1
|
Wang L, Song J, Yu C. Metal-organic framework-derived metal oxides for resistive gas sensing: a review. Phys Chem Chem Phys 2023. [PMID: 38047729 DOI: 10.1039/d3cp04777f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gas sensors with exceptional sensitivity and selectivity are vital in the real-time surveillance of noxious and harmful gases. Despite this, traditional gas sensing materials still face a number of challenges, such as poor selectivity, insufficient detection limits, and short lifespan. Metal oxides, which are derived from metal-organic framework materials (MOFs), have been widely used in the field of gas sensors because they have a high surface area and large pore volume. Incorporating metal oxides derived from MOFs into gas sensors can improve their sensitivity and selectivity, thus opening up new possibilities for the development of innovative, high-performance gas sensors. This article examines the gas sensing process of metal oxide semiconductors (MOS), evaluates the advances made in the research of different structures of MOF-derived metal oxides in resistive gas sensors, and provides information on their potential applications and future advancements.
Collapse
Affiliation(s)
- Luyu Wang
- College of Artificial Intelligence and E-Commerce, Zhejiang Gongshang University Hangzhou College of Commerce, Hangzhou, 311599, China.
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jia Song
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyang Yu
- Design-AI Laboratory, China Academy of Art, Hangzhou 310009, China
| |
Collapse
|
2
|
Zhang Y, Hu X, Wang H, Li J, Fang S, Li G. Magnetic Fe 3O 4/bamboo-based activated carbon/UiO-66 composite as an environmentally friendly and effective adsorbent for removal of Bisphenol A. CHEMOSPHERE 2023; 340:139696. [PMID: 37557996 DOI: 10.1016/j.chemosphere.2023.139696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
The magnetic Fe3O4/bamboo-based activated carbon/Zr-based metal-organic frameworks composite (Fe3O4/BAC/UiO-66) was prepared by hydrothermal method. The as-prepared material was analyzed via TEM, XRD, FT-IR, BET-BJH, VSM and XPS techniques, the results showed that it had good dispersion and magnetic separation capacity (Ms = 44.06 emu∙g-1). Then, the adsorption properties of materials for bisphenol A (BPA) were studied. The results revealed that the removal efficiency of 50 mg·L-1 BPA by 0.1 g of adsorbent can reach 87.18-95% in a wide pH range. Langmuir isotherm model and pseudo-second-order kinetic well fitted the adsorption data. The thermodynamic data indicated that the adsorption process was spontaneous and endothermic. Moreover, BAC as a supporter and UiO-66 as the functional part in the ternary composite may have a synergistic effect, which was beneficial for the removal of contaminants. The Fe3O4/BAC/UiO-66 can be simply separated from the water using its strong magnetism after finish adsorption process, which effectively avoids secondary contamination.
Collapse
Affiliation(s)
- Yao Zhang
- Laboratory of Environmental Functional Materials of Yunnan Province Education Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Xinyu Hu
- Laboratory of Environmental Functional Materials of Yunnan Province Education Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Hongbin Wang
- Laboratory of Environmental Functional Materials of Yunnan Province Education Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Jiaxiong Li
- Laboratory of Environmental Functional Materials of Yunnan Province Education Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Shuju Fang
- Laboratory of Environmental Functional Materials of Yunnan Province Education Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Guizhen Li
- Laboratory of Environmental Functional Materials of Yunnan Province Education Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| |
Collapse
|
3
|
Yang AA, Cui JP, Liu Y, Zhang XS, Sun ZB, Luo N, Li WZ, Luan J. Fabrication of bimetallic-doped materials derived from a Cu-based complex for enhanced dye adsorption and iodine capture. Dalton Trans 2023; 52:14220-14234. [PMID: 37766592 DOI: 10.1039/d3dt02749j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
In this work, we used Cu(II) ions, a bis-pyridyl-bis-amide ligand [N,N'-bis(4-pyridinecarboxamide)-1,2-cyclohexane (4-bpah)], and an aromatic dicarboxylic acid [1,4-cyclohexanedicarboxylic acid (H2CHDA)] to construct a 1D binuclear Cu-based complex, namely {[Cu3(4-bpah)(CHDA)3(H2O)]·2H2O}n (1). Moreover, we also developed a facile method to synthesize two monometallic/bimetallic-doped materials which were derived from the Cu complex (C-N-1 and C-V-1, which were doped with nitrogen and vanadium, respectively). The as-synthesized derived materials were fully characterized and the iodine sorption/release capabilities were investigated in detail. We performed iodine adsorption experiments on the two monometallic/bimetallic-doped materials and found that C-N-1 and C-V-1 possess highly efficient adsorption activities for the adsorption of iodine from solution. The C-N-1 and C-V-1 complexes exhibited remarkable adsorption capacities of 1141.60 and 1170.70 mg g-1, respectively, for iodine from a cyclohexane solution. Moreover, the dye adsorption properties of C-N-1 and C-V-1 were also investigated in detail. The obtained C-N-1 and C-V-1 exhibit effective dye uptake performances in water solution. The adsorption of Congo red (CR) on a single metal carbon material C-N-1 doped with heteroatoms reached equilibrium within 240 min and reached an adsorption capacity of 1357.00 mg g-1 and the adsorption capacities of C-V-1 for methylene blue (MB), gentian violet (GV), rhodamine B (RhB), and CR at room temperature were found to be 187.60, 190.60 and 108.10 and 1501.00 mg g-1 in 180 min, respectively. By comparison, we found that doping vanadium could play an important role in the adsorption processes. The adsorption capacity of C-V-1 (containing the vanadium in its structure) was relatively higher than that of C-N-1, which indicated that the introduction of non-noble metals may effectively tune the adsorption kinetics activity and the introduction of noble metals can change the surface electronegativity of porous carbon materials, thus leading to significantly improved adsorption capabilities.
Collapse
Affiliation(s)
- Ai-Ai Yang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Jian-Peng Cui
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Xiao-Sa Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Ze-Bang Sun
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Nan Luo
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| |
Collapse
|
4
|
Obayomi KS, Yon Lau S, Danquah MK, Zhang J, Chiong T, Meunier L, Rahman MM. Selective adsorption of organic dyes from aqueous environment using fermented maize extract-enhanced graphene oxide-durian shell derived activated carbon composite. CHEMOSPHERE 2023; 339:139742. [PMID: 37562502 DOI: 10.1016/j.chemosphere.2023.139742] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
A secure aquatic environment is essential for both aquatic and terrestrial life. However, rising populations and the industrial revolution have had a significant impact on the quality of the water environment. Despite the implementation of strong and adapted environmental policies for water treatment worldwide, the issue of organic dyes in wastewater remains challenging. Thus, this study aimed to develop an efficient, cost-effective, and sustainable material to treat methylene blue (MB) in an aqueous environment. In this research, maize extract solution (MES) was utilized as a green cross-linker to induce precipitation, conjugation, and enhance the adsorption performance of graphene oxide (GO) cross-linked with durian shell activated carbon (DSAC), resulting in the formation of a GO@DSAC composite. The composite was investigated for its adsorptive performance toward MB in aqueous media. The physicochemical characterization demonstrated that the cross-linking method significantly influenced the porous structure and surface chemistry of GO@DSAC. BET analysis revealed that the GO@DSAC exhibited dominant mesopores with a surface area of 803.67 m2/g. EDX and XPS measurements confirmed the successful cross-linking of GO with DSAC. The adsorption experiments were well described by the Harkin-Jura model and they followed pseudo-second order kinetics. The maximum adsorption capacity reached 666.67 mg/g at 318 K. Thermodynamic evaluation indicated a spontaneous, feasible, and endothermic in nature. Regenerability and reusability investigations demonstrated that the GO@DSAC composite could be reused for up to 10 desorption-adsorption cycles with a removal efficiency of 81.78%. The selective adsorptive performance of GO@DSAC was examined in a binary system containing Rhodamine B (RhB) and methylene orange (MO). The results showed a separation efficiency (α) of 98.89% for MB/MO and 93.66% for MB/RhB mixtures, underscoring outstanding separation capabilities of the GO@DSAC composite. Overall, the GO@DSAC composite displayed promising potential for the effective removal of cationic dyes from wastewater.
Collapse
Affiliation(s)
- Kehinde Shola Obayomi
- Department of Chemical Engineering, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia; Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC, 3030, Australia.
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Michael K Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| | - Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC, 3030, Australia
| | - Tung Chiong
- Department of Chemical Engineering, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Louise Meunier
- Department of Chemical Engineering, Queen's University, Kingston, K7L 3N6, Canada
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Department of General Educational Development, Faculty of Science and Information Technology, Daffodil International University, Birulia, Dhaka 1216, Bangladesh
| |
Collapse
|
5
|
Wei J, Yan L, Zhang Z, Hu B, Gui W, Cui Y. Carbon nanotube/Chitosan hydrogel for adsorption of acid red 73 in aqueous and soil environments. BMC Chem 2023; 17:104. [PMID: 37620928 PMCID: PMC10463536 DOI: 10.1186/s13065-023-01019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Acid red 73 is an azo dye, and its residue can pollute the environment and seriously threaten human health and life. In this study, glutaraldehyde was used as the crosslinking agent, chitosan and polyvinyl alcohol were crosslinked under appropriate conditions to obtain a chitosan hydrogel film, and carbon nanotubes were dispersed in the chitosan hydrogel film. The FTIR, XRD, BET, SEM were applied to chatacterize the structure and the morphology of the absorbent and results showed that when the mass fraction of the carbon nanotubes was 1%, the structure was a three-dimensional network with microporous, and the water absorption reached to the maximum value of 266.07% and the elongation at break reached to a maximum of 98.87%. The ability to remove acid red 73 from aqueous and soil environments was evaluated by UV. In the aqueous samples, 70 mg of the adsorbent reached a saturated adsorption capacity of 101.07 mg/g and a removal rate of 92.23% at pH = 5. The thermodynamics conformed with the Langmuir adsorption isotherm and pseudo second-order adsorption kinetic models. In the soil samples, 100 mg of the adsorbent reached an adsorption capacity of 24.73 mg/g and removal rate of 49.45%. When the pH of the soil is between 4 and 7, the removal rate and adsorption capacity do not change much; hence, the pH should be maintained between 5.2 and 6.8, which is extremely suitable for the growth of general plants. Moreover, the experimental results demonstrated that the adsorbent maintained a good removal rate of acid red 73 over six adsorption cycles.
Collapse
Affiliation(s)
- Jia Wei
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| | - Luchun Yan
- Gansu Henglu Traffic Survey and Design Institute, Lanzhou, Gansu, 730070 China
| | - Zhifang Zhang
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| | - Bing Hu
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| | - Wenjun Gui
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| | - Yanjun Cui
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| |
Collapse
|
6
|
Effective and simple fabrication of pyrrole and thiophene-based poly(Py-co-Th)/ZnO composites for high photocatalytic performance. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Yu M, Dong H, Zheng Y, Liu W. Trimetallic carbon-based catalysts derived from metal-organic frameworks for electro-Fenton removal of aqueous pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151747. [PMID: 34826458 DOI: 10.1016/j.scitotenv.2021.151747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Pesticide overuse has posed a threat to agricultural community as well as aquatic animals. Heterogeneous electro-Fenton (HEF) processes have received considerable attention for aqueous contaminants removal, and metal-organic frameworks (MOFs) serve as promising templates for fabrication of carbon-based HEF catalysts with low Fe leaching and enhanced stability. Herein, multimetallic MOF-derived HEF catalysts CMOFs@PCM have been demonstrated as efficient and stable HEF catalysts for aqueous pesticide degradation and mineralization. The porous carbon monolith (PCM) substrate effectively catalyzed 2-electron oxygen reduction reaction (ORR) over the pH range of 4-10 to in situ generate H2O2, which was then activated by the anchored Fe3O4, Fe3C and NiO into OH for pesticide degradation. Fe8Al7Ni5-CMOF@PCM achieved over 90% napropamide degradation within 60 min in the pH range of 4-10, and 96% degradation at neutral condition, 39% higher than monometallic CMIL-88(Fe)@PCM. Meanwhile, the embedded NiO and γ-Al2O3 showed synergistic effect in promoting the catalytic activity of Fe sites, resulting in substantially enhanced performance of trimetallic FexAlyNiz-CMOF@PCM compared to the monometallic counterparts. On the other hand, the unique core-shell structure and Fe3C interlayer formed by co-pyrolyzing Fe-containing MOFs-NH2 with PCM greatly minimized the metal leaching and enhanced the stability of the electrocatalysts.
Collapse
Affiliation(s)
- Menglin Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310018, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Heng Dong
- Linde+Robinson Laboratories California Institute of Technology, Pasadena, CA 91125, United States
| | - Yingdie Zheng
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Weiping Liu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
8
|
Saeed T, Naeem A, Din IU, Farooq M, Khan IW, Hamayun M, Malik T. Synthesis of chitosan composite of metal-organic framework for the adsorption of dyes; kinetic and thermodynamic approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127902. [PMID: 34872779 DOI: 10.1016/j.jhazmat.2021.127902] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 05/10/2023]
Abstract
The iron metal-organic framework composite with chitosan (CS/MOF-235) was synthesized using a solvothermal method and its synthesis was confirmed by surface area, PZC, XRD, FESEM, XPS, TGA, TEM, EDX mapping and EDX analysis. The chitosan composite of the iron metal-organic framework (CS/MOF-235), MOF-235 and chitosan were used for the removal of methylene blue (MB) and methyl orange (MO) from aqueous solutions. The maximum adsorption capacities were found to be 2857-2326 mg/g for CS/MOF-235, 357 - 236 mg/g for MOF-235 and 209-171 mg/g for chitosan (CS) which reveal that the adsorption capacity of CS/MOF-235 is almost 8 and 14 times greater than MOF-235 and chitosan respectively. The adsorption selectivity of the (CS/MOF-235) towards the dye was in the order MO > MB. Moreover, hydrogen bonding, pi-pi bonding, pore-filling, electrostatic interactions and chemisorption were proposed as possible mechanisms for the removal of dyes onto CS/MOF-235. The intraparticle diffusion and Richenberg models confirmed that the adsorption process was jointly controlled by the pore and film diffusion. The negative values of the isosteric heat of adsorption (ΔH¯) fall with surface coverage indicating that a lesser amount of heat is required for the greater uptake of dyes.
Collapse
Affiliation(s)
- Tooba Saeed
- National Center of Excellence in Physical Chemistry, University of Peshawar, Pakistan
| | - Abdul Naeem
- National Center of Excellence in Physical Chemistry, University of Peshawar, Pakistan.
| | - Israf Ud Din
- Prince Sattam Bin Abdul Aziz University, Saudi Arabia
| | - Muhammad Farooq
- National Center of Excellence in Physical Chemistry, University of Peshawar, Pakistan
| | - Ihtisham Wali Khan
- National Center of Excellence in Physical Chemistry, University of Peshawar, Pakistan
| | - Muhammad Hamayun
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Pakistan
| | - Tabassum Malik
- National Center of Excellence in Physical Chemistry, University of Peshawar, Pakistan
| |
Collapse
|