1
|
Mai X, Tang J, Tang J, Zhu X, Yang Z, Liu X, Zhuang X, Feng G, Tang L. Research progress on the environmental risk assessment and remediation technologies of heavy metal pollution in agricultural soil. J Environ Sci (China) 2025; 149:1-20. [PMID: 39181626 DOI: 10.1016/j.jes.2024.01.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 08/27/2024]
Abstract
Controlling heavy metal pollution in agricultural soil has been a significant challenge. These heavy metals seriously threaten the surrounding ecological environment and human health. The effective assessment and remediation of heavy metals in agricultural soils are crucial. These two aspects support each other, forming a close and complete decision-making chain. Therefore, this review systematically summarizes the distribution characteristics of soil heavy metal pollution, the correlation between soil and crop heavy metal contents, the presence pattern and migration and transformation mode of heavy metals in the soil-crop system. The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined, which provides important guidance for an in-depth understanding of the characteristics of heavy metal pollution in farmland soils and the assessment of the environmental risk. Soil remediation strategies involve multiple physical, chemical, biological and even combined technologies, and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils. Finally, the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected. This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals.
Collapse
Affiliation(s)
- Xurui Mai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Juexuan Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xinyue Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhenhao Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xi Liu
- Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Xiaojie Zhuang
- Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Guang Feng
- Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
2
|
Zeng Y, Xu Z, Dong B. Enhanced Cu 2+ and Cd 2+ removal by a novel co-pyrolysis biochar derived from sewage sludge and phosphorus tailings: adsorption performance and mechanisms. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:396. [PMID: 39180627 DOI: 10.1007/s10653-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
The reutilization of municipal wastes has always been one of the hottest subjects of sustainable development study. In this study, a novel biochar co-pyrolyzed from municipal sewage sludge and phosphorus tailings was produced to enhance the adsorption performance of the composite on Cu2+ and Cd2+. The maximum Cu2+ and Cd2+ adsorption capacity of SSB-PT were 44.34 and 45.91 mg/g, respectively, which were much higher than that of sewage sludge biochar (5.21 and 4.58 mg/g). Chemisorption dominated the whole adsorption process while multilayer adsorption and indirect interaction were also involved. According to the result of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectrum (XPS), the load of CO32-, Mg2+, and Ca2+ on the surface of SSB-PT enhanced the precipitation and ion exchange effect. Posnjakite and CdCO3 were formed after the adsorption of Cu2+ and Cd2+, respectively. Besides, complexation, and metal-π interaction were also involved during the adsorption process. Therefore, this study offered a promising method to reuse sewage sludge and phosphorus tailings as an effective adsorbent.
Collapse
Affiliation(s)
- Yifan Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
3
|
Yuan L, Wang K, Zhao Q, Yang L, Wang G, Jiang M, Li L. An overview of in situ remediation for groundwater co-contaminated with heavy metals and petroleum hydrocarbons. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119342. [PMID: 37890298 DOI: 10.1016/j.jenvman.2023.119342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Groundwater is an important component of water resources. Mixed pollutants comprising heavy metals (HMs) and petroleum hydrocarbons (PHs) from industrial activities can contaminate groundwater through such processes as rainfall infiltration, runoff and discharge, which pose direct threats to human health through the food chain or drinking water. In situ remediation of contaminated groundwater is an important way to improve the quality of a water environment, develop water resources and ensure the safety of drinking water. Bioremediation and permeable reactive barriers (PRBs) were discussed in this paper as they were effective and affordable for in situ remediation of complex contaminated groundwater. In addition, media types, technology combinations and factors for the PRBs were highlighted. Finally, insights and outlooks were presented for in situ remediation technologies for complex groundwater contaminated with HMs and PHs. The selection of an in situ remediation technology should be site specific. The remediation of complex contaminated groundwater can be approached from various perspectives, including the development of economical materials, the production of slow-release and encapsulated materials, and a combination of multiple technologies. This review is expected to provide technical guidance and assistance for in situ remediation of complex contaminated groundwater.
Collapse
Affiliation(s)
- Luzi Yuan
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Guangzhi Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lili Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
4
|
Yang Y, Xu M, Jin W, Jin J, Dong F, Zhang Z, Yan X, Shao M, Wan Y. PANI/MCM-41 adsorption for removal of Cr(VI) ions and its application in enhancing electrokinetic remediation of Cr(VI)-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121684-121701. [PMID: 37953422 DOI: 10.1007/s11356-023-30751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
In this study, a polyaniline/mesoporous silica (PANI/MCM-41) composite material that can be used as a filler for permeable reactive barrier (PRB) was prepared by in situ polymerization. Firstly, the adsorption capacity of PANI/MCM-41 on Cr (VI) in solution was investigated. The results show that the prepared PANI/MCM-41 exhibits a significant Cr (VI) adsorption capacity (~ 340 mg/g), and the adsorption process is more accurately described by the Langmuir isotherm and pseudo-second-order kinetic model. The thermodynamic functions evidenced that the Cr(VI) adsorption was an endothermic spontaneous process. In addition, adsorption-desorption cycle experiments proved the excellent reusability of the material. Subsequently, the material was utilized as a filler in the PRB for the remediation of Cr(VI)-contaminated soil using electrokinetic-permeable reactive barrier (EK-PRB) technology. The results show that compared with traditional electrokinetic remediation, the use of PANI/MCM-41 as an active filler can enlarge the current during remediation and enhance the conductivity of soil, which increases the removal rates of total Cr and Cr(VI) in soil (17.4% and 10.2%).
Collapse
Affiliation(s)
- Yanzhi Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Mingchen Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Wenlou Jin
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jiacheng Jin
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Fan Dong
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Zhipeng Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Xin Yan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Min Shao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yushan Wan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
5
|
Tian F, Ren Y, Wu W, Liu Y. Electrochemical CNT filter functionalized with metal-organic framework for one-step antimonite decontamination. CHEMOSPHERE 2023:139047. [PMID: 37263511 DOI: 10.1016/j.chemosphere.2023.139047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Currently, there is a lack of advanced nanotechnology designed to efficiently remove antimony (Sb) from contaminated water systems. Sb most commonly appears as antimonite (Sb(III)) or as the anion antimonate (Sb(V)). Sb(III) is approximately ten times more toxic than Sb(V), and Sb(III) is also harder to eliminate because of its motility and charge neutrality. The work presented here developed an electrochemical filtration technology for the direct elimination of Sb(III) from contaminated water. The primary components of the filtration system are an electroactive carbon nanotube (CNT) membrane that are functionalized with the Sb-specific UiO-66(Zr), an organometallic framework. In an electric field, the UiO-66(Zr)/CNT nanohybrid filter enabled in situ transformation of Sb(III) to less harmful Sb(V). The Sb(V) was then effectively adsorbed by the UiO-66(Zr). The removal efficiency (90.5%) and rate constant (k1 = 0.0272 min-1) toward Sb(III) removal was 1.3 and 1.4 times greater than that of CNT filter. The filter's abundance of available adsorption sites, flow-through construction, and electrochemical activity combined to rapidly remove Sb(III) from water. The underlying functioning of the nanohybrid filter was determined with a series of process experiments and structural characterizations. The filter was effective over a broad range of pH values and in a variety of complex aqueous environments. Once loaded with Sb, the UiO-66(Zr)/CNT filter could be washed with a dilute NaOH solution to efficiently refresh its activity. The results of this work offer a direct, efficient strategy that integrates nanotechnology, electrochemistry, and membrane separation to remove antimony and potentially other heavy metals from contaminated water.
Collapse
Affiliation(s)
- Fengguo Tian
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yifan Ren
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wanxiang Wu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Wang M, Song J, Yin B, Wang R, Huang M. MIL-101(Fe) based biomass as permeable reactive barrier applied to EK-PRB remediation of antimony contaminated soil. CHEMOSPHERE 2023; 332:138889. [PMID: 37164193 DOI: 10.1016/j.chemosphere.2023.138889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Numerous studies have demonstrated that electrokinetic-permeable reactive barrier (EK-PRB) can be used for the remediation of heavy metal contaminated soils, and their remediation efficiency is mainly determined by the filler material selected. By growing MIL-101(Fe) in situ on hollow loofah fiber (HLF), a novel material entitled HLF@MIL-101(Fe) was developed. The morphological characteristics and loading conditions were investigated, the adsorption characteristics were analyzed, and finally the synthesized composite material was applied to treat antimony-contaminated soil with EK-PRB as the reaction medium. The results show that MIL-101(Fe) is stably loaded on HLF. The adsorption capacity of Sb(III) can reach up to 82.31 mg g-1, and the adsorption is in accordance with the quasi-secondary kinetic model, which indicates that chemisorption is dominant. The isothermal adsorption model indicates that the adsorption form of HLF@MIL-101(Fe) is mainly monolayer adsorption with more uniform adsorption binding energy. In the EK-PRB experiment, when ethylenediaminetetraacetic acid (EDTA) is used as the cathodic electrolyte, it can effectively enhance the electromigration and electroosmotic effects, and the overall remediation efficiency of the soil is increased by 38.12% compared with the citric acid (CA) group. These demonstrate the feasibility of HLF@MIL-101(Fe) in collaboration with EK-PRB in the treatment of antimony-contaminated soil.
Collapse
Affiliation(s)
- Miaomiao Wang
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620, China
| | - Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620, China
| | - Bingkui Yin
- Shanghai Jierang Environmental Technology Co., LTD, Shanghai, 201101, China
| | - Ruizhe Wang
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
7
|
Yao B, Li Y, Zeng W, Yang G, Zeng J, Nie J, Zhou Y. Synergistic adsorption and oxidation of trivalent antimony from groundwater using biochar supported magnesium ferrite: Performances and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121318. [PMID: 36805471 DOI: 10.1016/j.envpol.2023.121318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/03/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Antimony (Sb) pollution is considered an environmental problem, since Sb is toxic and carcinogenic to humans. Here, a novel biochar supported magnesium ferrite (BC@MF) was adopted for Sb(III) removal from groundwater. The maximum adsorption capacity was 77.44 mg g-1. Together with characterization, batch experiments, kinetics, isotherms, and thermodynamic analyses suggested that inner-sphere complexation, H-bonding, and electrostatic interactions were the primary mechanisms. C-C/CC, C-O, and O-CO groups and Fe/Mg oxides might have acted as adsorption sites. The adsorbed Sb(III) was oxidized to Sb(V). The generation of reactive oxygen species, iron redox reaction, and oxidizing functional groups all contributed to Sb(III) oxidation. Furthermore, the fixed-bed column system demonstrated a satisfactory Sb removal performance; BC@MF could treat ∼6060 BV of simulated Sb-polluted groundwater. This research provides a promising approach to sufficiently remove Sb(III) from contaminated groundwater, providing new insights for the development of innovative strategies for heavy metal removal.
Collapse
Affiliation(s)
- Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yixiang Li
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Wenqing Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiahao Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jing Nie
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
8
|
Biochar as a Green Sorbent for Remediation of Polluted Soils and Associated Toxicity Risks: A Critical Review. SEPARATIONS 2023. [DOI: 10.3390/separations10030197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Soil contamination with organic contaminants and various heavy metals has become a global environmental concern. Biochar application for the remediation of polluted soils may render a novel solution to soil contamination issues. However, the complexity of the decontaminating mechanisms and the real environment significantly influences the preparation and large-scale application of biochar for soil ramification. This review paper highlights the utilization of biochar in immobilizing and eliminating the heavy metals and organic pollutants from contaminated soils and factors affecting the remediation efficacy of biochar. Furthermore, the risks related to biochar application in unpolluted agricultural soils are also debated. Biochar production conditions (pyrolysis temperature, feedstock type, and residence time) and the application rate greatly influence the biochar performance in remediating the contaminated soils. Biochars prepared at high temperatures (800 °C) contained more porosity and specific surface area, thus offering more adsorption potential. The redox and electrostatic adsorption contributed more to the adsorption of oxyanions, whereas ion exchange, complexation, and precipitation were mainly involved in the adsorption of cations. Volatile organic compounds (VOCs), dioxins, and polycyclic aromatic hydrocarbons (PAHs) produced during biochar pyrolysis induce negative impacts on soil alga, microbes, and plants. A careful selection of unpolluted feedstock and its compatibility with carbonization technology having suitable operating conditions is essential to avoid these impurities. It would help to prepare a specific biochar with desired features to target a particular pollutant at a specific site. This review provided explicit knowledge for developing a cost-effective, environment-friendly specific biochar, which could be used to decontaminate targeted polluted soils at a large scale. Furthermore, future study directions are also described to ensure a sustainable and safe application of biochar as a soil improver for the reclamation of polluted soils.
Collapse
|
9
|
Wang L, Cheng WC, Xue ZF, Zhang B, Lv XJ. Immobilizing of lead and copper using chitosan-assisted enzyme-induced carbonate precipitation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120947. [PMID: 36581237 DOI: 10.1016/j.envpol.2022.120947] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Enzyme-induced carbonate precipitation (EICP) is considered as an environmentally friendly method for immobilizing heavy metals (HMs). The fundamental of the EICP method is to catalyze urea hydrolysis using the urease, discharging CO32- and NH4+. CO32- helps to form carbonates that immobilize HMs afterwards. However, HMs can depress urease activity and reduce the degree of urea hydrolysis. Herein, the potential of applying the chitosan-assisted EICP method to Pb and Cu immobilization was explored. The chitosan addition elevated the degree of urea hydrolysis when subjected to the effect of Cu2+ toxicity where the protective effect, flocculation and adsorption, and the formation of precipitation, play parts in improving the Cu immobilization efficiency. The use of chitosan addition, however, also causes the side effect (copper-ammonia complex formation). Two calcium source additions, CaCl2 and Ca(CH3COO)2, intervened in the test tube experiments not only to prevent pH from raising to values where Cu2+ complexes with NH3 but also to separate the urease enzyme and Cu2+ from each other with the repulsion of charges. The FTIR spectra indicate that the chitosan addition adsorbs Cu2+ through its surface hydroxyl and carboxyl groups, while the SEM images distinguish who the mineral are nucleating with. The findings shed light on the potential of applying the chitosan-assisted EICP method to remedy lead- and copper-rich water bodies.
Collapse
Affiliation(s)
- Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Bin Zhang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Xin-Jiang Lv
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
10
|
Zhu Z, Kong Y, Yang H, Tian Y, Zhou X, Zhu Y, Fang Z, Zhang L, Tang S, Fan Y. Effects of Pretreatment and Polarization Shielding on EK-PRB of Fe/Mn/C-LDH for Remediation of Arsenic Contaminated Soils. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:325. [PMID: 36678078 PMCID: PMC9860780 DOI: 10.3390/nano13020325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In this study, coupling electrokinetic (EK) with the permeable reactive barriers (PRB) of Fe/Mn/C-LDH composite was applied for the remediation of arsenic-contaminated soils. By using self-made Fe/Mn/C-LDH materials as PRB filler, the effects of pretreatment and polarization shielding on EK-PRB of Fe/Mn/C-LDH for remediation of arsenic contaminated soils were investigated. For the pretreatment, phosphoric acid, phosphoric acid and water washing, and phosphate were adopted to reduce the influence of iron in soil. The addition of phosphate could effectively reduce the soil leaching toxicity concentration. The removal rate of the soil pretreated with phosphoric acid or phosphoric acid and water washing was better than with phosphate pretreatment. For the polarization shielding, circulating electrolyte, electrolyte type, anion and cation membranes, and the exchange of cathode and anode were investigated. The electrolyte circulates from the cathode chamber to the anode chamber through the peristaltic pump to control the pH value of the electrolyte, and the highest arsenic toxicity removal rate in the soil reaches 97.36%. The variation of total arsenic residue in soil using anion and cation membranes is the most regular. The total arsenic residue gradually decreases from cathode to anode. Electrode exchange can neutralize H+ and OH- produced by electrolyte, reduce the accumulation of soil cathode area, shield the reduction of repair efficiency caused by resistance polarization, enhance current, and improve the removal rate of arsenic in soil.
Collapse
Affiliation(s)
- Zongqiang Zhu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Nanning 530022, China
| | - Yusong Kong
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Hongqu Yang
- Chongqing Hechuan Ecology and Environment Monitoring Station, Chongqing 401519, China
| | - Yan Tian
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Xiaobin Zhou
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Yinian Zhu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Zhanqiang Fang
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Lihao Zhang
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Shen Tang
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yinming Fan
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Nanning 530022, China
| |
Collapse
|
11
|
Li F, Li Y, Novoselov KS, Liang F, Meng J, Ho SH, Zhao T, Zhou H, Ahmad A, Zhu Y, Hu L, Ji D, Jia L, Liu R, Ramakrishna S, Zhang X. Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. NANO-MICRO LETTERS 2023; 15:35. [PMID: 36629933 PMCID: PMC9833044 DOI: 10.1007/s40820-022-00993-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
We conceptualize bioresource upgrade for sustainable energy, environment, and biomedicine with a focus on circular economy, sustainability, and carbon neutrality using high availability and low utilization biomass (HALUB). We acme energy-efficient technologies for sustainable energy and material recovery and applications. The technologies of thermochemical conversion (TC), biochemical conversion (BC), electrochemical conversion (EC), and photochemical conversion (PTC) are summarized for HALUB. Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg-1 and total benefit of 749 $/ton biomass via TC. Specific surface area of biochar reached 3000 m2 g-1 via pyrolytic carbonization of waste bean dregs. Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%. Besides, lignocellulosic biomass can contribute to a current density of 672 mA m-2 via EC. Bioresource can be 100% selectively synthesized via electrocatalysis through EC and PTC. Machine learning, techno-economic analysis, and life cycle analysis are essential to various upgrading approaches of HALUB. Sustainable biomaterials, sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis, microfluidic and micro/nanomotors beyond are also highlighted. New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.
Collapse
Affiliation(s)
- Fanghua Li
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Yiwei Li
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People's Republic of China
| | - K S Novoselov
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore
- School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Hui Zhou
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014, Cordoba, Spain
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Liangxing Hu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Dongxiao Ji
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Litao Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Rui Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
12
|
Li Y, Yin H, Cai Y, Luo H, Yan C, Dang Z. Regulating the exposed crystal facets of α-Fe 2O 3 to promote Fe 2O 3-modified biochar performance in heavy metals adsorption. CHEMOSPHERE 2023; 311:136976. [PMID: 36288770 DOI: 10.1016/j.chemosphere.2022.136976] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
α-Fe2O3 modified biochar (Fe2O3/BC) was prepared to remove Cu(II), Pb(II) and As(V). By adjusting the calcination temperature, the morphology and exposed crystal facets of α-Fe2O3 on the biochar were changed which further affected the adsorption performance. The kinetics and isotherms were investigated systematically to reveal adsorption effect of the adsorbent on Cu(II), Pb(II) and As(V). The results indicated that chemisorption process was the dominant adsorption mechanism. Fe2O3/BC-350 exhibited superior adsorption capacity for Cu(II) (258.22 mg/g) and Pb(II) (390.60 mg/g), and Fe2O3/BC-250 showed relatively good adsorption capacity for As(V) (5.78 mg/g). By adsorption mechanism analysis, electrostatic adsorption, ion exchange, precipitation and complexation were coexisted in the process of removing metal ions by Fe2O3/BC. The repeatability test and the effect of ion strength exhibited the strong stability of Fe2O3/BC. Meanwhile, density functional theory (DFT) calculations manifested that the (202) facet of α-Fe2O3 on Fe2O3/BC-350 possessed the lowest adsorption energies of Cu(II) and Pb(II). While for As(V), it was the (104) facet of α-Fe2O3 on Fe2O3/BC-250 that exhibited the lowest adsorption energy. DFT results revealed that different Fe2O3/BC had different adsorption affinities to various heavy metals. In general, this work not only prepared a promising adsorbent via a simple procedure, but also served as a reference for researchers in designing absorbents with specific active facet for efficient heavy metals remediation.
Collapse
Affiliation(s)
- Yingchao Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| | - Yuhao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Haoyu Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Caiya Yan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| |
Collapse
|
13
|
Qiu M, Liu L, Ling Q, Cai Y, Yu S, Wang S, Fu D, Hu B, Wang X. Biochar for the removal of contaminants from soil and water: a review. BIOCHAR 2022; 4:19. [DOI: doi.org/10.1007/s42773-022-00146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 06/25/2023]
Abstract
AbstractBiochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil.
Graphical Abstract
Collapse
|
14
|
Su R, Xie T, Yao H, Chen Y, Wang H, Dai X, Wang Y, Shi L, Luo Y. Lead Responses and Tolerance Mechanisms of Koelreuteria paniculata: A Newly Potential Plant for Sustainable Phytoremediation of Pb-Contaminated Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214968. [PMID: 36429686 PMCID: PMC9691260 DOI: 10.3390/ijerph192214968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 05/06/2023]
Abstract
Phytoremediation could be an alternative strategy for lead (Pb) contamination. K. paniculata has been reported as a newly potential plant for sustainable phytoremediation of Pb-contaminated soil. Physiological indexes, enrichment accumulation characteristics, Pb subcellular distribution and microstructure of K. paniculata were carefully studied at different levels of Pb stress (0-1200 mg/L). The results showed that plant growth increased up to 123.8% and 112.7%, relative to the control group when Pb stress was 200 mg/L and 400 mg/L, respectively. However, the average height and biomass of K. paniculata decrease when the Pb stress continues to increase. In all treatment groups, the accumulation of Pb in plant organs showed a trend of root > stem > leaf, and Pb accumulation reached 81.31%~86.69% in the root. Chlorophyll content and chlorophyll a/b showed a rising trend and then fell with increasing Pb stress. Catalase (CAT) and peroxidase (POD) activity showed a positive trend followed by a negative decline, while superoxide dismutase (SOD) activity significantly increased with increasing levels of Pb exposure stress. Transmission electron microscopy (TEM) showed that Pb accumulates in the inactive metabolic regions (cell walls and vesicles) in roots and stems, which may be the main mechanism for plants to reduce Pb biotoxicity. Fourier transform infrared spectroscopy (FTIR) showed that Pb stress increased the content of intracellular -OH and -COOH functional groups. Through organic acids, polysaccharides, proteins and other compounds bound to Pb, the adaptation and tolerance of K. paniculata to Pb were enhanced. K. paniculata showed good phytoremediation potential and has broad application prospects for heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Rongkui Su
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410004, China
| | - Tianzhi Xie
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haisong Yao
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yonghua Chen
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (Y.C.); (Y.L.)
| | - Hanqing Wang
- School of Civil Engineering, Central South Forestry University, Changsha 410018, China
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, Changsha 410018, China
| | - Xiangrong Dai
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410004, China
| | - Yangyang Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Lei Shi
- College of Environmental Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Yiting Luo
- Business College, Hunan First Normal University, Changsha 410205, China
- Correspondence: (Y.C.); (Y.L.)
| |
Collapse
|
15
|
Zhou Z, Liu P, Wang S, Finfrock YZ, Ye Z, Feng Y, Li X. Iron-modified biochar-based bilayer permeable reactive barrier for Cr(VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129636. [PMID: 35908398 DOI: 10.1016/j.jhazmat.2022.129636] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe)-modified biochar (FeBC) has been developed to remove hexavalent chromium (Cr(VI)) from groundwater and is suitable for use in permeable reactive barriers (PRBs). However, Cr(VI) removal behavior and chemical processes in FeBC-based PRBs are not fully understood, and the potential for Fe release has not been addressed. In this study, three FeBC-based PRBs were assessed in column experiments for 563 days with respect to their ability to remove Cr(VI). Bilayer column filled with FeBC+limestone and BC+limestone in two separate layers (FeBC_Ca_BC) showed the best performance in terms of Cr(VI) removal with a low treatment cost. The corrosion of FeBC was mainly related to pH and Cr(VI) concentration rather than flow rate. Leached Fe was attenuated by BC and limestone and reutilized in FeBC_Ca_BC. Cr(VI) was reduced to Cr(III) and then adsorbed or precipitated on the biochars. Cr and Fe formed inner-sphere complexes and then transformed from double corner sharing to edge sharing. During the reaction, Cr penetrated from the surface to the interior of the biochars and became a more stable species. This study provides evidence of the effectiveness of a new combination of biochars for Cr(VI) removal and insights into the reaction mechanisms.
Collapse
Affiliation(s)
- Ziyi Zhou
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Peng Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Sheng Wang
- Zhejiang Geological Prospecting Institute, China Chemical Geology and Mine Bureau, Hangzhou 310000, China
| | - Y Zou Finfrock
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Zhihang Ye
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yu Feng
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xiaodan Li
- China Northeast Municipal Engineering Design and Research Institute Co., Ltd., Changchun 130021, China
| |
Collapse
|
16
|
Efficient Remediation of Cadmium Contamination in Soil by Functionalized Biochar: Recent Advances, Challenges, and Future Prospects. Processes (Basel) 2022. [DOI: 10.3390/pr10081627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heavy metal pollution in soil seriously harms human health and animal and plant growth. Among them, cadmium pollution is one of the most serious issues. As a promising remediation material for cadmium pollution in soil, functionalized biochar has attracted wide attention in the last decade. This paper summarizes the preparation technology of biochar, the existing forms of heavy metals in soil, the remediation mechanism of biochar for remediating cadmium contamination in soil, and the factors affecting the remediation process, and discusses the latest research advances of functionalized biochar for remediating cadmium contamination in soil. Finally, the challenges encountered by the implementation of biochar for remediating Cd contamination in soil are summarized, and the prospects in this field are highlighted for its expected industrial large-scale implementation.
Collapse
|
17
|
Gao Y, Wu P, Jeyakumar P, Bolan N, Wang H, Gao B, Wang S, Wang B. Biochar as a potential strategy for remediation of contaminated mining soils: Mechanisms, applications, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114973. [PMID: 35398638 DOI: 10.1016/j.jenvman.2022.114973] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Soil heavy metal contamination caused by mining activities is a global issue. These heavy metals can be enriched in plants and animals through the food chain, and eventually transferred to the human system and threatening public health. Biochar, as an environmentally friendly soil remediation agent, can effectively immobilize heavy metals in soil. However, most researchers concern more about the remediation effect and mechanism of biochar for industrial and agricultural contaminated soil, while related reviews focusing on mining soil remediation are limited. Furthermore, the remediation effect of soil in mining areas is affected by many factors, such as physicochemical properties of biochar, pyrolysis conditions, soil conditions, mining environment and application method, which can lead to great differences in the remediation effect of biochar in diverse mining areas. Therefore, it is necessary to systematically unravel the relevant knowledge of biochar remediation, which can also provide a guide for future studies on biochar remediation of contaminated soils in mining areas. The present paper first reviews the negative effects of mining activities on soil and the advantages of biochar relative to other remediation methods, followed by the mechanism and influencing factors of biochar on reducing heavy metal migration and bioavailability in mining soil were systematically summarized. Finally, the main research directions and development trends in the future are pointed out, and suggestions for future development are proposed.
Collapse
Affiliation(s)
- Yining Gao
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Pan Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Karst Environment and Geohazard, Ministry of Natural Resources, Guiyang, 550025, Guizhou, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Nanthi Bolan
- The Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Karst Environment and Geohazard, Ministry of Natural Resources, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
18
|
Li S, Wu Y, Li X, Liu Q, Li H, Tu W, Luo X, Luo Y. Enhanced remediation of Cd-contaminated soil using electrokinetic assisted by permeable reactive barrier with lanthanum-based biochar composite filling materials. ENVIRONMENTAL TECHNOLOGY 2022:1-13. [PMID: 35244499 DOI: 10.1080/09593330.2022.2049891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Electrokinetic remediation (EK) combined with a permeable reactive barrier (PRB) is a relatively new technique for efficiently remediating Cd-contaminated soil in situ. Eupatorium adenophorum, which is a malignant invasive plant, was used to synthesise biochar and a novel lanthanum-based biochar composite (LaC). The biochar and LaC were used as cheap and environmentally benign PRB filling materials to remediate simulated and real Cd-contaminated soils. The pH and residual Cd concentration in the simulated contaminated soil during remediation gradually increased from the anode to the cathode used to apply an electric field to the EK-PRB system. However, the soil conductivity changed in the opposite way, and the current density first increased and then decreased. For simulated contaminated soils with initial Cd concentrations of 34.9 and 100.6 mg kg-1, the mean Cd removal rates achieved using LaC were 90.6% and 89.3%, respectively, which were significantly higher than those of biochar (P < 0.05). Similar results were achieved using natural soils from mining area and polluted farmland, and the Cd removal rates were 66.9% and 72.0%, respectively. Fourier-transform infrared and X-ray photoelectron spectroscopy indicated that there were many functional groups on the LaC surfaces. The removal mechanism of EK-PRB for Cd in contaminated soil includes electromigration, electroosmotic flow, surface adsorption, and ion exchange. The results indicated that the LaC could be used in the EK-PRB technique as a cheap and 'green' material to efficiently decontaminate soil polluted with heavy metals.
Collapse
Affiliation(s)
- Sen Li
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, People's Republic of China
| | - Yong Wu
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
| | - Xueling Li
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
| | - Qin Liu
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
| | - Hongtao Li
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, People's Republic of China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, People's Republic of China
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, People's Republic of China
| | - Xuemei Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, People's Republic of China
| | - Yong Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, People's Republic of China
| |
Collapse
|
19
|
Complexation of Amino Acids with Cadmium and Their Application for Cadmium-Contaminated Soil Remediation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interaction of amino acids with toxic heavy metals influences their immobilization and bioavailability in soils. However, the complexation ability of amino acids with Cd has not been well studied. The complexes of amino acids and cadmium were investigated by density functional theory (DFT) calculations and Fourier transform infrared spectrometry (FTIR) analyses. The complex structures were found to be [COc, COc] for fatty amino-cadmium and PheCd2+, [COc, COc, COs] for GluCd2+ and ThrCd2+, respectively. The complex energy of these conformers followed the order PheCd2+> AlaCd2+ > LeuCd2+ > GluCd2+ > GlyCd2+ > ThrCd2+. Importantly, all of the complex energy values were less than zero, indicating that these complexes could be easily dissolved in water. The Cd2+ concentration decreased with increasing amino acid concentration in aqueous solution. The complex stability constants (logβ) followed the order PheCd2+> AlaCd2+ > LeuCd2+ > GluCd2+ > GlyCd2+ > ThrCd2+, consistent with the order of the calculated complex energy values. The Cd removal efficiencies by Thr, Glu, Gly, Ala, Leu, and Phe were 38.88%, 37.47%, 35.5%, 34.72%, 34.04%, and 31.99%, respectively. In soil batch tests, the total Cd concentration in soil decreased in the presence of amino acids, while the Cd concentration in water increased from 231.97 μg/L to 652.94~793.51 μg/L. The results of sequential extraction showed that the acid-extractable fraction and the reducible fraction of Cd sharply decreased. Consequently, the significant features of amino acids along with their biocompatibility make them potentially applicable chelators in Cd-contaminated soil remediation processes.
Collapse
|
20
|
Hu JI, Ma W, Pan Y, Chen Z, Zhang Z, Wan C, Sun Y, Qiu C. Resolving the Tribo-catalytic reaction mechanism for biochar regulated Zinc Oxide and its application in protein transformation. J Colloid Interface Sci 2021; 607:1908-1918. [PMID: 34798707 DOI: 10.1016/j.jcis.2021.09.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/15/2022]
Abstract
The utilization of mechanical energy to control water pollutants under dark conditions is currently a point of study focus. Herein, biochar -zinc oxide (BC-ZnO) composites with various structures were synthesized by co-pyrolysis of cotton and ZnO at different temperature and used for tribo-catalytic reaction. The introduction of BC can improve charge transmission and separation efficiency. Ultraviolet photoelectron spectra (UPS) and density functional theory (DFT) calculation prove the addition of BC can reduce work function of ZnO, and enhance its electron-donating ability. Specially, suitable adsorption amount is the key factor to improve the tribo-catalytic performance. When the pyrolysis temperature is 600 °C, BC-ZnO has the best degradation efficiency, which can degrade 90% Rhodamine B (RhB) in 75 min, while ZnO can degrade only 38%. On this basis, using bovine serum albumin (BSA) as a model, the effect of tribo-catalytic reaction on controlling proteins in water was studied by fluorescence excitation-emission matrix spectroscopy (3D EEM) and infrared microscope, and the transformation of proteins was further analyzed. This study provides a new strategy to improve the tribo-catalytic performance of ZnO, and explores its application prospects of biological wastewater control.
Collapse
Affiliation(s)
- JIng Hu
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Wei Ma
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Yuzhen Pan
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Zhen Chen
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Zhe Zhang
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Chunxiang Wan
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Yanwen Sun
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Chenxi Qiu
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
21
|
Damayanti D, Wulandari LA, Bagaskoro A, Rianjanu A, Wu HS. Possibility Routes for Textile Recycling Technology. Polymers (Basel) 2021; 13:3834. [PMID: 34771390 PMCID: PMC8588244 DOI: 10.3390/polym13213834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/02/2022] Open
Abstract
The fashion industry contributes to a significant environmental issue due to the increasing production and needs of the industry. The proactive efforts toward developing a more sustainable process via textile recycling has become the preferable solution. This urgent and important need to develop cheap and efficient recycling methods for textile waste has led to the research community's development of various recycling methods. The textile waste recycling process can be categorized into chemical and mechanical recycling methods. This paper provides an overview of the state of the art regarding different types of textile recycling technologies along with their current challenges and limitations. The critical parameters determining recycling performance are summarized and discussed and focus on the current challenges in mechanical and chemical recycling (pyrolysis, enzymatic hydrolysis, hydrothermal, ammonolysis, and glycolysis). Textile waste has been demonstrated to be re-spun into yarn (re-woven or knitted) by spinning carded yarn and mixed shoddy through mechanical recycling. On the other hand, it is difficult to recycle some textiles by means of enzymatic hydrolysis; high product yield has been shown under mild temperatures. Furthermore, the emergence of existing technology such as the internet of things (IoT) being implemented to enable efficient textile waste sorting and identification is also discussed. Moreover, we provide an outlook as to upcoming technological developments that will contribute to facilitating the circular economy, allowing for a more sustainable textile recycling process.
Collapse
Affiliation(s)
- Damayanti Damayanti
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia; (L.A.W.); (A.B.)
| | - Latasya Adelia Wulandari
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia; (L.A.W.); (A.B.)
| | - Adhanto Bagaskoro
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia; (L.A.W.); (A.B.)
| | - Aditya Rianjanu
- Department of Materials Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia;
| | - Ho-Shing Wu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
| |
Collapse
|