterophylla.
Collapse
|
28
|
Chen L, Wang J, Beiyuan J, Guo X, Wu H, Fang L. Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151556. [PMID: 34752878 DOI: 10.1016/j.scitotenv.2021.151556] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Soil pollution by potentially toxic trace elements (PTEs) near uranium (U) mines arouses a growing interest worldwide. However, nearly all studies have focused on a single site or only a few sites, which may not fully represent the soil pollution status at the global scale. In this study, data of U, Cd, Cr, Pb, Cu, Zn, As, Mn, and Ni contents in U mine-associated soils were collected and screened from published articles (2006-2021). Assessments of pollution levels, distributions, ecological, and human health risks of the nine PTEs were analysed. The results revealed that the average contents of the U, Cd, Cr, Pb, Cu, Zn, As, Mn, and Ni were 39.88-, 55.33-, 0.88-, 3.81-, 3.12-, 3.07-, 9.26-, 1.83-, and 1.17-fold greater than those in the upper continental crust, respectively. The pollution assessment showed that most of the studied soils were heavily polluted by U and Cd. Among them, the U mine-associated soils in France, Portugal, and Bulgaria exhibited significantly higher pollution levels of U and Cd when compared to other regions. The average potential ecological risk value for all PTEs was 3358.83, which indicated the presence of remarkably high risks. Among the PTEs, Cd and U contributed more to the potential ecological risk than the other elements. The health risk assessment showed that oral ingestion was the main exposure route for soil PTEs; and the hazard index (HI) values for children were higher than those for adult males and females. For adult males and females, all hazard index values for the noncarcinogenic risks were below the safe level of 1.00. For children, none of the HI values exceeded the safe level, with the exception of U (HI = 3.56) and As (HI = 1.83), but Cu presented unacceptable carcinogenic risks. This study provides a comprehensive analysis that demonstrates the urgent necessity for treating PTE pollution in U mine-associated soils worldwide.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Jingzhe Wang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hao Wu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan 420100, China
| | - Linchuan Fang
- State Key Laboratory of soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| |
Collapse
|
29
|
Yin Q, Lyu P, Wang G, Wang B, Li Y, Zhou Z, Guo Y, Li L, Deng N. Phosphorus-modified biochar cross-linked Mg-Al layered double-hydroxide stabilizer reduced U and Pb uptake by Indian mustard (Brassica juncea L.) in uranium contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113363. [PMID: 35248924 DOI: 10.1016/j.ecoenv.2022.113363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
The decommissioning of uranium tailings (UMT) is usually accompanied by uranium (U) contamination in soil, which poses a serious threat to human health and ecological security. Therefore, the remediation of uranium pollution in soil is imminent from ecological and environmental points of view. In recent years, the use of biochar stabilizers to repair uranium tailings (UMT) soil has become a research hotspot. In this study, a novel phosphorus-modified bamboo biochar (PBC) cross-linked Mg-Al layered double-hydroxide composite (PBC@LDH) was prepared. The hyperaccumulator plant Indian mustard (Brassica juncea L.) was selected as the test plant for outdoor pot experiments, and the stabilizers were added to the UMT soil at the dosage ratio of 15 g kg-1, which verified the bioconcentrate and translocate of U and associated heavy metal Pb in the UMT soil by Indian mustard after stabilizer remediated. The results shown that, after 50 days of growth, compared with the untreated sample (CK), the Indian mustard in PBC@LDH treatment possessed a better growth and its biomass weight of whole plant was increased by 52.7%. Meanwhile, the bioconcentration factors (BF) of U and Pb for PBC@LDH treatment were significantly decreased by 73.4% and 34.2%, respectively; and the translocation factors (TF) were also commendable reduced by 15.1% and 2.4%, respectively. Furthermore, the Tessier available forms of U and Pb in rhizosphere soil showed a remarkably decrease compared with CK, which reached by 55.97% and 14.1% after PBC@LDH stabilization, respectively. Complexation, precipitation, and reduction of functional groups released by PBC@LDH with U and Pb described the immobilization mechanisms of biochar stabilizer preventing U and Pb enrichment in Indian mustard. As well as, the formation of U-containing vesicles was prevented by the precipitation of -OH functional groups with free U and Pb ions around the cell tissue fluids and vascular bundle structure of plant roots, thereby reducing the migration risk of toxic heavy metals to above-ground parts. In conclusion, this research demonstrates that the PBC@LDH stabilizer offers a potentially effective amendment for the remediation of U contaminated soil.
Collapse
Affiliation(s)
- Qiuling Yin
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Peng Lyu
- Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100101, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghui Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China; School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China.
| | - Bing Wang
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Yingjie Li
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Zhongkui Zhou
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China; School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Yadan Guo
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China; School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Lianfang Li
- Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100101, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nansheng Deng
- School of Resources and Environmental Science, Wuhan University,Wuhan 430079, China
| |
Collapse
|
30
|
Lu Y, Yu H, Zhu Y, Mu B, Wang A. Recovering metal ions from oxalic acid leaching palygorskite-rich clay wastewater to fabricate layered mixed metal oxide/carbon composites for high-efficient removing Congo red. CHEMOSPHERE 2022; 290:132543. [PMID: 34653486 DOI: 10.1016/j.chemosphere.2021.132543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
This study developed a sustainable way to transform metallic residues in wastewater and spent adsorbents that adsorbed organic pollutants into novel high-efficiency adsorbents to treat water pollution again. The metal ions recovered from oxalic acid leaching palygorskite-rich clay wastewater was used to construct the hydrotalcite-like composites, after adsorbing organic pollutants, which was calcined and carbonized to convert into the mixed metal oxide/carbon composites (MMO/Cs). The fabricated MMO/Cs showed outstanding adsorption performance for the anionic azo dye Congo Red (CR). Especially, the MMO/C2 with the M2+/M3+ molar ratio of 2, which adjusted by supplementing Mg2+, had ultra-high adsorption capacity and ultra-clean removal efficiency for CR. The adsorption capacity was as high as 3303 mg/g, and only 0.5 g/L MMO/C2 dosing treatment for 6 h could completely decolor and remove the 2000 mg/L CR aqueous solution. Moreover, MMO/Cs exhibited the ability to simultaneous remove CR and Methylene blue (MB) mixed dye contaminants, and demonstrated the excellent recyclability. This work provides a promising method for the high-value conversion of waste resources and the synthesis of high-efficiency adsorbents.
Collapse
Affiliation(s)
- Yushen Lu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hui Yu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongfeng Zhu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
31
|
Gogoi R, Borgohain A, Baruah M, Karak T, Saikia J. Boosting nitrogen fertilization by a slow releasing nitrate-intercalated biocompatible layered double hydroxide-hydrogel composite loaded with Azospirillum brasilense. RSC Adv 2022; 12:6704-6714. [PMID: 35424620 PMCID: PMC8981761 DOI: 10.1039/d1ra08759b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Indiscriminate use of chemical fertilizers leads to soil environmental disbalance and therefore, preparation and application of environment-friendly slow-release multifunctional fertilizers are of paramount importance for sustainable crop production in the present scenario. In this study, we propose a slow-release multifunctional composite nitrogen (N) fertilizer, which possesses the ability to supply plant accessible N in the form of ammonium (NH4 +) and nitrate (NO3 -) to improve nitrate assimilation coupled with zinc (Zn, a major micronutrient for plants in the soil) after its degradation. For this purpose, NO3 --intercalated zinc-aluminum (Zn-Al) layered double hydroxide (LDH) was synthesized using a co-precipitation protocol. The prepared LDH was added as 25.45% of total polymer weight to a sodium carboxymethyl cellulose/hydroxyethyl cellulose citric acid (NaCMC/HEC-CA) biodegradable hydrogel. A. brasilense, commonly used nitrogen-fixing bacteria in soils, was added to the LDH-hydrogel composite along with LDH alone to augment the availability of NH4 + and NO3 -. Adjusting the pH under acidic (pH 5.25) and neutral (pH 7) conditions, the release pattern of NO3 - from LDH and the composite was monitored for 30 days at normal temperature. The pH was selected based on the soil analysis data of North East India. The LDH-composite released 90% (w/w) and 85.45% (w/w) of intercalated NO3 - at pH 5.25 and 7.00 respectively in 30 days. However, 100% (w/w) and 87% (w/w) of intercalated NO3 - at pH 5.25 and 7.00 respectively were released in 30 days when only LDH was applied, which indicated the lower performance of LDH alone in comparison to the LDH-composite for the nitrate holding pattern. The pH of the bacteria-loaded system was observed to be acidic (pH = 5-6) during the study of nitrate assimilation and Zn2+ release. A. brasilense improved nitrate assimilation and increased the NH4 + ion concentration in the studied system. A significant increase in Zn2+ release was observed from day 5 in the presence of A. brasilense in the LDH-composite compared with that in the absence of A. brasilense. In conclusion, the prepared LDH-hydrogel-A. brasilense composite fertilizer system increases the availability of plant accessible N form (both NO3 - and NH4 +) and can potentially improve soil fertility with the addition of Zn and bacteria to the soil in the extended course.
Collapse
Affiliation(s)
- Rimjim Gogoi
- Department of Chemistry, Dibrugarh University Dibrugarh 786004 Assam India
| | - Arup Borgohain
- Department of Chemistry, Dibrugarh University Dibrugarh 786004 Assam India
- Upper Assam Advisory Centre, Tea Research Association Dikom 786101 Assam India
| | - Madhusmita Baruah
- Department of Chemistry, Dibrugarh University Dibrugarh 786004 Assam India
| | - Tanmoy Karak
- Upper Assam Advisory Centre, Tea Research Association Dikom 786101 Assam India
| | - Jiban Saikia
- Department of Chemistry, Dibrugarh University Dibrugarh 786004 Assam India
| |
Collapse
|
32
|
Xie J, Dai Y, Wang Y, Liu Y, Zhang Z, Wang Y, Tao Q, Liu Y. Facile immobilization of NiFeAl-LDHs into electrospun poly(vinyl alcohol)/poly(acrylic acid) nanofibers for uranium adsorption. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07860-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|