1
|
Liu X, Zhu C, Li M, Xing H, Zhu S, Liu X, Zhu G. Confinement Synthesis of Atomic Copper-Anchored Polymeric Carbon Nitride in Crystalline UiO-66-NH 2 for High-Performance CO 2-to-CH 3OH Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202412408. [PMID: 39073292 DOI: 10.1002/anie.202412408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 07/30/2024]
Abstract
Photocatalytic CO2 reduction to value-added fuels displays an attractive scenario to enhance energy supply and reduce global warming. We report herein the confinement synthesis of polymeric carbon nitride (PCN) incorporating with Cu single atoms (CuSAs) inside the crystalline UiO-66-NH2, which combines the merits of heterojunction photocatalysis and single-atom catalysis (SAC) to achieve high-performance CO2-to-CH3OH conversion. A series of spectral studies displays the formation of CuSAs@PCN inside the crystalline UiO-66-NH2. Remarkably, the ternary composite shows an excellent photocatalytic turnover frequency of 4.15 mmol ⋅ h-1 ⋅ g-1 for CO2-to-CH3OH conversion. Theoretical and experimental studies demonstrate the doping of CuSAs, as well as the formation of type-II heterojunction, are causal factors to achieve CH3OH generation. The study provides new insights designing high-performance photocatalyst for CO2 conversion to fuels at atomic scale.
Collapse
Affiliation(s)
- Xingbing Liu
- College of Chemistry, Northeast Normal University, 130021, Changchun, China
| | - Changyan Zhu
- College of Chemistry, Northeast Normal University, 130021, Changchun, China
| | - Mengying Li
- College of Chemistry, Northeast Normal University, 130021, Changchun, China
| | - Hongzhu Xing
- College of Chemistry, Northeast Normal University, 130021, Changchun, China
| | - Siyang Zhu
- College of Chemistry, Northeast Normal University, 130021, Changchun, China
| | - Xin Liu
- College of Chemistry, Northeast Normal University, 130021, Changchun, China
| | - Guangshan Zhu
- College of Chemistry, Northeast Normal University, 130021, Changchun, China
| |
Collapse
|
2
|
Song J, Zhu L, Yu S, Li G, Wang D. The synergistic effect of adsorption and Fenton oxidation for organic pollutants in water remediation: an overview. RSC Adv 2024; 14:33489-33511. [PMID: 39439830 PMCID: PMC11495274 DOI: 10.1039/d4ra03050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Water pollution from industrial sources presents a significant environmental challenge due to the presence of recalcitrant organic contaminants. These pollutants threaten human health and necessitate effective remediation strategies. This article reviewed the synergistic application of adsorption and Fenton oxidation for water treatment. Adsorption, a common technique, concentrates pollutants onto a solid surface, but offers limited degradation. Fenton oxidation, an advanced oxidation process (AOP), utilizes hydroxyl radicals for efficient organic compound breakdown. When adsorption and Fenton oxidation combine, adsorption pre-concentrates pollutants, boosting Fenton oxidation effectiveness. This review delves into the mechanisms and advantages of this integrated approach, highlighting its potential for enhanced removal of organic contaminants. The discussion encompasses the mechanisms of Fenton oxidation and the synergistic effects it has with adsorption. Additionally, various support materials employed in this combined process are explored, including carbon-based supports (activated carbon, graphene, carbon nanotubes and biochar), metal-organic frameworks (MOFs), and clays. Finally, the applicability of this approach to diverse wastewater streams, such as medical and industrial wastewater, is addressed. The review contains 105 references and summarizes the key findings and future perspectives for this promising water remediation technology.
Collapse
Affiliation(s)
- Junzhe Song
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| | - Linan Zhu
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| | - Sheng Yu
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| | - Guobiao Li
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| | - Dong Wang
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| |
Collapse
|
3
|
Nejat R. Enhancing the photocatalytic efficiency of g-C 3N 4 for ciprofloxacin degradation using Tetrakis (acetonitrile) copper(I) hexafluorophosphate as a highly effective cocatalyst. Heliyon 2024; 10:e35829. [PMID: 39253175 PMCID: PMC11382030 DOI: 10.1016/j.heliyon.2024.e35829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Ciprofloxacin antibiotic (CP) is one of the antibiotics with broad-spectrum antimicrobial activity that has the highest rate of antibiotic resistance. This antibiotic undergoes incomplete metabolism within the human body and is excreted into the water, resulting in its hazardous biological and ecotoxicological effects. In this study, a novel photocatalyst, comprised of graphitic carbon nitride (g-CN) and Tetrakis(acetonitrile)copper(I)hexafluorophosphate ([(CH3CN)4Cu]PF6), denoted as CuPF6/g-CN, was employed for the degradation of ciprofloxacin under visible-light irradiation. The Cu complex, functioning as a co-catalyst, assumes a crucial role in facilitating the efficient separation of photogenerated charges and exhibiting high absorption in the visible-light region. More surprisingly, CuPF6/g-CN does surpass by up to 6 times the behavior reached with bare g-CN. The experimental findings indicated that the optimal degradation of ciprofloxacin (CP) occurred after 50 min when using a concentration of 20 mg L-1 CP and a concentration of 0.05 g/L CuPF6/g-CN, under a pH of 8. This research offers valuable insights into the advancement of cost-effective co-catalysts that enhance the photocatalytic capabilities of established photocatalysts. It contributes to improving the overall performance and efficiency of these photocatalytic systems.
Collapse
Affiliation(s)
- Razieh Nejat
- Department of Chemistry, Kosar University of Bojnord, Bojnord, Islamic Republic of Iran
| |
Collapse
|
4
|
Zhou Y, Wang J. Electro-Fenton degradation of pefloxacin using MOFs derived Cu, N co-doped carbon as a nanocomposite catalyst. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124198. [PMID: 38782161 DOI: 10.1016/j.envpol.2024.124198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Electro-Fenton (EF) can in-situ produce H2O2 and effectively activate H2O2 to generate powerful reactive species for the destruction of contaminants under acidic conditions, however, the production of iron-containing sludge and requirement of low working pH significantly hinder its practical application. Herein, a novel Cu, N co-doped carbon (Cu-N@C) with metal organic framework (MOF) as a precursor was constructed and adopted for the elimination of pefloxacin (PEF) in the heterogeneous electro-Fenton (HEF) process. PEF could be almost completely removed within 1 h and total organic carbon (TOC) removal efficiency was 48.57% within 6 h. Meanwhile, Cu-N@C had good repeatability and environmental adaptability, it can still maintain excellent catalytic performance after 10 cycles, and it exhibited satisfactory remediation performance in simulated water matrix. In addition, the HEF process catalyzed by Cu-N@C also showed satisfactory degradation effect on other organic pollutants including atrazine, methylene blue, and chlorotetracycline. Under the action of impressed current, the HEF system could generate H2O2 in-situ, and the active species could be generated in the redox cycle of Cu0/Cu1+/Cu2+. Electron paramagnetic resonance and quenching experiments confirmed that •OH was the dominant active species in the degradation of organic compounds. The degradation process of PEF was studied by mass spectrometry analysis of intermediate products. This study provided a simple method to prepare MOF-based electrocatalyst, which exhibits promising application potential for treatment wastewater.
Collapse
Affiliation(s)
- Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
5
|
Zhou B, Liu Q, Zheng C, Ge Y, Huang L, Fu H, Fang S. Enhanced Fenton-like catalysis via interfacial regulation of g-C 3N 4 for efficient aromatic organic pollutant degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124341. [PMID: 38852662 DOI: 10.1016/j.envpol.2024.124341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
For the efficient degradation of organic pollutants with the goal of reducing the water environment pollution, we employed an alkaline hydrothermal treatment on primeval g-C3N4 to synthesize a hydroxyl-grafted g-C3N4 (CN-0.5) material, from which we engineered a novel Fenton-like catalyst, known as Cu-CN-0.5. The introduction of numerous hydroxyl functional groups allowed the CN-0.5 substrate to stably fix active copper oxide particles through surface complexation, resulting in a low Cu leaching rate during a Cu-CN-0.5 Fenton-like process. A sequence of characterization techniques and theoretical calculations uncovered that interfacial complexation induced charge redistribution on the Cu-CN-0.5 surface. Specifically, some of the π electrons in the tris-s-triazine units were transferred to the copper oxide particles along the newly formed chemical bonds (C(π)-O-Cu), forming a π-deficient area on the tris-s-triazine plane near the complexation site. In a typical Cu-CN-0.5 Fenton-like process, a stable π-π interaction was established due to the favorable positive-negative match of electrostatic potential between the aromatic pollutants and π-deficient areas, leading to a significant improvement in Cu-CN-0.5's adsorption capacity for aromatic pollutants. Furthermore, pollutants also delivered electrons to the Cu-CN-0.5 Fenton-like system via a "through-space" approach, which suppressed the futile oxidation of H2O2 in reducing the high-valent Cu2+ and significantly improved the generation efficiency of •OH with high oxidative capacity. As expected, Cu-CN-0.5 not only exhibited an efficient Fenton degradation for several typical aromatic organic pollutants, but also demonstrated both a low metal leaching rate (0.12 mg/L) and a H2O2 utilization rate exceeding 80%. The distinctive Fenton degradation mechanism substantiated the potential of the as-prepared material for effective wastewater treatment applications.
Collapse
Affiliation(s)
- Bin Zhou
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Qingsong Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Caihong Zheng
- Fuzhou Ecological Environment Promotion and Education Center, Fuzhou, 350000, China.
| | - Yao Ge
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Lili Huang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Haoyang Fu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Shengqiong Fang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
6
|
Divakar S, Naik NS, Balakrishna RG, Padaki M. Liquid- liquid (Cyclohexanone: Cyclohexanol) separation using augmented tight nanofiltration membrane: A sustainable approach. CHEMOSPHERE 2024; 355:141820. [PMID: 38561158 DOI: 10.1016/j.chemosphere.2024.141820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Organic solvent nanofiltration (OSN) is an incipient technology in the field of organic liquid-liquid separation. The incomplete separations and complexity involved in these, forces many organic liquids to be released as effluents and the adverse effects of these on environment is enormous and irreparable. The work prominences on the complete separation of industrially significant cyclohexanone: cyclohexanol (keto-alcohol oil) and heptane: toluene mixtures. The separations of these above-mentioned organic liquid mixtures were carried out using the fabricated Lewis acid modified graphitic carbon nitride (Cu2O@g-C3N4) incorporated polyvinylidene difluoride (PVDF) composite membranes. These fabricated membranes showed a separation factor of 18.16 and flux of 1.62 Lm-2h-1 for cyclohexanone: cyclohexanol mixture and separation of heptane and toluene mixture (with heptane flux of 1.52 Lm-2h-1) showed a separation factor of 9.9. The selectivity and productivity are based on the polarity and size of the organic liquids. The role of Cu2O@g-C3N4 is influencing the pore size distribution, increased divergence from solubility parameters, polarity, solvent uptake and porosity of the composite membranes. The developed composite membranes are thus envisioned to be apt for a wide range of liquid-liquid separations due to its implicit nature.
Collapse
Affiliation(s)
- Swathi Divakar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112
| | - Nagaraj S Naik
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112.
| | - Mahesh Padaki
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112.
| |
Collapse
|
7
|
Du H, Hu X, Huang Y, Bai Y, Fei Y, Gao M, Li Z. A review of copper-based Fenton reactions for the removal of organic pollutants from wastewater over the last decade: different reaction systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27609-27633. [PMID: 38589591 DOI: 10.1007/s11356-024-33220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
In recent years, as global industrialization has intensified, environmental pollution has become an increasingly serious problem. Improving water quality and achieving wastewater purification remain top priorities for environmental health initiatives. The Fenton process is favored by researchers due to its high efficiency and ease of operation. Central to the Fenton process is a catalyst used to activate hydrogen peroxide, rapidly degrading pollutants, improving water quality. Among various catalysts developed, copper-based catalysts have attracted considerable attention due to their affordability, high activity, and stable performance. Based on this, this paper reviews the development of copper-based Fenton systems over the past decade. It mainly involves the research and application of copper-based catalysts in different Fenton systems, including photo-Fenton, electro-Fenton, microwave-Fenton, and ultrasonic-Fenton. This review provides a fundamental reference for the subsequent studies of copper-based Fenton systems, contributing to the goal of transitioning these systems from laboratory research into practical environmental applications.
Collapse
Affiliation(s)
- Huixian Du
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Xuefeng Hu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Yao Huang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yaxing Bai
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yuhuan Fei
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Meng Gao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Zilong Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
8
|
Yu N, Bai J, Cao H, Yao H, Shi G, Yuan H, Xu Z, Luo F, Li M, Si R. Electrocatalysis coupled heterogeneous electro-Fenton like treatment of coal gasification wastewater using tourmaline as catalyst: process parameters and response surface. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20207-20221. [PMID: 38369660 DOI: 10.1007/s11356-024-32457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Coal gasification technology is essential for realizing clean and efficient conversion of coal, as well as for reducing carbon emissions. However, coal gasification technology is accompanied by a large amount of coal gasification wastewater that is biodegradable. In this work, tourmaline was applied as a catalyst in electro-Fenton like process for treating coal gasification wastewater. The optimal applied parameters of coal gasification wastewater were investigated as follows: current density of 90 mA cm-2, tourmaline dosage of 8 g L-1, electrode gap of 1 cm, and temperature at 25 °C; the COD removal ratio reached 91.24% after 240-min treatment. In addition, the current density and tourmaline dosage were further optimized by response surface method. The result was about current density with 82.4 mA cm-2 and catalyst with 7.57 g L-1; the predicted COD removal efficiency was 86.91%. Under the optimal parameters the actual COD removal efficiency was 88.25% a little high than the predicted value. To explore the reusability of tourmaline as Fenton reaction catalyst, five cycles of experiments were carried out. The result demonstrated that tourmaline could be used as catalyst for treating coal gasification wastewater by electro-Fenton like process.
Collapse
Affiliation(s)
- Naichuan Yu
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China.
- Tianjin Key Laboratory of Nano-Optoelectronic Display Materials and Components, Tianjin, 301830, China.
| | - Junxue Bai
- School of Biological and Environmental Engineering, Tianjin Vocational Institute, Tianjin, 300410, China
| | - Hanfei Cao
- College of Food Science& Nutritional Engineering, China Agricultural University, Beijing, 100091, China
| | - Hao Yao
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China
| | - Guangyao Shi
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China
| | - Hao Yuan
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China
| | - Zhilong Xu
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China
- Tianjin Key Laboratory of Nano-Optoelectronic Display Materials and Components, Tianjin, 301830, China
| | - Fuchen Luo
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China
| | - Mingyu Li
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China
| | - Rongmei Si
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China
- Tianjin Key Laboratory of Nano-Optoelectronic Display Materials and Components, Tianjin, 301830, China
| |
Collapse
|
9
|
Yao Y, Yang J, Zhu C, Lu L, Fang Q, Xu C, He Z, Song S, Shen Y. Unveiling the metallic size effect on O2 adsorption and activation for enhanced electro-Fenton degradation of aromatic compounds. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132739. [PMID: 37856960 DOI: 10.1016/j.jhazmat.2023.132739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Metal-atom-modified nitrogen-doped carbon materials (M-N-C) have emerged as promising candidates for electro-Fenton degradation of pollutants. Nonetheless, a comprehensive exploration of size-dependent M-N-C catalysts in the electro-Fenton process remains limited, posing challenges in designing surface-anchored metal species with precise sizes. Herein, a heterogeneous-homogeneous coupled electro-Fenton (HHC-EF) system was designed and various M-N-C catalysts anchored with Co single atoms (CoSA-N-C), Co clusters (CoAC-N-C), and Co nanoparticles (CoNP-N-C) were successfully synthesized and employed in an HHC-EF system. Intriguingly, CoAC-N-C achieved outstanding removal efficiencies of 99.9% for BPA and RhB within 10 and 15 min, respectively, with the fastest reaction kinetics (0.70 min-1 for BPA and 0.34 min-1 for RhB). Electron spin resonance and trapping experiments revealed that·OH played a crucial role in the HHC-EF process. Moreover, experiments and theoretical calculations revealed that the unique metallic size effect facilitate the in-situ electro-generation of H2O2. Specifically, the atomic interaction between neighboring Co atoms in clusters enhanced O2 adsorption and activation by strengthening the Co-N bond and transforming O2 adsorption configuration to the Yeager-type. This study provides valuable insights that could inspire the size-oriented metal-based catalyst design from the perspective of the potential atomic distance effect.
Collapse
Affiliation(s)
- Yanchi Yao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jingyi Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Chao Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Qile Fang
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, PR China
| | - Chao Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhiqiao He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
10
|
Yang Z, Wang J, Li A, Wang C, Ji W, Pires E, Yang W, Jing S. Ferrocenylselenoether and its cuprous cluster modified TiO 2 as visible-light photocatalyst for the synergistic transformation of N-cyclic organics and Cr(vi). RSC Adv 2024; 14:1488-1500. [PMID: 38174284 PMCID: PMC10763662 DOI: 10.1039/d3ra07390d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
In this study, fcSe@TiO2 and [Cu2I2(fcSe)2]n@TiO2 nanosystems based on ferrocenylselenoether and its cuprous cluster were developed and characterized by X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray spectroscopy (EDX), and electron paramagnetic resonance (EPR). Under optimized conditions, 0.2 g L-1 catalyst, 20 mM H2O2, and initial pH 7, good synergistic visible light photocatalytic tetracycline degradation and Cr(vi) reduction were achieved, with 92.1% of tetracycline and 64.5% of Cr(vi) removal efficiency within 30 minutes. Mechanistic studies revealed that the reactive species ˙OH, ˙O2-, and h+ were produced in both systems through the mutual promotion of Fenton reactions and photogenerated charge separation. The [Cu2I2(fcSe)2]n@TiO2 system additionally produced 1O2 from Cu+ and ˙O2-. The advantages of the developed nanosystems include an acidic surface microenvironment provided by Se⋯H+, resourceful product formation, tolerance of complex environments, and excellent adaptability in refractory N-cyclic organics.
Collapse
Affiliation(s)
- Zhuo Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jinshan Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
| | - Chao Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
- Instituto de Síntesis Química y Catálisis Homogénea, CSIC-Universidad de Zaragoza Pedro Cerbuna 12 E-50009 Zaragoza Spain
| | - Wei Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Elísabet Pires
- Instituto de Síntesis Química y Catálisis Homogénea, CSIC-Universidad de Zaragoza Pedro Cerbuna 12 E-50009 Zaragoza Spain
| | - Wenzhong Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
11
|
Lugo L, Venegas C, Guarin Trujillo E, Diaz Granados-Ramírez MA, Martin A, Vesga FJ, Pérez-Flórez A, Celis C. Ecotoxicology Evaluation of a Fenton-Type Process Catalyzed with Lamellar Structures Impregnated with Fe or Cu for the Removal of Amoxicillin and Glyphosate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7172. [PMID: 38131723 PMCID: PMC10743043 DOI: 10.3390/ijerph20247172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Antibiotics and pesticides, as well as various emerging contaminants that are present in surface waters, raise significant environmental concerns. Advanced oxidation processes, which are employed to eliminate these substances, have demonstrated remarkable effectiveness. However, during the degradation process, by-products that are not completely mineralized are generated, posing a substantial risk to aquatic ecosystem organisms; therefore, it is crucial to assess effluent ecotoxicity following treatment. This study aimed to assess the toxicity of effluents produced during the removal of amoxicillin and glyphosate with a Fenton-type process using a laminar structure catalyzed with iron (Fe) and copper (Cu). The evaluation included the use of Daphnia magna, Selenastrum capricornutum, and Lactuca sativa, and mutagenicity testing was performed using strains TA98 and TA100 of Salmonella typhimurium. Both treated and untreated effluents exhibited inhibitory effects on root growth in L. sativa, even at low concentrations ranging from 1% to 10% v/v. Similarly, negative impacts on the growth of algal cells of S. capricornutum were observed at concentrations as low as 0.025% v/v, particularly in cases involving amoxicillin-copper (Cu) and glyphosate with copper (Cu) and iron (Fe). Notably, in the case of D. magna, mortality was noticeable even at concentrations of 10% v/v. Additionally, the treatment of amoxicillin with double-layer hydroxides of Fe and Cu resulted in mutagenicity (IM ≥ 2.0), highlighting the necessity to treat the effluent further from the advanced oxidation process to reduce ecological risks.
Collapse
Affiliation(s)
- Lorena Lugo
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| | - Camilo Venegas
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Elizabeth Guarin Trujillo
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Maria Alejandra Diaz Granados-Ramírez
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Alison Martin
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| | - Fidson-Juarismy Vesga
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Alejandro Pérez-Flórez
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| | - Crispín Celis
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| |
Collapse
|
12
|
Farissi S, Zakkariya S, Akhilghosh KA, Prasanthi T, Muthukumar A, Muthuchamy M. Electrooxidation of amoxicillin in aqueous solution with graphite electrodes: Optimization of degradation and deciphering of byproducts using HRMS. CHEMOSPHERE 2023; 345:140415. [PMID: 37844704 DOI: 10.1016/j.chemosphere.2023.140415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/26/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Contaminants of emerging concern (CECs) such as antibiotics have become a matter of worry in aquatic environments worldwide. Their presence in the environment has been increasing due to the inability of conventional wastewater and water treatments to annihilate them. Hence, attempts have been made to remove CECs using electrochemical oxidation (EO). Present study employed the low cost, active carbon based graphite sheet electrodes as anode and cathode to oxidize and degrade Amoxicillin (AMOX)- a β-lactum thiazolidine antibiotic. Optimization studies found pH 9, 45 mA cm-2, 81 cm2 electrode surface area, 6 mM electrolyte concentration and 60 min treatment time to be optimal for AMOX removal. Studies with varying concentrations of AMOX (20 mg L-1, 30 mg L-1 and 40 mg L-1) found that increase in concentrations of AMOX require higher current densities and treatment time for better TOC removal. High performance liquid chromatography photo diode array (HPLC-PDA) studies found 94% removal for 40 mg L-1 of AMOX at optimal conditions with 90% COD and 46% TOC removal. High resolution mass spectrometry (HRMS) studies using Ultra performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-Q-ToF-MS) identified major degradation mechanisms to be hydroxylation, β-lactum ring cleavage, breakage of thiazolidine ring chain from the aromatic ring and piperazinyl ring formation. The final byproducts of AMOX oxidation were carboxylic acids.
Collapse
Affiliation(s)
- Salman Farissi
- Department of Environmental Science, Central University of Kerala, Periye, 671320, Kerala, India
| | - Shajahan Zakkariya
- Department of Environmental Science, Central University of Kerala, Periye, 671320, Kerala, India
| | | | - Tejomurtula Prasanthi
- Department of Environmental Science, Central University of Kerala, Periye, 671320, Kerala, India
| | - Anbazhagi Muthukumar
- Department of Environmental Science, Central University of Kerala, Periye, 671320, Kerala, India
| | - Muthukumar Muthuchamy
- Department of Environmental Science, Central University of Kerala, Periye, 671320, Kerala, India.
| |
Collapse
|
13
|
Pham TH, Viet NM, Hoai PTT, Tung NH, Tran HM, Mapari MG, Kim T. Synthesis of solar-driven Cu-doped graphitic carbon nitride photocatalyst for enhanced removal of caffeine in wastewater. ENVIRONMENTAL RESEARCH 2023; 233:116483. [PMID: 37352951 DOI: 10.1016/j.envres.2023.116483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Caffeine (CaF), a widely consumed compound, has been associated with various harmful effects on human health, including metabolic, cardiovascular disease, and reproductive disorders. Moreover, it poses a signifincant threat to organisms and aquatic ecosystems, leading to water pollution concerns. Therefore, the removal of CaF from wastewater is crucial for mitigating water pollution and minimizing its detrimental impacts on both humans and the environment. In this study, a solar-driven Cu-doped graphitic carbon nitride (Cu/CN) photocatalyst was synthesized and evaluated for its effectiveness in oxidizing CaF in wastewater. The Cu/CN photocatalyst, with a low band gap energy of 2.58eV, exhibited superior performance in degrading CaF compared to pure graphitic carbon nitride (CN). Under solar light irradiation, CuCN achieved a remarkable CaF degradation efficiency of 98.7% CaF, surpassing CN's efficiency of 74.5% by 24.2%. The synthesized Cu/CN photocatalyst demonstrated excellent removal capability, achieving a removal rate of over 88% for CaF in wastewater. Moreover, the reusability test showed that Cu/CN could be successfully reused up to five cycles maintaining a high removal efficiency of 74% for CaF in the fifth cycle. Additionally, the study elucidated the oxidation mechanism of CaF using solar-driven Cu/CN photocatalyst and highlighted the environmental implications of the process.
Collapse
Affiliation(s)
- Thi Huong Pham
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, 13120, South Korea.
| | - Nguyen Minh Viet
- VNU Key Laboratory of Advanced Material for Green Growth, Faculty of Chemistry, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Viet Nam.
| | - Pham Thi Thu Hoai
- Faculty of Food Technology, University of Economics-Technology for Industries (UNETI), Hanoi, 11622, Viet Nam.
| | - Nguyen Hoang Tung
- Faculty of Civil Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Hieu Man Tran
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, 13120, South Korea
| | - M G Mapari
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, 13120, South Korea
| | - TaeYoung Kim
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, 13120, South Korea.
| |
Collapse
|
14
|
Duan WL, Li YX, Li WZ, Luan J. Controllable synthesis of copper-organic frameworks via ligand adjustment for enhanced photo-Fenton-like catalysis. J Colloid Interface Sci 2023; 646:107-117. [PMID: 37187044 DOI: 10.1016/j.jcis.2023.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The efficient heterogeneous photo-Fenton-like catalysts based on two secondary ligand-induced Cu(II) metal-organic frameworks (Cu-MOF-1 and Cu-MOF-2) were constructed for the first time and investigated for the degradation of multiple antibiotics. Herein, two novel Cu-MOFs were prepared using mixed ligands by a facile hydrothermal method. The one-dimensional (1D) nanotube-like structure could be obtained by using V-shaped, long and rigid 4,4'-bis(3-pyridylformamide)diphenylether (3-padpe) ligand in Cu-MOF-1, while polynuclear Cu cluster could be prepared more easily by using short and small isonicotinic acid (HIA) ligand in Cu-MOF-2. Their photocatalytic performances were measured by degradation of multiple antibiotics in Fenton-like system. Comparatively, Cu-MOF-2 exhibited superior photo-Fenton-like performance under visible light irradiation. The outstanding catalytic performance of Cu-MOF-2 was ascribed to the tetranuclear Cu cluster configuration and excellent ability of photoinduced charge transfer and hole separation thus improved the photo-Fenton activity. In addition, Cu-MOF-2 showed high photo-Fenton activity in wide pH working range 3-10 and maintained wonderful stability after five cyclic experiments. The degradation intermediates and pathways were deeply studied. The main active species h+, O2- and OH worked together in photo-Fenton-like system and possible degradation mechanism was proposed. This study provided a new approach to design the Cu-based MOFs Fenton-like catalysts.
Collapse
Affiliation(s)
- Wen-Long Duan
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China.
| | - Ye-Xia Li
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| | - Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang 100819, PR China.
| |
Collapse
|
15
|
Song Y, Wang A, Ren S, Zhang Y, Zhang Z. Flow-through heterogeneous electro-Fenton system using a bifunctional FeOCl/carbon cloth/activated carbon fiber cathode for efficient degradation of trimethoprim at neutral pH. ENVIRONMENTAL RESEARCH 2023; 222:115303. [PMID: 36642126 DOI: 10.1016/j.envres.2023.115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The synthesis of multifunctional cathode with high-efficiency and stable catalytic activity for simultaneously producing and activating H2O2 is an effective way for promoting the performance of heterogeneous electro-Fenton process (HEF). In addition, accelerating mass transfer by adopting a flow-through reactor is also great importance because of its better utilization of catalysts and adequate contact of the contaminant with the oxidants generated on the electrode surface. Herein, a novel flow-through HEF (FHEF) system was designed for the degradation of trimethoprim (TMP) using bifunctional cathode with a sandwich structure FeOCl nanosheets loaded onto carbon cloth (CC) and activated carbon fiber (ACF) (FeOCl/CC/ACF). The cathode exhibited excellent performance in activating H2O2 for the in-situ generation of hydroxyl radicals (•OH). The electron spin resonance (ESR) measurements and radical quenching tests proved that the high production of •OH in the FHEF process was favorable to the high catalytic efficiency. 25 mg L-1 TMP was entirely degraded after 60 min, with the TOC removal of 62.6% (180 min) at pH 6.8, 9.0 mA cm-2, and flux rate 210 mL min-1. Moreover, the degradation rate still could reach 83% (60 min) after 10 cycles without obvious valence and crystal phase changes. Simultaneously, the current utilization rate has also been greatly enhanced, with an average current efficiency of 69.9% and a low energy consumption of 0.28 kWh kg-1. The reasonable degradation pathways for TMP were proposed based on the UPLC-QTOF-MS/MS results. Finally, the results of toxicological simulation showed a declining trend in the toxicity of the samples during TMP degradation. These results claim that the FeOCl/CC/ACF-FHEF system is an efficient and economical technology for the treatment of organic contaminants in effluents.
Collapse
Affiliation(s)
- Yongjun Song
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Aimin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Songyu Ren
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yanyu Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, China
| |
Collapse
|
16
|
Zhi SQ, Zhang JY, Wu SH, Zhu WS, Shan YD, Liu Y, Han X. Oxidative Desulfurization of Benzothiophene by Persulfate and Cu-Loaded g-C 3 N 4 via the Polymerization Pathway. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Shao-Qi Zhi
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin 300350, P. R. China
| | - Jun-Yuan Zhang
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin 300350, P. R. China
| | - Song-Hai Wu
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin 300350, P. R. China
| | - Wen-Shuang Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Yu-Dong Shan
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin 300350, P. R. China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xu Han
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin 300350, P. R. China
| |
Collapse
|
17
|
Al-Musawi TJ, Alghamdi MI, Alhachami FR, Zaidan H, Mengelizadeh N, Asghar A, Balarak D. The application of a new recyclable photocatalyst γ-Fe 2O 3@SiO 2@ZIF8-Ag in the photocatalytic degradation of amoxicillin in aqueous solutions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:372. [PMID: 36754902 DOI: 10.1007/s10661-023-10974-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
This pilot study synthesized the γ-Fe2O3@SiO2@ZIF8-Ag nanocomposites via the hydrothermal method to study its potential use in amoxicillin degradation as a novel photocatalyst in aqueous solutions under visible light radiation. Various diagnostic methods were used to determine the morphology and functional structure of the photocatalyst, and the results confirmed its proper formation. Complete degradation of AMX was obtained at a pH of 5, catalyst dosage of 0.4 g/L, AMX concentration of 10 mg/L, and reaction time of 60 min. The efficiency of the degradation was diminished when anions were present in the reaction medium, and the order of their effect was SO42- < Cl- < NO3- < HCO3-. Biodegradability (BOD5/COD ratio) increased from 0.20 to 0.68 after 120 min of photocatalytic treatment, with a COD removal of 87.54% and a TOC removal of 74.88%. Through the experimental trapping of electrons, we found the production of reactive species, such as hydroxyl radical (•OH), superoxide (O2•-), and holes (h+), in the photocatalysis reactor and that •OH was the predominant species in AMX photodegradation. Comparative experiments emphasized that the oxidation process occurs with the adsorption of pollutants on the surface of the catalyst, and the photocatalyst has the potential to be activated by various light sources, including visible light, UV light, and sunlight, with an AMX decomposition above 88%. The synthesized particles can be recovered after five consecutive cycles with minimal reduction in the degradation rate (< 4%). γ-Fe2O3@SiO2@ZIF8-Ag can be considered a promising photocatalyst for use in AMX degradation due to its recyclability, easier activation by different light sources, and excellent mineralization.
Collapse
Affiliation(s)
- Tariq J Al-Musawi
- Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Mohammad I Alghamdi
- Department of Computer Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| | - Firas Rahi Alhachami
- Department of Radiology, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Haider Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Nezamaddin Mengelizadeh
- Department of Environmental Health Engineering, Evas Faculty of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Abolfazl Asghar
- Student Research Commitee, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Davoud Balarak
- Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
18
|
Coordination-driven boron and copper on carbon nitride for peroxymonosulfate activation to efficiently degrade organic contaminants. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Zhang X, Wang J, Wang Y, Yao Z, Guo W, Xu H, Jiang Z. Boosting electron transport process over multiple channels induced by S-doped carbon and Fe 7S 8 NPs interface toward high-efficiency antibiotics removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130115. [PMID: 36303349 DOI: 10.1016/j.jhazmat.2022.130115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/21/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The enhancement of electron transport process on multiple channels of C-Fe and C-S-Fe bonds between dual-reaction centres was investigated for stimulating the antibiotics degradation in Fenton-like processes. Herein, multiple channels structure of sulfur-doped carbon coupled Fe7S8 cluster through C-Fe bond and C-S-Fe bond was constructed through density functional theory (DFT), and S-doped carbon framework coated Fe7S8 nanoparticles (Fe7S8/SC) Fenton-like catalyst was prepared through hydrothermal and subsequent sulfuration process. The DFT calculations revealed that electrons are thermodynamically transferred from carbon to iron along both C-Fe and C-S-Fe bonds. The optimized Fe7S8/SC catalyst exhibited desirable catalytic property for Fenton-like degradation for various antibiotics, the removal of amoxicillin, norfloxacin, and tetracycline hydrochloride reach 98.9%, 97.8%, and 99.3% respectively within 40 min under neutral pH, and catalyst also demonstrated excellent cycle stability after five runs. The excellent degradation effect of antibiotics by Fenton-like catalyst was attributed to the intensified electron transport process by multiple electron transfer channels between dual reaction centres, making FeII easier to regenerate. This study spreads a new route for the enhancement of electron transport process in Fenton-like catalysts by constructing multiple channels.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Jiankang Wang
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Yahui Wang
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, China
| | - Zhongping Yao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China.
| | - Wanqian Guo
- School of Environmental Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hongbo Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhaohua Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
20
|
Degradation of lomefloxacin by MoS 2/MIL-53(Fe, Cu) catalyst in heterogeneous electro-Fenton process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40534-40550. [PMID: 36622598 DOI: 10.1007/s11356-022-24999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023]
Abstract
A novel heterogeneous catalyst named MoS2/MIL-53(Fe, Cu) (MMFC) was prepared by hydrothermal method and applied in a heterogeneous electro-Fenton (hetero-EF) system for lomefloxacin (LOM) degradation in this work. Under the optimal conditions of current density 3 mA/cm2, catalyst dosage 0.100 g/L, and initial pH 6, 93.5% LOM (2 mg/L) removal efficiency was achieved in the MMFC hetero-EF system within 60 min, indicating an obvious improvement compared with the MIL-53(Fe, Cu) hetero-EF system. The good catalytic activity was attributed to more effective active sites of the catalyst and the conversion of Fe(II)/Fe(III) and Cu(I)/Cu(II) promoted by Mo(IV) in MoS2, which could be inferred by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) characterizations. The reusability and stability of MMFC were explored based on five cyclic experiments, and the average degradation efficiency reached 73.9%. Furthermore, the hetero-EF system could achieve the total removal of moxifloxacin and tetracycline within 6 min and 40 min, respectively. Quenching experiments revealed that the hydroxyl radicals (·OH) were the main reactive radicals while superoxide radicals (·O2-) and singlet oxygen (1O2) played a certain part in LOM degradation. Finally, the possible mechanism of the hetero-EF process and LOM degradation pathways were proposed, including substitution, elimination, and cleavage of ring structures. Accounting for good catalytic performance, low preparation cost, and satisfactory versatility, the MMFC exhibited good potential to work as a hetero-EF catalyst for wastewater treatment.
Collapse
|
21
|
In situ formation and activation of high-volume H2O2 in micro-nano dendritic ZVC/air system for enhanced Fenton-like degradation of metronidazole. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
E-waste derived CuAu bimetallic catalysts supported on carbon cloth enabling effective degradation of bisphenol A via an electro-Fenton process. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Li H, Liu X, Chen X, Chen Y, Li Y, Motkuri RK, Dai Z, Kumar A, Fang T, Shen J. Novel catalysts with multivalence copper for organic pollutants removal from wastewater with excellent selectivity and stability in Fenton-like process under neutral pH conditions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10816. [PMID: 36471565 DOI: 10.1002/wer.10816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 06/09/2023]
Abstract
Fenton-like reaction has been widely used for organics degradation. However, most Fenton-like reaction works at low pH range (pH < 4) with uncontrollable selectivity of hydroxyl radicals from H2 O2 activation, and unsatisfied catalyst stability, which is compromised advanced oxidation performance for water/wastewater treatments. In this work, to solve the drawbacks, novel copper catalysts were fabricated via hydrogen reduction/calcination of Cu2+ -supported Al/MCM-41 with precisely controllable copper valence state. Compared with catalysts with monovalence copper (i.e., CuO, Cu, and Cu2+ ), the obtained catalysts with multivalence copper present higher selectivity, excellent stability towards •OH radical pathways, and outperformance in pCBA degradation efficiency at neutral state. In addition, the fabricated catalysts also exhibited excellent phenol removal efficiency (75.5%) and H2 O2 utilization efficiency (47.9%) within neutral environment. Moreover, the degradation efficiency of phenol approaches to 100% within only 2 h. The catalyst also shows good stability for organic pollutants removal, which shows good potential in catalytic oxidation for phenolic compounds-containing wastewater in Fenton-like reaction, especially under neutral pH conditions. PRACTITIONER POINTS: Multivalence copper presents great potentials for organic compounds removal at neutral condition. Multivalence copper shows higher selectivity toward •OH and good stability at neutral condition. Multivalence copper exhibiters outperformed phenol removal efficiency at neutral condition.
Collapse
Affiliation(s)
- Haitao Li
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Beijing Engineering Research Center of Process Pollution Control, Division of Environment Technology and Engineering, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiang Liu
- National Key Laboratory of Human Factors Engineering, Chinese Astronaut Research and Training Center, Beijing, China
| | - Xueli Chen
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Yonglin Chen
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Yuping Li
- Beijing Engineering Research Center of Process Pollution Control, Division of Environment Technology and Engineering, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Zhongde Dai
- School of Carbon Neutrality Future Technology, Sichuan University, Chengdu, China
| | - Abhishek Kumar
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tian Fang
- Huatian Engineering and Technology Corporation, MCC, Ma'anshan, China
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, China
| |
Collapse
|
24
|
Qutob M, Shakeel F, Alam P, Alshehri S, Ghoneim MM, Rafatullah M. A review of radical and non-radical degradation of amoxicillin by using different oxidation process systems. ENVIRONMENTAL RESEARCH 2022; 214:113833. [PMID: 35839907 DOI: 10.1016/j.envres.2022.113833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical compounds have piqued the interest of researchers due to an increase in their demand, which increases the possibility of leakage into the environment. Amoxicillin (AMX) is a penicillin derivative used for the treatment of infections caused by gram-positive bacteria. AMX has a low metabolic rate in the human body, and around 80-90% is unmetabolized. As a result, AMX residuals should be treated immediately to avoid further accumulation in the environment. Advanced oxidation process techniques are an efficient way to degrade AMX. This review attempts to collect, organize, summarize, and analyze the most up to date research linked to the degradation of AMX by different advanced oxidation process systems including photocatalytic, ultrasonic, electro-oxidation, and advanced oxidation process-based on partials. The main topics investigated in this review are degradation mechanism, degradation efficiency, catalyst stability, the formation of AMX by-products and its toxicity, in addition, the influence of different experimental conditions was discussed such as pH, temperature, scavengers, the concentration of amoxicillin, oxidants, catalyst, and doping ratio. The degradation of AMX could be inhibited by very high values of pH, temperature, AMX concentration, oxidants concentration, catalyst concentration, and doping ratio. Several AMX by-products were discovered after oxidation treatment, and several of them had lower or same values of LC50 (96 h) fathead minnow of AMX itself, such as m/z 384, 375, 349, 323, 324, 321, 318, with prediction values of 0.70, 1.10, 1.10 0.42, 0.42, 0.42, and 0.42 mg/L, respectively. We revealed that there is no silver bullet system to oxidize AMX from an aqueous medium. However, it is recommended to apply hybrid systems such as Photo-electro, Photo-Fenton, Electro-Fenton, etc. Hybrid systems are capable to cover the drawbacks of the single system. This review may provide important information, as well as future recommendations, for future researchers interested in treating AMX using various AOP systems, allowing them to improve the applicability of their systems and successfully oxidize AMX from an aqueous medium.
Collapse
Affiliation(s)
- Mohammad Qutob
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
25
|
Gao WW, Su T, Zhao W, Zhang ZF, Mu M, Song YH, Zhang XX, Liu XY. Efficient degradation of semi-coking wastewater in three-dimensional electro-Fenton by CuFe 2O 4 heterocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74163-74172. [PMID: 35633458 DOI: 10.1007/s11356-022-21002-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Semi-coking wastewater contains a rich source of toxic and refractory compounds. Three-dimensional electro-Fenton (3D/EF) process used CuFe2O4 as heterocatalyst and activated carbon (AC) as particle electrode was constructed for degrading semi-coking wastewater greenly and efficiently. CuFe2O4 nanoparticles were prepared by coprecipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy disperse spectroscopy (EDS). Factors like dosage of CuFe2O4, applied voltage, dosage of AC and pH, which effect COD removal rate of semi-coking waste water were studied. The results showed that COD removal rate reached to 80.9% by 3D/EF process at the optimum condition: 4 V, 0.3 g of CuFe2O4, 1 g of AC and pH = 3. Trapping experiment suggesting that hydroxyl radical (•OH) is the main active radical. The surface composition and chemical states of the fresh and used CuFe2O4 were analyzed by XPS indicating that Fe, Cu, and O species are involved into the 3D/EF process. Additionally, anode oxidation and the adsorption and catalysis of AC are also contributed to the bleaching of semi-coking waste water. The possible mechanisms of 3D/EF for degrading semi-coking waste water by CuFe2O4 heterocatalyst were proposed.
Collapse
Affiliation(s)
- Wen-Wen Gao
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School Chemistry and Chemical Engineering, Yulin University, Yulin, 71900, Shannxi, China
| | - Ting Su
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School Chemistry and Chemical Engineering, Yulin University, Yulin, 71900, Shannxi, China
| | - Wei Zhao
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China.
| | - Zhi-Fang Zhang
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School Chemistry and Chemical Engineering, Yulin University, Yulin, 71900, Shannxi, China
| | - Miao Mu
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School Chemistry and Chemical Engineering, Yulin University, Yulin, 71900, Shannxi, China
| | - Yong-Hui Song
- Key Laboratory of Gold and Resources of Shaanxi Province, School of Metallurgical Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, China
| | - Xue-Xue Zhang
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School Chemistry and Chemical Engineering, Yulin University, Yulin, 71900, Shannxi, China
| | - Xin-Yu Liu
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School Chemistry and Chemical Engineering, Yulin University, Yulin, 71900, Shannxi, China
| |
Collapse
|
26
|
In-situ synthesis of N-doped biochar encapsulated Cu(0) nanoparticles with excellent Fenton-like catalytic performance and good environmental stability. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Yan L, Yan N, Gao XY, Liu Y, Liu ZP. Degradation of amoxicillin by newly isolated Bosea sp. Ads-6. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154411. [PMID: 35288139 DOI: 10.1016/j.scitotenv.2022.154411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Amoxicillin (AMX), one of the micro-amount hazardous pollutants, was frequently detected in environments, and of great risks to environments and human health. Microbial degradation is a promising method to eliminate pollutants. In this study, an efficient AMX-degrading strain, Ads-6, was isolated and characterized. Strain Ads-6, belonging to the genus Bosea, was also able to grow on AMX as the sole carbon and nitrogen source, with a removal of ~60% TOC. Ads-6 exhibited strong AMX-degrading ability at initial concentrations of 0.5-2 mM and pH 6-8. Addition of yeast extract could significantly enhance its degrading ability. Many degradation intermediates were identified by HPLC-MS, including new ones such as two phosphorylated products which were firstly defined in AMX degradation. A new AMX degradation pathway was proposed accordingly. Moreover, the results of comparative transcriptomes and proteomes revealed that β-lactamase, L, D-transpeptidase or its homologous enzymes were responsible for the initial degradation of AMX. Protocatechuate branch of the beta-ketoadipate pathway was confirmed as the downstream degradation pathway. These results in the study suggested that Ads-6 is great potential in biodegradation of antibiotics as well as in the bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Lei Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Yan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xi-Yan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
28
|
Fu D, Kurniawan TA, Gui H, Li H, Feng S, Li Q, Wang Y. Role of Cu xO-Anchored Pyrolyzed Hydrochars on H 2O 2-Activated Degradation of Tetracycline: Effects of Pyrolysis Temperature and pH. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dun Fu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, P. R. China
| | - Tonni Agustiono Kurniawan
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Herong Gui
- Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, P. R. China
| | - Heng Li
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Songbao Feng
- Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, P. R. China
| | - Qingbiao Li
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- College of Food and Biology Engineering, Jimei University, Xiamen 361021, P. R. China
| | - Yuanpeng Wang
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
29
|
Non-oxidative Propane Dehydrogenation over Vanadium Doped Graphitic Carbon Nitride Catalysts. Catal Letters 2022. [DOI: 10.1007/s10562-022-04018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
30
|
Xuan F, Yan Z, Sun Z. Efficient degradation of diuron using Fe-Ce-LDH/13X as novel heterogeneous electro-Fenton catalyst. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Enhanced Fenton-like process via interfacial electron donating of pollutants over in situ Cobalt-doped graphitic carbon nitride. J Colloid Interface Sci 2021; 608:673-682. [PMID: 34628326 DOI: 10.1016/j.jcis.2021.09.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022]
Abstract
The heterogeneous Fenton process suffers from low efficiency because of the low electron transfer cycle rate of Fe3+/Fe2+, which often consumes enormous amounts of hydrogen peroxide (H2O2) or other energy. Herein, we report a novel Co-based Fenton-like catalyst (in-situ-Co-g-C3N4) synthesized via the surface complexation method, in which Co species were modified in situ into the framework of the graphitic carbon nitride (g-C3N4) substrate through C-O-Co chemical bonding. The catalyst exhibited higher Fenton-like catalytic activity than pure g-C3N4 in the degradation of various pollutants under neutral conditions, as evidenced by the approximately 150-fold higher Fenton-like reaction rate constant of in-situ-Co-g-C3N4 than that of g-C3N4. Density functional theory (DFT) calculations and a series of experimental and characterization analyses revealed the interfacial reaction mechanism between H2O2, pollutants and in-situ-Co-g-C3N4. During the Fenton-like reaction, the electron-poor C center on the aromatic ring of g-C3N4 could capture the electrons deprived from pollutants, and subsequently deliver them to around the electron-rich Co center to efficiently reduce H2O2 to hydroxyl radicals (•OH), enabling H2O2 to be used efficiently for the degradation of pollutants. This study provides a strategy for improving Fenton-like degradation efficiency by effectively utilizing the energy of organic pollutants.
Collapse
|