1
|
Rawat S, Singh KR, Singh J. Synthesis of iron nanoparticles using iron recovered from rust: An application for the catalytic degradation of phenols. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36114-y. [PMID: 40000594 DOI: 10.1007/s11356-025-36114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Iron nanoparticles are reported to be synthesised by green route to reduce adverse environmental impacts as well as to reduce the synthesis cost. The present study explores a secondary source of iron, i.e. waste iron rust to prepare iron nanoparticles via green route. The iron nanoparticles synthesised this way were amorphous. The synthesised nanoparticles were used as a heterogeneous catalyst for the purpose of phenol and p-nitrophenol (PNP) degradation in their aqueous solutions by Fenton degradation. More than 95% of phenol and PNP was removed within 120 min using 0.25 g/L amount of catalyst. The degradative removal of both the pollutants was found effective up to pH 6. Pseudo-second-order kinetic was fitted best the degradation data of the pollutants. The dissolution of catalyst iron by corrosion was analysed by testing the amount of iron leached and dissolved into the aqueous solution of phenol and PNP; maximum concentration of total iron was found 11.10 mg/L in phenol and 13.53 mg/L in PNP. The chemical oxygen demand (COD) was decreased to 40 mg/L from 336 mg/L for phenol and COD of PNP solution was decreased up to 56 mg/L from 384 mg/L.
Collapse
Affiliation(s)
- Shalu Rawat
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| | - Kunwar Raghvendra Singh
- Department of Civil Engineering, National Institute of Technical Teachers' Training and Research (NITTTR), Kolkata, 700106, West Bengal, India
| | - Jiwan Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
2
|
Jackulin F, Senthil Kumar P, Chitra B, Karthick S, Rangasamy G. A review on recent advancements in the treatment of polyaromatic hydrocarbons (PAHs) using sulfate radicals based advanced oxidation process. ENVIRONMENTAL RESEARCH 2024; 253:119124. [PMID: 38734294 DOI: 10.1016/j.envres.2024.119124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Polyaromatic hydrocarbons (PAHs) are the most persistent compounds that get contaminated in the soil and water. Nearly 16 PAHs was considered to be a very toxic according US protection Agency. Though its concentration level is low in the environments but the effects due to it, is enormous. Advanced Oxidation Process (AOP) is an emergent methodology towards treating such pollutants with low and high molecular weight of complex substances. In this study, sulfate radical (SO4‾•) based AOP is emphasized for purging PAH from different sources. This review essentially concentrated on the mechanism of SO4‾• for the remediation of pollutants from different sources and the effects caused due to these pollutants in the environment was reduced by this mechanism is revealed in this review. It also talks about the SO4‾• precursors like Peroxymonosulfate (PMS) and Persulfate (PS) and their active participation in treating the different sources of toxic pollutants. Though PS and PMS is used for removing different contaminants, the degradation of PAH due to SO4‾• was presented particularly. The hydroxyl radical (•OH) mechanism-based methods are also emphasized in this review along with their limitations. In addition to that, different activation methods of PS and PMS were discussed which highlighted the performance of transition metals in activation. Also this review opened up about the degradation efficiency of contaminants, which was mostly higher than 90% where transition metals were used for activation. Especially, on usage of nanoparticles even 100% of degradation could be able to achieve was clearly showed in this literature study. This study mainly proposed the treatment of PAH present in the soil and water using SO4‾• with different activation methodologies. Particularly, it emphasized about the importance of treating the PAH to overcome the risk associated with the environment and humans due to its contamination.
Collapse
Affiliation(s)
- Fetcia Jackulin
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - B Chitra
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - S Karthick
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004, India
| | - Gayathri Rangasamy
- Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, 641021, Tamil Nadu, India; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602 105, Tamil Nadu, India
| |
Collapse
|
3
|
Gadore V, Mishra SR, Ahmaruzzaman M. Enhancing photodegradation of thiamethoxam insecticide using SnS 2/NCL as a photocatalyst: Mechanistic insights and environmental implications. CHEMOSPHERE 2024; 359:142343. [PMID: 38754491 DOI: 10.1016/j.chemosphere.2024.142343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
The current research highlights the fabrication of a novel SnS2/CO32-@Ni-Co LDH (SnS2/NCL) by precipitating Ni-Co LDH over hydrothermally synthesized SnS2 nanoparticles for the enhanced degradation of thiamethoxam (THM) insecticide through the advanced oxidation process. The effect of several reaction parameters was optimized, and a maximum degradation of 98.1 ± 1.2 % with a rate constant of 0.0541 min-1 of 10 ppm THM was reached at a catalyst loading of 0.16 gL-1 using 0.3 mM of H2O2 within 70 min of visible light irradiation. The effect of metal cations, inorganic anions, dissolved organic matter, organic compounds and water samples on the photodegradation performance of SnS2/NCL nanocomposite was also examined to evaluate the prepared photocatalyst's suitability for use in actual wastewater conditions. The metal cations blocked the active sites of the photocatalyst and reduced the degradation efficiency except for Fe2+ ions, since it is a Fenton reagent and increased the production of hydroxyl radicals. Inorganic anions are the scavengers of hydroxyl radicals and hinder photocatalytic activity. Meanwhile, lake water containing varying degrees of co-existing ions shows the lowest degradation efficiency among other water samples. The SnS2/NCL nanocomposite could be reused for five cycles while maintaining a photocatalytic efficiency of 83.6 ± 0.3 % in the fifth run. The prepared SnS2/NCL nanocomposite also showed excellent photodegradation of several other emerging organic pollutants with an efficiency of over 80 % under optimum conditions. Incorporating Ni-Co LDH with SnS2 helped to delocalize photoinduced charges, leading to increased photocatalytic activity and a slower electron-hole recombination rate. The present research highlights the photocatalytic activity of SnS2/NCL photocatalysts for the photocatalytic degradation of emerging contaminants from wastewater.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| |
Collapse
|
4
|
Przybyl J, Bazan-Wozniak A, Poznan F, Nosal-Wiercińska A, Cielecka-Piontek J, Pietrzak R. Removal of Iron and Copper Ions and Phenol from Liquid Phase by Membrane Based on Carbonaceous Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2788. [PMID: 38930158 PMCID: PMC11204783 DOI: 10.3390/ma17122788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The present work reports an effective method for the removal of inorganic and organic pollutants using membranes based on different carbonaceous materials. The membranes were prepared based on cellulose acetate (18 wt. %), polyvinylpyrrolidone as a pore-generating agent (2 wt. %) and activated carbon (1 wt. %). Activated carbons were developed from residues after extraction of the mushroom Inonotus obliguus using microwave radiation. It has been demonstrated that the addition of activated carbon to the membranes resulted in alterations to their physical properties, including porosity, equilibrium water content and permeability. Furthermore, the chemical properties of the membranes were also affected, with changes observed in the content of the surface oxygen group. The addition of carbon material had a positive effect on the removal of copper ions from their aqueous solutions by the cellulose-carbon composites obtained. Moreover, the membranes proved to be more effective in the removal of copper ions than iron ones and phenol. The membranes were found to show higher effectiveness in copper removal from a solution of the initial concentration of 800 mg/L. The most efficient in copper ions removal was the membrane containing urea-enriched activated carbon.
Collapse
Affiliation(s)
- Joanna Przybyl
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.P.); (A.B.-W.); (F.P.)
| | - Aleksandra Bazan-Wozniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.P.); (A.B.-W.); (F.P.)
| | - Faustyna Poznan
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.P.); (A.B.-W.); (F.P.)
| | - Agnieszka Nosal-Wiercińska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq., 3, 20-031 Lublin, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Robert Pietrzak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.P.); (A.B.-W.); (F.P.)
| |
Collapse
|
5
|
Gadore V, Mishra SR, Ahmaruzzaman M. Bandgap engineering approach for synthesising photoactive novel Ag/HAp/SnS 2 for removing toxic anti-fungal pharmaceutical from aqueous environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132458. [PMID: 37717444 DOI: 10.1016/j.jhazmat.2023.132458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
The present work shed light on synthesising a novel ternary Z-scheme Ag/HAp/SnS2 (AHS) nano photocatalyst to degrade metronidazole (MTZ) in wastewater through H2O2-assisted AOP under natural sunlight. HAp extracted from the fish scales of rohu fish through alkaline treatment was decorated with Ag nanoparticles using ascorbic acid as a bio-reductant. Tin disulphide (SnS2) was anchored over Ag/HAp to prevent agglomeration and enhance photocatalytic activity by delaying the electron-hole recombination rate. After 45 min of irradiation, a degradation efficiency of 98.85 ± 1.86% for 15 ppm MTZ could be achieved. The performance of the prepared photocatalyst in real wastewater was investigated by introducing several metal cations and anions in the photodegradation process. The degradation products were identified by HRLCMS analysis, and the breakdown mechanism of MTZ was proposed. The present study enlightens the importance of SnS2-based photocatalysts for organic pollutant degradation under natural sunlight through an advanced oxidation process. The characterization results showed that the enhanced photodegradation efficiency of AHS is attributed to the formation of an all-solid-state Z-scheme heterojunction with Ag nanoparticles acting as charge transfer medium and as electron accumulators helping in delaying charge recombination.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India.
| |
Collapse
|
6
|
Khoshtinat F, Tabatabaie T, Ramavandi B, Hashemi S. Application of pier waste sludge for catalytic activation of proxy-monosulfate and phenol elimination from a petrochemical wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69462-69471. [PMID: 35568787 DOI: 10.1007/s11356-022-20690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
This investigation aimed to remove phenol from real wastewater (taken from a petrochemical company) by activating peroxy-monosulfate (PMS) using catalysts extracted from pier waste sludge. The physical and chemical properties of the catalyst were evaluated by FE-SEM/EDS, XRD, FTIR, and TGA/DTG tests. The functional groups of O-H, C-H, CO32-, C-H, C-O, N-H, and C-N were identified on the catalyst surface. Also, the crystallinity of the catalyst before and after reaction with petrochemical wastewater was 103.4 nm and 55.8 nm, respectively. Operational parameters of pH (3-9), catalyst dose (0-100 mg/L), phenol concentration (50-250 mg/L), and PMS concentration (0-250 mg/L) were tested to remove phenol. The highest phenol removal rate (94%) was obtained at pH=3, catalyst dose of 80 mg/L, phenol concentration of 50 mg/L, PMS concentration of 150 mg/L, and contact time of 150 min. Phenol decomposition in petrochemical wastewater followed the first-order kinetics (k> 0.008 min-1, R2> 0.94). Changes in pH factor were very effective on phenol removal efficiency, and maximum efficiency (≈83%) was achieved in pH 3. The catalyst stability test was performed for up to five cycles, and phenol removal in the fifth cycle was reduced to 42%. Also, the energy consumption in this study was 77.69 kW h/m3. According to the results, the pier waste sludge catalyst/PMS system is a critical process for eliminating phenol from petrochemical wastewater.
Collapse
Affiliation(s)
- Feyzollah Khoshtinat
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Tayebeh Tabatabaie
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Seyedenayat Hashemi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
7
|
Munir HMS, Feroze N, Ramzan N, Sagir M, Babar M, Tahir MS, Shamshad J, Mubashir M, Khoo KS. Fe-zeolite catalyst for ozonation of pulp and paper wastewater for sustainable water resources. CHEMOSPHERE 2022; 297:134031. [PMID: 35189191 DOI: 10.1016/j.chemosphere.2022.134031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The pulp and paper industry consumes enormous quality of freshwater, leading to wastewater. It must be treated to remove pollutants, particularly residual dyestuffs, before releasing them to water bodies to avoid adverse environmental effects. The traditional wastewater treatment methods used for the pulp and paper industry are less efficient in colour and chemical oxygen demand (COD) removal. The current study is aimed at developing a novel catalyst for the catalytic ozonation of pulp and paper wastewater with better colour and COD removal for sustainable resources of clean water. The proposed catalyst is impregnated by iron on natural zeolites. Various parameters such as catalyst dose, pH, ozone dose, initial COD concentration, and reaction time are studied and optimized. The performance was evaluated by comparing the results with the single ozonation process (SOP) and catalytic ozonation process (COP). The highest COD and colour reduction efficiencies have been achieved, i.e., 71%, and 88% at a natural pH of 6.8. The proposed process achieved higher COD and colour efficiencies than the single ozonation process and catalytic ozonation process using raw zeolites. The improvement in efficiencies are 23% and 29% for SOP and 17% and 19% for COP, respectively. Hence, the results proposed the sustainability and applicability of COP to treat paper and pulp sector effluent.
Collapse
Affiliation(s)
- Hafiz Muhammad Shahzad Munir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan; Chemical Engineering Department, University of Engineering and Technology, Lahore, 54890, Pakistan.
| | - Nadeem Feroze
- Chemical Engineering Department, University of Engineering and Technology, Lahore, 54890, Pakistan.
| | - Naveed Ramzan
- Chemical Engineering Department, University of Engineering and Technology, Lahore, 54890, Pakistan.
| | - Muhammad Sagir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan; College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Babar
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan.
| | - Muhammad Suleman Tahir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan.
| | - Jaweria Shamshad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia.
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Yang Y, Ali A, Su J, Chang Q, Xu L, Su L, Qi Z. Phenol and 17β-estradiol removal by Zoogloea sp. MFQ7 and in-situ generated biogenic manganese oxides: Performance, kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128281. [PMID: 35066225 DOI: 10.1016/j.jhazmat.2022.128281] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The pollution of multifarious pollutants such as heavy metal, organic compounds, and nitrate are a hot research topic at present. In this study, the functions of Zoogloea sp. MFQ7 and its biological precipitation formed during bacterial manganese oxidation on the removal of phenol and 17β-estradiol (E2) were investigated. Strain MFQ7, a manganese-oxidizing bacteria, can remove 98.34% of phenol under pH of 7.1, a temperature of 30 ℃ and Mn2+ concentration of 24.34 mg L-1, additionally, the optimum E2 removal by strain MFQ7 was 100.00% at pH of 7.1, temperature of 28 ℃ and Mn2+ concentration of 28.45 mg L-1 by using response surface methodology (RSM) based on Box-Behnken design (BBD) model. The maximum adsorption capacity of bio-precipitation for phenol and E2 was 201.15 mg g-1 and 65.90 mg g-1, respectively. Furthermore, adsorption kinetics and isotherms analysis, XPS, FTIR spectra, Mn(III) trapping experiments elucidated chemical adsorption and Mn(III) oxidation contribute to the removal of phenol and E2 by biogenic manganese oxides. These findings indicated that the adsorption and oxidation of manganese are expected to be one of the effective means to remove these typical organic pollutants containing phenol and E2.
Collapse
Affiliation(s)
- Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lindong Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an 710055, China
| | - Zening Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an 710055, China
| |
Collapse
|
9
|
Gong Y, Wang Y, Lin N, Wang R, Wang M, Zhang X. Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118871. [PMID: 35066106 DOI: 10.1016/j.envpol.2022.118871] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 05/16/2023]
Abstract
The existence of heavy metals and emerging organic contaminants in wastewater produces serious toxic residues to the environment. Developing cheap and efficient materials to remove these persistent pollutants is crucial. Iron-based materials are cost-effective and environmentally friendly catalysts, and their applications in the environmental field deserve attention. This paper critically reviewed the removal mechanisms of heavy metals and emerging organic pollutants by different influencing factors. The removal of pollutants (heavy metals and emerging organic pollutants) in a multi-component system was analyzed in detail. The mechanisms of synergism, antagonism and non-interference were discussed. This paper had a certain reference value for the research of wastewater remediation technology which could simultaneously remove various pollutants by iron-based materials.
Collapse
Affiliation(s)
- Yishu Gong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Naipeng Lin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ruotong Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Meidan Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
10
|
Xu L, Su J, Ali A, Chang Q, Shi J, Yang Y. Denitrification performance of nitrate-dependent ferrous (Fe 2+) oxidizing Aquabacterium sp. XL4: Adsorption mechanisms of bio-precipitation of phenol and estradiol. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127918. [PMID: 34863560 DOI: 10.1016/j.jhazmat.2021.127918] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, a nitrate-dependent ferrous (Fe2+) oxidizing strain under anaerobic conditions was selected and identified as XL4, which belongs to Aquabacterium. The Box-Behnken design (BBD) was used to optimize the growth conditions of strain XL4, and the nitrate removal efficiency of strain XL4 (with 10% inoculation dosage, v/v) could reach 91.41% under the conditions of 30.34 ℃, pH of 6.91, and Fe2+ concentration of 19.69 mg L-1. The results of Fluorescence excitation-emission matrix spectra (EEM) revealed that the intensity of soluble microbial products (SMP), aromatic proteins and the fulvic-like materials were obvious difference under different Fe2+ concentration, pH, and temperature. X-ray diffraction (XRD) data confirmed that the main components of bio-precipitation were Fe3O4 and FeO(OH), which were believed to be responsible for the adsorption of phenol and estradiol. Furthermore, the maximum adsorption capacity of bio-precipitation for phenol and estradiol under the optimal conditions were 192.6 and 65.4 mg g-1, respectively. On the other hand, the adsorption process of phenol and estradiol by bio-precipitation confirmed to the pseudo-second-order and Langmuir model, which shows that the adsorption process is chemical adsorption and occurs on the uniform surface.
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
11
|
Shi S, Cui Y, Jiang N, Jiang B. Fabrication of a Metal‐Organic Framework Composite Modified with Biomass Activated Carbon (BAC) and Functionalized with NH
2
for Efficient p‐Nitrophenol Adsorption. ChemistrySelect 2022. [DOI: 10.1002/slct.202104008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shunjie Shi
- Institute of Environmental and Municipal Engineering Qingdao University of Technology Qingdao 266000 Shandong China
- Innovation Institute for Sustainable Maritime Architecture Research and Technology Qingdao University of Technology Qingdao 266000 Shandong China
| | - Yanyan Cui
- Institute of Environmental and Municipal Engineering Qingdao University of Technology Qingdao 266000 Shandong China
- Innovation Institute for Sustainable Maritime Architecture Research and Technology Qingdao University of Technology Qingdao 266000 Shandong China
| | - Nan Jiang
- Innovation Institute for Sustainable Maritime Architecture Research and Technology Qingdao University of Technology Qingdao 266000 Shandong China
| | - Bolong Jiang
- Innovation Institute for Sustainable Maritime Architecture Research and Technology Qingdao University of Technology Qingdao 266000 Shandong China
| |
Collapse
|
12
|
Wang Y, Su J, Ali A, Chang Q, Bai Y, Gao Z. Enhanced nitrate, manganese, and phenol removal by polyvinyl alcohol/sodium alginate with biochar gel beads immobilized bioreactor: Performance, mechanism, and bacterial diversity. BIORESOURCE TECHNOLOGY 2022; 348:126818. [PMID: 35139430 DOI: 10.1016/j.biortech.2022.126818] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 05/17/2023]
Abstract
Water pollutants, such as nitrate, heavy metals, and organics have attracted attention due to their harms to environmental and biological health. A novel polyvinyl alcohol/sodium alginate with biochar (PVA/SA@biochar) gel beads immobilized bioreactor was established to remove nitrate, manganese, and phenol. The optimum conditions for preparing gel beads were studied by response surface methodology (RSM). Notably, the removal efficiencies of nitrate, Mn(II), and phenol were 94.64, 72.74, and 93.97% at C/N of 2.0; the concentrations of Mn(II) and phenol were 20 and 1 mg L-1, respectively. Moreover, addition of different concentrations of phenol significantly affected the components of dissolved organic matter, bacterial activity, and bioreactor performance. The biological manganese oxide (BMO) with three-dimensional petal-type structure produced during Mn(II) oxidation showed excellent adsorption capacity. The removal of phenol relied on a combination of biological action and adsorption processes. High-throughput analysis showed that Zoogloea sp. was the predominant bacterial group.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
13
|
Activation of persulfate by biochar for the degradation of phenolic compounds in aqueous systems. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
14
|
Jalali S, Ardjmand M, Ramavandi B, Nosratinia F. Elimination of amoxicillin using zeolite Y-sea salt as a good catalyst for activation of hydrogen peroxide: Investigating degradation pathway and the effect of wastewater chemistry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114045. [PMID: 34749086 DOI: 10.1016/j.jenvman.2021.114045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 05/07/2023]
Abstract
The sea contains elements that can play a useful role in catalyzing reactions. Therefore, this research was done to focus on eliminating amoxicillin (AMX) from wastewater utilizing zeolite Y- sea salt catalyst in the presence of H2O2. The influences of furnace temperature (200-500 °C) and time duration in the furnace (1-4 h) were optimized during catalyst generation. Also, the effects of different parameters on AMX removal, such as pH (5.0-9.0), catalyst dose (0-10 g.L-1), AMX concentration (50-300 mg.L-1), contact time (10-130 min), and H2O2 concentration (0-6 mL/100 mL distilled water) were investigated. Different analyses like Brunauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were conducted to reveal catalyst properties. The BET-specific surface area of the catalyst (12.69 m2g-1) insignificantly (p-value > 0.05) changed after AMX removal (13.04 m2g-1), indicating the strength of the prepared catalyst. The active groups of N-H, O-H-O, O-Si-O, C-H, Si-O-Si, and Si-O-Al were determined in the catalyst structure. The highest removal of AMX (93%) was achieved in the zeolite-sea salt/H2O2 system at a pH level of 6.0 and an H2O2 concentration of 0.1 mL/100 mL. Elimination of the AMX followed pseudo-first-order kinetics. The catalyst was reclaimed up to 7 times and the removal efficiency was suitable up to the fifth stage. The by-products and reaction pathways were investigated by gas chromatography-mass spectrometry (GC-MS). The results showed that zeolite-sea salt can be utilized as an H2O2 activator for the effective degradation of AMX from wastewater.
Collapse
Affiliation(s)
- Setare Jalali
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, 1777613651, Iran
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, 1777613651, Iran.
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran.
| | - Ferial Nosratinia
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, 1777613651, Iran
| |
Collapse
|
15
|
Zhao L, Zhang H, Zhao B, Lyu H. Activation of peroxydisulfate by ball-milled α-FeOOH/biochar composite for phenol removal: Component contribution and internal mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118596. [PMID: 34856245 DOI: 10.1016/j.envpol.2021.118596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Persulfate-based advanced oxidation process is considered as a promising technology for the degradation of phenol, where efficient, cost effective, and green methods with high peroxydisulfate (PS) activation capacity is of increasing demand. In this work, an in-situ liquid phase precipitation combined with ball milling method was applied for the synthesized of α-FeOOH/biochar, as be the PS activator for phenol degradation. Results showed that the ball-milled α-FeOOH and red pine wood biochar prepared at 700 °C (BM-α-FeOOH/PBC700) exhibited the highest catalytic property with PS for phenol oxidation (a phenol removal rate of 100%), compared with the BM-α-FeOOH (16.0%) and BMPBC700 (66.3%). The presence of intermediate products such as hydroquinone and catechol, and total organic carbon (TOC) removal rate (88.9%) proved the oxidation of phenol in the BM-α-FeOOH/PBC700+PS system. The characterization results showed that the functional groups (e.g., CO, C-O, Fe-O, and Si-O), the dissolved organic matter (DOM) in biochar, the loading of Fe element, and higher degree of graphitization and defect structures, contributed to the activation of PS to form free radicals (i.e., SO4·-, ·OH, ·O2-, and hVB+) for phenol oxidation, of which, SO4·- and ·OH account for 72.1% of the phenol removal rate. The specific contribution to the PS activation for phenol oxidation by each part of the materials was calculated based on the "whole to part" experiment. The contribution of DOM, acid-soluble substance, and carbon matrix and basal part in BM-α-FeOOH/PBC700 were 6.0%, 40.9%, and 53.1%, respectively. The reusability experiments of BM-α-FeOOH/PBC700 demonstrated that the composite was relatively stable after four cycles of reuse. Among three co-existing anions (NO3-, Cl-, and HCO3-), HCO3- played the most significant inhibition effects on phenol removal through reducing the phenol removal rate from 89.6% to 77.9%. This work provides guidance for the design of high active and stable carbon materials that activate PS to remove phenol.
Collapse
Affiliation(s)
- Ling Zhao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hui Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Beibei Zhao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|