1
|
Ge Y, Zhang H, Fu J, Guo Z, Dong Q, Yu J, Mo Z, Lai Y, Yang J, Lu S. Parabens, bisphenols, and triclosan in coral polyps, algae, and sediments from sanya, China: Occurrence, profiles, and environmental implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124839. [PMID: 39209051 DOI: 10.1016/j.envpol.2024.124839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Parabens, bisphenols (BPs), and triclosan (TCS) are common environmental phenols widely applied in industrial products, pharmaceuticals, and personal care products. They are endocrine disruptors and pervade the natural environment, causing significant detrimental impacts on ecosystems, including marine habitats. Therefore, in this study, 40 samples comprising coral polyps, algae, and sediments were collected from Sanya, Hainan Province, China, in which the presence and compositional profiles of parabens, BPs, and TCS were examined to identify their fate in the oceans. The results unveiled the ubiquitous occurrence of at least one paraben or bisphenol in all samples, with TCS detected in over 80% of cases. Notably, coral samples contained the most contaminants (median concentration: 9.42 ng/g dry weight-dw), followed by sediment samples (5.95 ng/g dw) and algal samples (3.58 ng/g dw). Attributed to their broadest application, methylparaben (MeP) and propylparaben (PrP) emerged as the primary paraben constituents. MeP displayed the highest median concentration in coral samples (4.42 ng/g dw), probably related to its high-water solubility and the filtration mechanism employed by the coral polyps during seawater intake. Intriguingly, bisphenol P (BPP) superseded bisphenol A (BPA) as the dominant bisphenol, especially in the algal samples, probably owing to the lipophilic character of BPP and the enhanced biodegradability of BPA within aquatic environments. The highest concentration of TCS (3.44 ng/g dw) was found in the sediment samples, associated with its long half-life in the sediments. Furthermore, the correlation between multiple parabens and TCS implies their co-use to augment antimicrobial efficacy. Future research should prioritize the examination of these phenols in diverse marine environmental media. Corresponding toxicological experiments should be conducted to visualize their transport dynamics, degradation byproducts, and toxicity to marine biota to gain insights into the risks they pose to the marine ecosystem.
Collapse
Affiliation(s)
- Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Han Zhang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jinfeng Fu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Qiulu Dong
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiaxin Yu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zhiling Mo
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Yuxi Lai
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jialei Yang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Khan SA, Jain M, Pant KK, Ziora ZM, Blaskovich MAT. Photocatalytic degradation of parabens: A comprehensive meta-analysis investigating the environmental remediation potential of emerging pollutant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171020. [PMID: 38369133 DOI: 10.1016/j.scitotenv.2024.171020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The increasing prevalence of paraben compounds in the environment has given rise to concerns regarding their detrimental impacts on both ecosystems and human health. Over the past few decades, photocatalytic reactions have drawn significant attention as a method to accelerate the otherwise slow degradation of these pollutants. The current study aims to evaluate the current efficacy of the photocatalytic method for degrading parabens in aqueous solutions. An extensive literature review and bibliometric analysis were conducted to identify key research trends and influential areas in the field of photocatalytic paraben degradation. Studies were screened based on the predetermined inclusion and exclusion criteria, which led to 13 studies that were identified as being appropriate for the meta-analysis using the random effects model. Furthermore, experimental parameters such as pH, paraben initial concentration, catalyst dosage, light intensity, and contact time have been reported to have key impacts on the performance of the photocatalytic degradation process. A comprehensive quantitative assessment of these parameters was carried out in this work. Overall, photocatalytic techniques could eliminate parabens with an average degradation efficiency of >80 %. The findings of the Egger's test and the Begg's test were statistically not significant suggesting potential publication bias was not observed. This review provides a holistic understanding of the photocatalytic degradation of parabens and is anticipated to encourage more widespread adoption of photocatalytic procedures as a suitable method for the elimination of parabens from aqueous solutions, opening new avenues for future research in this direction.
Collapse
Affiliation(s)
- Sadaf Aiman Khan
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Marut Jain
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kamal Kishore Pant
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India.
| | - Zyta Maria Ziora
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mark A T Blaskovich
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Banyal R, Khan AAP, Sudhaik A, Sonu, Raizada P, Khan A, Singh P, Rub MA, Azum N, Alotaibi MM, Asiri AM. Emergence of CuInS 2 derived photocatalyst for environmental remediation and energy conversion. ENVIRONMENTAL RESEARCH 2023; 238:117288. [PMID: 37797665 DOI: 10.1016/j.envres.2023.117288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Hydrogen production, catalytic organic synthesis, carbon dioxide reduction, environmental purification, and other major fields have all adopted photocatalytic technologies due to their eco-friendliness, ease of use, and reliance on sunlight as the driving force. Photocatalyst is the key component of photocatalytic technology. Thus, it is of utmost importance to produce highly efficient, stable, visible-light-responsive photocatalysts. CIS stands out among other visible-light-response photocatalysts for its advantageous combination of easy synthesis, non-toxicity, high stability, and suitable band structure. In this study, we took a brief glance at the synthesis techniques for CIS after providing a quick introduction to the fundamental semiconductor features, including the crystal and band structures of CIS. Then, we discussed the ways doping, heterojunction creation, p-n heterojunction, type-II heterojunction, and Z-scheme may be used to modify CIS's performance. Subsequently, the applications of CIS towards pollutant degradation, CO2 reduction, water splitting, and other toxic pollutants remediation are reviewed in detail. Finally, several remaining problems with CIS-based photocatalysts are highlighted, along with future potential for constructing more superior photocatalysts.
Collapse
Affiliation(s)
- Rahul Banyal
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Anish Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India.
| | - Malik A Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maha M Alotaibi
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Raj R, Sathe SM, Das S, Ghangrekar MM. Nickel-iron-driven heterogenous bio-electro-fenton process for the degradation of methylparaben. CHEMOSPHERE 2023; 341:139989. [PMID: 37643646 DOI: 10.1016/j.chemosphere.2023.139989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/02/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Discharge of emerging contaminants such as parabens in natural water bodies is a grievous concern. Among parabens, methylparaben (MP) is most prevalent due to its extensive usage in personal care and food products and has been purported to trigger hormonal-related diseases. In this regard, the bio-electro-Fenton (BEF) process garners attention for remediating refractory compounds because of its ability to generate in situ hydroxyl radicals (•OH) utilising the energy harvested from electroactive microorganisms. In the present investigation, a Ni-Fe-driven heterogenous BEF system (BEF-MFC) was used to degrade MP from different matrices. At neutral catholyte pH, 99.54 ± 0.22% of MP was removed from an initial concentration of 10 mg/L in 240 min of retention time with an estimated treatment cost of about 1.01 $/m3. The removal rate ameliorated when the catholyte pH was dropped to 3.0 and by imposing an external voltage of 0.5 V, requiring just 120 min to achieve comparable MP removal efficiencies. However, catalyst leaching was higher at acidic pH (leaching of Fe ions = 0.44 mg/L and Ni ions = 0.06 mg/L) and applying external voltage increased the treatment cost slightly to 1.08 $/m3. Further, treatment of 10 mg/L MP-spiked real wastewater at pH of 7.0 with the BEF-MFC attained 85.70 ± 3.30% and 56.50 ± 1.70% reduction in MP and total organic carbon, respectively, in 240 min. In addition, a maximum power density of 205.90 ± 2.27 mW/cm2 was harvested in the BEF-MFC; thus, portraying the dual benefit of Ni-Fe heterogeneous catalyst. Even though, Ni-Fe performed reasonably well as Fenton-cum-cathode catalyst, future endeavours should be poised to fine-tune catalysts to accelerate H2O2 and •OH generation, which will reinforce the scalability of this system.
Collapse
Affiliation(s)
- Rishabh Raj
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - S M Sathe
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India
| | - M M Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
5
|
Zhang J, Yao T, Gong W, Gao Y, Zhao G. Additive screening and formula optimization of microbial inhibitor having disease prevention and growth promotion effects on Avena sativa. Front Microbiol 2023; 14:1208591. [PMID: 37547695 PMCID: PMC10397394 DOI: 10.3389/fmicb.2023.1208591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
In order to develop environment friendly microbial inhibitor that can also control disease and promote oat (Avena sativa) growth, the growth rate method and response surface methodology were used to screen wetting agents, preservatives and protective agents at optimal concentrations in this study. Antagonistic activity of the tested bacterium and cell-free fermentation liquid against pathogenic fungi was evaluated on potato dextrose agar (PDA) substratum plates by dual culture technique. Oxford cup method was used to measure antagonistic reaction between screened bacteria. According to each screened bacteria with 50 mL were mixed and cultured in Luria-bertani (LB) substratum. Additives of Wetting agents, UV-protectors, and preservatives were screened by single factor test on the growth concentration of screened mixed bacteria. Afterwards, the optimal additives and concentrations were screened by Box-Behnken method. The microbial inhibitor was detected according to national standards GB20287-2006 and tested on oat in a pot experiment. The results showed that: (1) Functional bacteria which including Bacillus velezensis and Brevundimonas faecalis had control effects of 50.00% to 83.29% on three pathogenic fungi, and their cell free-fermentation liquid could inhibit the growth of pathogenic fungi from 23.51% to 39.90%; (2) Tween-80 was most suitable as wetting agents for Mix biocontrol bacteria (MBB) with 1.00% mass fraction; Sorbitol was selected as UV protective agents for MBB with 0.50% mass fraction. And methyl paraben was used as a preservative for MBB, with 0.50% mass fraction; (3) The most effective adjuvant contained 14.96 mL/L Tween-80, 5.12 g/L methylparaben and 5.6 g/L sorbitol; and (4) The microbial inhibitor controlled 45.57% of oat root rot and increased plant height, root length and seedling biomass. This study provides a suitable environment for the protection of mixed biocontrol bacteria, and lays a foundation for the prevention and control of oat diseases, the promotion of growth and the improvement of quality.
Collapse
Affiliation(s)
- Jiangui Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Lanzhou, Gansu, China
| | - Tuo Yao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Lanzhou, Gansu, China
| | - Wenlong Gong
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yamin Gao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Guiqin Zhao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Yang CW, Lee WC. Parabens Increase Sulfamethoxazole-, Tetracycline- and Paraben-Resistant Bacteria and Reshape the Nitrogen/Sulfur Cycle-Associated Microbial Communities in Freshwater River Sediments. TOXICS 2023; 11:387. [PMID: 37112614 PMCID: PMC10142436 DOI: 10.3390/toxics11040387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Backgrounds Parabens are pollutants of emerging concern in aquatic environments. Extensive studies regarding the occurrences, fates and behavior of parabens in aquatic environments have been reported. However, little is known about the effects of parabens on microbial communities in freshwater river sediments. This study reveals the effects of methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP) on antimicrobial-resistant microbiomes, nitrogen/sulfur cycle-associated microbial communities and xenobiotic degrading microbial communities in freshwater river sediments. Methods The river water and sediments collected from the Wai-shuangh-si Stream in Taipei City, Taiwan were used to construct a model system in fish tanks to test the effects of parabens in laboratory. Results Tetracycline-, sulfamethoxazole- and paraben-resistant bacteria increased in all paraben treated river sediments. The order of the overall ability to produce an increment in sulfamethoxazole-, tetracycline- and paraben-resistant bacteria was MP > EP > PP > BP. The proportions of microbial communities associated with xenobiotic degradation also increased in all paraben-treated sediments. In contrast, penicillin-resistant bacteria in both the aerobic and anaerobic culture of paraben-treated sediments decreased drastically at the early stage of the experiments. The proportions of four microbial communities associated with the nitrogen cycle (anammox, nitrogen fixation, denitrification and dissimilatory nitrate reduction) and sulfur cycle (thiosulfate oxidation) largely increased after the 11th week in all paraben-treated sediments. Moreover, methanogens and methanotrophic bacteria increased in all paraben-treated sediments. In contrast, the nitrification, assimilatory sulfate reduction and sulfate-sulfur assimilation associated to microbial communities in the sediments were decreased by the parabens. The results of this study uncover the potential effects and consequences of parabens on microbial communities in a freshwater river environment.
Collapse
|
7
|
Klančič V, Gobec M, Jakopin Ž. Environmental contamination status with common ingredients of household and personal care products exhibiting endocrine-disrupting potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73648-73674. [PMID: 36083363 DOI: 10.1007/s11356-022-22895-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The continuous use of household and personal care products (HPCPs) produces an immense amount of chemicals, such as parabens, bisphenols, benzophenones and alkylphenol ethoxylates, which are of great concern due to their well-known endocrine-disrupting properties. These chemicals easily enter the environment through man-made activities, thus contaminating the biota, including soil, water, plants and animals. Thus, on top of the direct exposure on account of their presence in HPCPs, humans are also susceptible to secondary indirect exposure attributed to the ubiquitous environmental contamination. The aim of this review was therefore to examine the sources and occurrence of these noteworthy contaminants (i.e. parabens, bisphenols, benzophenones, alkylphenol ethoxylates), to summarise the available research on their environmental presence and to highlight their bioaccumulation potential. The most notable environmental contaminants appear to be MeP and PrP among parabens, BPA and BPS among bisphenols, BP-3 among benzophenones and NP among alkylphenols. Their maximum detected concentrations in the environment are mostly in the range of ng/L, while in human tissues, their maximum concentrations achieved μg/L due to bioaccumulation, with BP-3 and nonylphenol showing the highest potential to bioaccumulate. Finally, of another great concern is the fact that even the unapproved parabens and benzophenones have been detected in the environment.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Degradation of Sulfamethoxazole Using a Hybrid CuOx–BiVO4/SPS/Solar System. Catalysts 2022. [DOI: 10.3390/catal12080882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, advanced oxidation processes (AOPs) demonstrated great efficiency in eliminating emerging contaminants in aqueous media. However, a majority of scientists believe that one of the main reasons hindering their industrial application is the low efficiencies recorded. This can be partially attributed to reactive oxygen species (ROS) scavenging from real water matrix constituents. A promising strategy to cost-effectively increase efficiency is the simultaneous use of different AOPs. Herein, photocatalysis and sodium persulfate activation (SPS) were used simultaneously to decompose the antibiotic sulfamethoxazole (SMX) in ultrapure water (UPW) and real water matrices, such as bottled water (BW) and wastewater (WW). Specifically, copper-promoted BiVO4 photocatalysts with variable CuOx (0.75–10% wt.) content were synthesized in powder form and characterized using ΒΕΤ, XRD, DRS, SEM, and HRTEM. Results showed that under simulated solar light irradiation alone, 0.75 Cu.BVO leads to 0.5 mg/L SMX destruction in UPW in a very short treatment time, whereas higher amounts of copper loading decreased SMX degradation. In contrast, the efficiency of all photocatalytic materials dropped significantly in BW and WW. This phenomenon was surpassed using persulfate in the proposed system resulting in synergistic effects, thus significantly improving the efficiency of the combined process. Specifically, when 0.75 Cu.BVO was added in BW, only 40% SMX degradation took place in 120 min under simulated solar irradiation alone, whereas in the solar/SPS/Cu.BVO system, complete elimination was achieved after 60 min. Moreover, ~37%, 45%, and 66% synergy degrees were recorded in WW using 0.75 Cu, 3.0 Cu, and 10.0 Cu.BVO, respectively. Interestingly, experimental results highlight that catalyst screening or process/system examination must be performed in a wide window of operating parameters to avoid erroneous conclusions regarding optimal materials or process combinations for a specific application.
Collapse
|
9
|
Budhiraja V, Urh A, Horvat P, Krzan A. Synergistic Adsorption of Organic Pollutants on Weathered Polyethylene Microplastics. Polymers (Basel) 2022; 14:2674. [PMID: 35808719 PMCID: PMC9269090 DOI: 10.3390/polym14132674] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
Microplastics (MPs) are persistent tiny pieces of plastic material in the environment that are capable of adsorbing environmental organic pollutants from their surroundings. The interaction of MPs with organic pollutants alters their environmental behavior, i.e., their adsorption, degradation and toxicity, etc. Polyethylene (PE) is the most widely used plastic material. The environmental weathering of PE results in changes to its surface chemistry, making the polymer a much better vector for organic pollutants than virgin PE. In this study, a laboratory-accelerated weathering experiment was carried out with a virgin PE film and an oxidatively degradable PE (OXO-PE) film, i.e., PE modified by the addition of a pro-oxidant catalyst. The degradation of PE and OXO-PE was assessed through Fourier transform infra-red (FTIR) spectroscopy and their wettability was measured by contact angle (CA) measurements. Their thermal properties and morphology were studied using thermogravimetric analyses (TGA) and scanning electron microscopy (SEM), respectively. Further, the adsorption of two model organic pollutants onto weathered and virgin PE was analyzed. Triclosan (TCS) and methylparaben (MeP) were chosen as model organic pollutants for the adsorption experiment due to their frequent use in the cosmetics industry, their uncontrolled release into the environment and their toxicity. The adsorption of both model pollutants onto PE and OXO-PE MP was analyzed by using gas chromatography with a flame ionization detector (GC-FID). The adsorption of MeP onto OXO-PE was higher than onto PE MPs. However, TCS showed insignificant adsorption onto PE and OXO-PE. When both pollutants were present simultaneously, the adsorption of TCS onto both PE and OXO-PE was significantly influenced by the presence of MeP. This result demonstrates that the adsorption behavior of one pollutant can be significantly altered by the presence of another pollutant. Both the effect of weathering on the adsorption of organic pollutants as well as the interaction between organic pollutants adsorbing onto MPs is highly relevant to actual MP pollution in the environment, where MPs are exposed to weathering conditions and mixtures of organic pollutants.
Collapse
Affiliation(s)
| | | | | | - Andrej Krzan
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (V.B.); (A.U.); (P.H.)
| |
Collapse
|
10
|
Penrose MT, Cobb GP. Identifying potential paraben transformation products and evaluating changes in toxicity as a result of transformation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10705. [PMID: 35415920 PMCID: PMC9322577 DOI: 10.1002/wer.10705] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Parabens are a class of compounds often used as preservatives in personal care products, pharmaceuticals, and food. They have received attention recently due to findings that demonstrate estrogenic impacts and other adverse effects of parabens. Release into wastewater effluent is considered a major contributor to the spread of parabens into surface water. Current regulations in areas such as Japan, Europe, and Southeast Asia limit the concentrations of parabens that can be used in formulations but do not address concentrations discharged into waterbodies. Recent studies suggest that parent parabens are effectively eliminated by transformation during the wastewater treatment processes. Common tertiary treatments include ultrafiltration, chlorination, UV disinfection and ozonation. Ultrafiltration is used to remove solids before a disinfection step. Of the disinfection steps, ozonation is often the most effective at removing parabens. Not much is known about the toxicities of paraben transformation products. Of the transformation products, chlorinated parabens and PHBA are the most studied. Previous studies have shown that chlorinated parabens have greatly reduced estrogen agonistic activity when compared with the activity of parents. However, more recent studies have found that halogenated parabens actually have estrogen antagonistic activity. Further research involving chlorinated parabens could include other toxic endpoints. No known studies have evaluated adverse effects of oxygenated parabens. Parabens can interact with chlorine residues in the environment and form chlorinated products, this will occur at a faster rate during chlorination. Ozonation will oxidize parabens and UV disinfection can both oxidize and halogenate parabens. All studies determining potential transformation products have been done in laboratory settings or specific conditions. Further research is needed to determine if these transformations occur in situ. PRACTITIONER POINTS: Common chemical processes utilized by wastewater treatment facilities are effective at transforming parabens. Paraben transformation products are released in greater concentration in effluent than parent paraben compounds. Halogenated transformation products have been identified as estrogen receptor antagonists.
Collapse
Affiliation(s)
| | - George P. Cobb
- Department of Environmental ScienceBaylor UniversityWacoTexasUSA
| |
Collapse
|
11
|
Peñas-Garzón M, Sampaio MJ, Wang YL, Bedia J, Rodriguez JJ, Belver C, Silva CG, Faria JL. Solar photocatalytic degradation of parabens using UiO-66-NH2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120467] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Hu C, Tian M, Wu L, Chen L. Enhanced photocatalytic degradation of paraben preservative over designed g-C 3N 4/BiVO 4 S-scheme system and toxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113175. [PMID: 35007828 DOI: 10.1016/j.ecoenv.2022.113175] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Paraben preservatives have been listed as emerging pollutants due to their ubiquity in various environmental matrices, especially the water bodies. How to efficiently and practically eliminate these paraben pollutants is therefore of great importance. Herein, a designed S-scheme heterojunction photocatalyst, consisting of graphitic carbon nitride (g-C3N4) and monoclinic bismuth vanadate (BiVO4), was fabricated by a facile hydrothermal synthesis and employed to treat benzyl-paraben (BzP). TEM and XPS analysis testified the intimate interaction between g-C3N4 and BiVO4, and the consequently smoothed interfacial charge transfer rendered the feasible recombination of the photoexcited electrons (from BiVO4) and holes (from g-C3N4). The as-established S-scheme system enabled the left g-C3N4 electrons and BiVO4 holes to maintain the high redox abilities and accelerated the charge separation concurrently. In particular, the g-C3N4/BiVO4 composite generated much higher photocurrent response as compared with pure g-C3N4 and BiVO4, highlighting the improved separation of photoinduced charges. Therefore, under visible light and natural solar light irradiation, the g-C3N4/BiVO4 composite showed the significantly enhanced photocatalytic degradation of BzP, which was further optimized with 5 wt% g-C3N4 in the composite. According to the Mott-Schottky plots and identified active species, the mechanism of the g-C3N4/BiVO4 S-scheme heterojunction system was illustrated. In addition, during the photocatalytic degradation process, the acute toxicity of the reaction solutions on zebrafish embryos was notably reduced. In conclusion, the demonstrated strategy to enhance the photocatalytic performance by designing S-scheme heterostructure may provide more insights into the development of high-efficiency photocatalyst towards the solar energy utilization and environmental treatment. Furthermore, photocatalytic degradation had been proved to be an efficient method for eliminating the ecological risk of paraben pollutants, warranting more attention in future work.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Maosheng Tian
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Liqing Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
13
|
Qin M, Jin K, Li X, Wang R, Zhao Y, Wang H. Bi nanosphere-decorated oxygen-vacancy BiOBr hollow microspheres with exposed (110) facets to enhance the photocatalytic performance for the degradation of azo dyes. NEW J CHEM 2022. [DOI: 10.1039/d2nj02076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile preparation strategy is proposed for a novel highly-active composite photocatalyst comprising Bi nanosphere-decorated oxygen-vacancy BiOBr hollow microspheres with exposed (110) facets for the efficient degradation of azo dyes.
Collapse
Affiliation(s)
- Mian Qin
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Kejie Jin
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Xinyi Li
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Rui Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Yang Zhao
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Huan Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| |
Collapse
|
14
|
Fatimah I, Purwiandono G, Citradewi PW, Sagadevan S, Oh WC, Doong RA. Influencing Factors in the Synthesis of Photoactive Nanocomposites of ZnO/SiO 2-Porous Heterostructures from Montmorillonite and the Study for Methyl Violet Photodegradation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3427. [PMID: 34947775 PMCID: PMC8708840 DOI: 10.3390/nano11123427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/05/2022]
Abstract
In this work, photoactive nanocomposites of ZnO/SiO2 porous heterostructures (PCHs) were prepared from montmorillonite clay. The effects of preparation methods and Zn content on the physicochemical features and photocatalytic properties were investigated. Briefly, a comparison of the use of hydrothermal and microwave-assisted methods was done. The Zn content was varied between 5 and 15 wt% and the characteristics of the nanomaterials were also examined. The physical and chemical properties of the materials were characterized using X-ray diffraction, diffuse-reflectance UV-Vis, X-ray photoelectron spectroscopy, and gas sorption analyses. The morphology of the synthesized materials was characterized through scanning electron microscopy and transmission electron microscopy. The photocatalytic performance of the prepared materials was quantified through the photocatalytic degradation of methyl violet (MV) under irradiation with UV and visible light. It was found that PCHs exhibit greatly improved physicochemical characteristics as photocatalysts, resulting in boosting photocatalytic activity for the degradation of MV. It was found that varied synthesis methods and Zn content strongly affected the specific surface area, pore distribution, and band gap energy of PCHs. In addition, the band gap energy was found to govern the photoactivity. Additionally, the surface parameters of the PCHs were found to contribute to the degradation mechanism. It was found that the prepared PCHs demonstrated excellent photocatalytic activity and reusability, as seen in the high degradation efficiency attained at high concentrations. No significant changes in activity were seen until five cycles of photodegradation were done.
Collapse
Affiliation(s)
- Is Fatimah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta 55584, Indonesia; (G.P.); (P.W.C.)
| | - Gani Purwiandono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta 55584, Indonesia; (G.P.); (P.W.C.)
| | - Putwi Widya Citradewi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta 55584, Indonesia; (G.P.); (P.W.C.)
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Won-Chun Oh
- Department of Advanced Materials Science and Engineering, Hanseo University, Seosan-si 356-706, Chungnam, Korea
| | - Ruey-an Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan;
| |
Collapse
|
15
|
Mishra P, Kiran NS, Romanholo Ferreira LF, Mulla SI. Algae bioprocess to deal with cosmetic chemical pollutants in natural ecosystems: A comprehensive review. J Basic Microbiol 2021; 62:1083-1097. [PMID: 34913513 DOI: 10.1002/jobm.202100467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023]
Abstract
Elevated demand and extensive exploitation of cosmetics in day-to-day life have hiked up its industrial productions worldwide. Organic and inorganic chemicals like parabens, phthalates, sulfates, and so forth are being applied as constituents towards the formulations, which tend to be the mainspring ecological complication due to their enduring nature and accumulation properties in various sections of the ecosystem. These cosmetic chemicals get accrued into the terrestrial and aquatic systems on account of various anthropogenic activities involving agricultural runoff, industrial discharge, and domestic effluents. Recently, the use of microbes for remediating persistent cosmetic chemicals has gained immense interest. Among different forms of the microbial community being applied as an environmental beneficiary, algae play a vital role in both terrestrial and aquatic ecosystems by their biologically beneficial metabolites and molecules, resulting in the biobenign and efficacious consequences. The use of various bacterial, fungal, and higher plant species has been studied intensely for their bioremediation elements. The bioremediating property of the algal cells through biosorption, bioassimilation, biotransformation, and biodegradation has made it favorable for the removal of persistent and toxic pollutants from the environment. However, the research investigation concerned with the bioremediation potential of the algal kingdom is limited. This review summarizes and provides updated and comprehensive insights into the potential remediation capabilities of algal species against ecologically hazardous pollutants concerning cosmetic chemicals.
Collapse
Affiliation(s)
- Prabhakar Mishra
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - N S Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Aracaju, Sergipe, Brazil.,Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| |
Collapse
|
16
|
Kumar A, Raizada P, Khan AAP, Nguyen VH, Van Le Q, Singh A, Saini V, Selvasembian R, Huynh TT, Singh P. Phenolic compounds degradation: Insight into the role and evidence of oxygen vacancy defects engineering on nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149410. [PMID: 34391150 DOI: 10.1016/j.scitotenv.2021.149410] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Oxygen vacancy as a typical point defect has incited substantial interest in photocatalysis due to its profound impact on optical absorption response and facile isolation of photocarriers. The presence of oxygen vacancy can introduce the midgap defect states, which promote extended absorption in the visible region. The redistribution of electron density at the surface can stimulate the adsorption and activation kinetics of adsorbates, manifesting optimal photocatalytic performance. Despite such alluring outcomes, the ambiguity in understanding the precise location, appropriate concentration, and oxygen vacancy role is still a long-standing task. The present review article comprehensively outlines the identification of oxygen vacancy defects at bulk or on the surface and its ultimate effect on the photocatalytic degradation of phenolic compounds. Particular emphasis has been drawn to summarize the critical influence of oxygen vacancy on different factors such as crystal structure, bandgap energy, electronic structure, and charge carrier mobility by integrating experimental results and theoretical calculations. We have also explored the reaction pathways and the intermediate chemistry of phenol photodegradation by analyzing the molecular activation (O2, H2O, and sulphate activation) through oxygen vacancy defects. Finally, the review concludes with the various challenges and future perspectives, aiming to provide a firm base for further progressions towards photocatalysis.
Collapse
Affiliation(s)
- Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, HP, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, HP, India.
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul 02841, South Korea
| | - Archana Singh
- Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal 462026, MP, India
| | - Vipin Saini
- Maharishi Markandeshwar Medical College, Solan, HP, India
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India
| | - Tan-Thanh Huynh
- School of Applied Chemistry, Tra Vinh University, Tra Vinh, Viet Nam
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, HP, India.
| |
Collapse
|
17
|
Impact of chronic sub-lethal methylparaben exposure on cardiac hypoxia and alterations in neuroendocrine factors in zebrafish model. Mol Biol Rep 2021; 49:331-340. [PMID: 34716506 DOI: 10.1007/s11033-021-06878-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/22/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Endocrine-disrupting chemicals have been shown to cause toxicity in different systems of the body including the endocrine, cardiovascular and nervous systems. This study aims to analyze the adverse effects of Methylparaben (MP) on cardiac functions, neurodevelopment, and behavior of zebrafish. METHODS AND RESULTS Adult male and female zebrafish were exposed to MP for 30 days to study the toxicity effects. Zebrafish were grouped into control, solvent control, 1/10th (110 ppb), 1/100th, and 1/1000th (1 ppb) lethal concentration 50 of MP. Neurobehavioral assays, acetylcholinesterase (AChE) activity, serotonin levels, and expression of genes-Hypoxia-inducible factor 1 alpha, Neurotrophic Receptor Tyrosine Kinase, Paired box protein Pax-6, and tnnt2 were investigated in zebrafish. Results of the study showed more anxiety-like behavior in MP-treated female zebrafish when compared to males on chronic exposure. There was a dose-dependent reduction of AChE activity in both male and female zebrafish. Female zebrafish showed a dose-dependent increase in serotonin level on MP exposure while male zebrafish showed a dose-independent decrease in serotonin level. On MP exposure, there was also a dose-dependent dysregulation in the expression of cardiac hypoxia and neuronal differentiation-related genes in female zebrafish while a dose-independent change was observed in male zebrafish. CONCLUSION Chronic MP exposure affects cardiac functions, neuronal functions, and behavior of zebrafish by exhibiting changes in AChE activity, serotonin levels, and altering the expression of genes related to cardiac hypoxia and neuronal differentiation even at sub-lethal doses.
Collapse
|
18
|
Álvarez MA, Ruidíaz-Martínez M, Rivera-Utrilla J, Sánchez-Polo M, López-Ramón MV. Effect of operational parameters on photocatalytic degradation of ethylparaben using rGO/TiO 2 composite under UV radiation. ENVIRONMENTAL RESEARCH 2021; 200:111750. [PMID: 34303683 DOI: 10.1016/j.envres.2021.111750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to analyze the influence of different operational variables (catalyst loading, initial EtP concentration, medium pH, the presence of anions and radical scavengers) on the performance of ethylparaben (EtP) photodegradation catalyzed with an rGO/TiO2 composite. EtP was selected for study after analyzing the effect of paraben chain length on its catalytic photodegradation, finding that the photodegradation rate constant values of methyl-, ethyl-, and butyl-paraben are 0.050, 0.096, and 0.136 min-1, respectively. This indicates that the photodegradation rate constant of parabens is higher with longer alkyl chain, which augments its oxidation capacity. The percentage removal of EtP at 40 min increases from 66.3 to 98.6 % when the composite dose rises from 100 to 700 mg/L; however, an additional increase in the composite dose to 1000 mg/L does not substantively improve the photodegradation rate or percentage EtP removal (98.9 %). A rise in the initial EtP concentration from 15 to 100 mg/L reduces the percentage of degradation from 100 to 76.4 %. The percentage EtP degradation is lower with higher solution pH. The presence of HCO3- or Cl- anions in the medium reduces the degradation performance. Results obtained using positive hole and hydroxyl radical scavengers demonstrate that positive holes play an important role in EtP degradation. No degradation product evidences toxicity against the cultured human embryonic kidney cell line HEK-293.
Collapse
Affiliation(s)
- Miguel A Álvarez
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaén, 23071, Jaén, Spain
| | - M Ruidíaz-Martínez
- Facultad de Ciencias, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá, 111166, Colombia
| | - José Rivera-Utrilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - Manuel Sánchez-Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - M Victoria López-Ramón
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaén, 23071, Jaén, Spain.
| |
Collapse
|
19
|
Perovskite Zinc Titanate Photocatalysts Synthesized by the Sol–Gel Method and Their Application in the Photocatalytic Degradation of Emerging Contaminants. Catalysts 2021. [DOI: 10.3390/catal11070854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this study, perovskite ZnTiO3 photocatalysts were fabricated by the sol–gel method. The photocatalytic capability was verified by the degradation of the emerging contaminant, the antibiotic amoxicillin (AMX). For the preparation, the parameters of the calcination temperature and the additional amount of polyvinylpyrrolidone (PVP) and ammonia are discussed, including the calcining temperature (500, 600, 700, 800 °C), the volume of ammonia (750, 1500, 3000 μL), and the weight of PVP (3 g and 5 g). The prepared perovskite ZnTiO3 was characterized by XRD, FESEM, BET, and UV-Vis. It is shown that the perovskite ZnTiO3 photocatalysts are structurally rod-like and ultraviolet light-responsive. Consequently, the synthesis conditions for fabricating the perovskite ZnTiO3 photocatalysts with the highest photocatalytic performance were a calcining temperature of 700 °C, an additional ammonia amount of 1500 μL, and added PVP of 5 g. Moreover, the photocatalytic degradation of perovskite ZnTiO3 photocatalysts on other pollutants, including the antibiotic tetracycline (TC), methyl orange (MO), and methylene blue (MB) dyes, was also examined. This provides the basis for the application of perovskite ZnTiO3 as a photocatalyst to decompose emerging contaminants and organic pollutants in wastewater treatment.
Collapse
|