1
|
Bhattacharya R, Arora S, Ghosh S. Bioprocess optimization for food-grade cellulolytic enzyme production from sorghum waste in a novel solid-state fermentation bioreactor for enhanced apple juice clarification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120781. [PMID: 38608570 DOI: 10.1016/j.jenvman.2024.120781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Transforming global agricultural waste into eco-friendly products like industrial enzymes through bioconversion can help address sustainability challenges aligning with the United Nations' Sustainable Development Goals. Present study explored the production of high-yield food-grade cellulolytic enzymes from Trichoderma reesei MTCC 4876, using a novel media formulation with a combination of waste sorghum grass and cottonseed oil cake (3:1). Optimization of physical and environmental parameters, along with the screening and optimization of media components, led to an upscaled process in a novel 6-L solid-state fermentation (SSF)-packed bed reactor (PBR) with a substrate loading of 200 g. Saturated forced aeration proved crucial, resulting in high fungal biomass (31.15 ± 0.63 mg glucosamine/gm dry fermented substrate) and high yield cellulase (20.64 ± 0.36 FPU/g-ds) and xylanase (16,186 ± 912 IU/g-ds) production at an optimal airflow rate of 0.75 LPM. The PBR exhibited higher productivity than shake flasks for all the enzyme systems. Microfiltration and ultrafiltration of the crude cellulolytic extract achieved 94% and 71% recovery, respectively, with 13.54 FPU/mL activity in the cellulolytic enzyme concentrate. The concentrate displayed stability across wide pH and temperature ranges, with a half-life of 24.5-h at 50 °C. The cellulase concentrate, validated for food-grade safety, complies with permissible limits for potential pathogens, heavy metals, mycotoxins, and pesticide residue. It significantly improved apple juice clarity (94.37 T%) by reducing turbidity (21%) and viscosity (99%) while increasing total reducing sugar release by 63% compared with untreated juice. The study also highlighted the potential use of lignin-rich fermented end residue for fuel pellets within permissible SOx emission limits, offering sustainable biorefinery prospects. Utilizing agro wastes in a controlled bioreactor environment underscores the potential for efficient large-scale cellulase production, enabling integration into food-grade applications and presenting economic benefits to fruit juice industries.
Collapse
Affiliation(s)
- Raikamal Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Sidharth Arora
- Fermentech Labs Pvt. Ltd, TIDES Business Incubator, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Sanjoy Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
2
|
Jagadeesan Y, Meenakshisundaram S, Pichaimuthu S, Balaiah A. A scientific version of understanding "Why did the chickens cross the road"? - A guided journey through Bacillus spp. towards sustainable agriculture, circular economy and biofortification. ENVIRONMENTAL RESEARCH 2024; 244:117907. [PMID: 38109965 DOI: 10.1016/j.envres.2023.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
The world, a famished planet with an overgrowing population, requires enormous food crops. This scenario compelled the farmers to use a high quantity of synthetic fertilizers for high food crop productivity. However, prolonged usage of chemical fertilizers results in severe adverse effects on soil and water quality. On the other hand, the growing population significantly consumes large quantities of poultry meats. Eventually, this produces a mammoth amount of poultry waste, chicken feathers. Owing to the protein value of the chicken feathers, these wastes are converted into protein hydrolysate and further extend their application as biostimulants for sustained agriculture. The protein profile of chicken feather protein hydrolysate (CFPH) produced through Bacillus spp. was the maximum compared to physical and chemical protein extraction methods. Several studies proved that the application of CFPH and active Bacillus spp. culture to soil and plants results in enhanced plant growth, phytochemical constituents, crop yield, soil nutrients, fertility, microbiome and resistance against diverse abiotic and biotic stresses. Overall, "CFPH - Jack of all trades" and "Bacillus spp. - an active camouflage to the surroundings where they applied showed profound and significant benefits to the plant growth under the most adverse conditions. In addition, Bacillus spp. coheres the biofortification process in plants through the breakdown of metals into metal ions that eventually increase the nutrient value of the food crops. However, detailed information on them is missing. This can be overcome by further real-world studies on rhizoengineering through a multi-omics approach and their interaction with plants. This review has explored the best possible and efficient strategy for managing chicken feather wastes into protein-rich CFPH through Bacillus spp. bioconversion and utilizing the CFPH and Bacillus spp. as biostimulants, biofertilizers, biopesticides and biofortificants. This paper is an excellent report on organic waste management, circular economy and sustainable agriculture research frontier.
Collapse
Affiliation(s)
- Yogeswaran Jagadeesan
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Shanmugapriya Meenakshisundaram
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Suthakaran Pichaimuthu
- Genprotic Biopharma Private Limited, SPIC Bioprocess Laboratory, Anna University, Taramani Campus, Taramani, Chennai, Tamilnadu, 600113, India.
| | - Anandaraj Balaiah
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| |
Collapse
|
3
|
Ekpenyong M, Asitok A, Ben U, Amenaghawon A, Kusuma H, Akpan A, Antai S. Application of the novel manta-ray foraging algorithm to optimize acidic peptidase production in solid-state fermentation using binary agro-industrial waste. Prep Biochem Biotechnol 2024; 54:226-238. [PMID: 37210635 DOI: 10.1080/10826068.2023.2214936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Peptidases, which constitute about 20% of the global enzyme market, have found applications in detergent, food and pharmaceutical industries, and could be produced on a large scale using low-cost agro-industrial waste. An acidophilic Bacillus cereus strain produced acidic peptidase on binary-agro-industrial waste comprising yam peels and fish processing waste at pH 4.5 with high catalytic activity. A five-variable central composite rotatable design of a response surface methodology was used to model bioprocess conditions for improved peptidase production in solid-state fermentation. Data generated was leveraged as the basis for applying the novel Manta-ray foraging optimization-linked feed-forward artificial neural network to predict bioprocess conditions optimally. Results obtained from the optimization experiments revealed a significant coefficient of determination of 0.9885 with low-performance error. The bioprocess predicted a peptidase activity of 1035.32 U/mL under optimized conditions set as 54.8 g/100 g yam peels, 23.85 g/100 g fish waste, 0.31 g/100 g CaCl2, 47.54% (v/w) moisture content, and pH 2. Peptidase activity was improved 5-fold, and was stable for 240 min between pH 2.5 and 3.5. Michaelis-Menten kinetics revealed a Km of 0.119 mM and a catalytic efficiency of 45462.19 mM-1 min-1. The bioprocess holds promise for sustainable enzyme-driven applications.
Collapse
Affiliation(s)
- Maurice Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Atim Asitok
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Ubong Ben
- Department of Physics, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Andrew Amenaghawon
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin-City, Nigeria
| | - Heri Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Yogyakarta, Indonesia
| | - Anthony Akpan
- Department of Physics, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Sylvester Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| |
Collapse
|
4
|
Shettar SS, Bagewadi ZK, Kolvekar HN, Yunus Khan T, Shamsudeen SM. Optimization of subtilisin production from Bacillus subtilis strain ZK3 and biological and molecular characterization of synthesized subtilisin capped nanoparticles. Saudi J Biol Sci 2023; 30:103807. [PMID: 37744003 PMCID: PMC10514557 DOI: 10.1016/j.sjbs.2023.103807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
The increase and dissemination of multi-drug resistant bacteria have presented a major healthcare challenge, making bacterial infections a significant concern. The present research contributes towards the production of bioactive subtilisin from a marine soil isolate Bacillus subtilis strain ZK3. Custard apple seed powder (raw carbon) and mustard oil cake (raw nitrogen) sources showed a pronounced effect on subtilisin production. A 7.67-fold enhancement in the production was evidenced after optimization with central composite design-response surface methodology. Subtilisin capped silver (AgNP) and zinc oxide (ZnONP) nanoparticles were synthesized and characterized by UV-Visible spectroscopy. Subtilisin and its respective nanoparticles revealed significant biological properties such as, antibacterial activity against all tested pathogenic strains with potential against Escherichia coli and Pseudomonas aeruginosa. Prospective antioxidant behavior of subtilisin, AgNP and ZnONP was evidenced through radical scavenging assays with ABTS and DPPH. Subtilisin, AgNP and ZnONP revealed cytotoxic effect against cancerous breast cell lines MCF-7 with IC50of 83.48, 3.62 and 7.57 µg/mL respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the structure, surface and thermostability properties. The study proposes the potential therapeutic applications of subtilisin and its nanoparticles, a way forward for further exploration in the field of healthcare.
Collapse
Affiliation(s)
- Shreya S. Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Harsh N. Kolvekar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic Dental Science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
5
|
Abdel-Aty AM, Barakat AZ, Bassuiny RI, Mohamed SA. Statistical optimization, characterization, antioxidant and antibacterial properties of silver nanoparticle biosynthesized by saw palmetto seed phenolic extract. Sci Rep 2023; 13:15605. [PMID: 37731031 PMCID: PMC10511706 DOI: 10.1038/s41598-023-42675-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
On the global market, silver nanoparticles (Ag-NPs) are in high demand for their various applications in biomedicine, material engineering, and consumer products. This study highlighted the biosynthesis of the Ag-NPs using saw palmetto seed phenolic extract (SPS-phenolic extract), which contained vital antioxidant-phenolic compounds. Herein, central composite statistical design, response surface methodology, and sixteen runs were conducted to optimize Ag-NPs biosynthesis conditions for maximizing the production of Ag-NPs and their phenolic content. The best-produced SPS-Ag-NPs showed a surface plasmon resonance peak at 460 nm and nano-spherical sizes ranging from 11.17 to 38.32 nm using the UV spectrum analysis and TEM images, respectively. The produced SPS-Ag-NPs displayed a high negative zeta-potential value (- 32.8 mV) demonstrating their high stability. The FTIR analysis demonstrated that SPS-phenolic compounds were involved in sliver bio-reduction and in stabilizing, capping, and preventing Ag-NP aggregation. The thermogravimetric investigation revealed that the produced SPS-Ag-NPs have remarkable thermal stability. The produced SPS-Ag-NP exceeded total antioxidant activity (13.8 µmol Trolox equivalent) more than the SPS-phenolic extract (12.0 µmol Trolox equivalent). The biosynthesized SPS-Ag-NPs exhibited noticeably better antibacterial activity against multidrug-resistant Gram-negative E. coli and Gram-positive S. aureus compared to SPS-phenolic extract. Hence, the bio-synthesized SPS-Ag-NPs demonstrated great potential for use in biomedical and antimicrobial applications.
Collapse
Affiliation(s)
- Azza M Abdel-Aty
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Amal Z Barakat
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Roqaya I Bassuiny
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
6
|
Alloun W, Berkani M, Benaissa A, Shavandi A, Gares M, Danesh C, Lakhdari D, Ghfar AA, Chaouche NK. Waste valorization as low-cost media engineering for auxin production from the newly isolated Streptomyces rubrogriseus AW22: Model development. CHEMOSPHERE 2023; 326:138394. [PMID: 36925000 DOI: 10.1016/j.chemosphere.2023.138394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/26/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Indole-3-acetic acid (IAA) represents a crucial phytohormone regulating specific tropic responses in plants and functions as a chemical signal between plant hosts and their symbionts. The Actinobacteria strain of AW22 with high IAA production ability was isolated in Algeria for the first time and was characterized as Streptomyces rubrogriseus through chemotaxonomic analysis and 16 S rDNA sequence alignment. The suitable medium for a maximum IAA yield was engineered in vitro and in silico using machine learning-assisted modeling. The primary low-cost feedstocks comprised various concentrations of spent coffee grounds (SCGs) and carob bean grounds (CBGs) extracts. Further, we combined the Box-Behnken design from response surface methodology (BBD-RSM) with artificial neural networks (ANNs) coupled with the genetic algorithm (GA). The critical process parameters screened via Plackett-Burman design (PBD) served as BBD and ANN-GA inputs, with IAA yield as the output variable. Analysis of the putative IAA using thin-layer chromatography (TLC) and (HPLC) revealed Rf values equal to 0.69 and a retention time of 3.711 min, equivalent to the authentic IAA. AW 22 achieved a maximum IAA yield of 188.290 ± 0.38 μg/mL using the process parameters generated by the ANN-GA model, consisting of L-Trp, 0.6%; SCG, 30%; T°, 25.8 °C; and pH 9, after eight days of incubation. An R2 of 99.98%, adding to an MSE of 1.86 × 10-5 at 129 epochs, postulated higher reliability of ANN-GA-approach in predicting responses, compared with BBD-RSM modeling exhibiting an R2 of 76.28%. The validation experiments resulted in a 4.55-fold and 4.46-fold increase in IAA secretion, corresponding to ANN-GA and BBD-RSM models, respectively, confirming the validity of both models.
Collapse
Affiliation(s)
- Wiem Alloun
- Laboratory of Mycology, Biotechnology and Microbial Activity (LaMyBAM), Department of Applied Biology, Constantine 1 University, BP, 325, Aïn El Bey, Constantine, 25017, Algeria.
| | - Mohammed Berkani
- Biotechnology Laboratory, National Higher School of Biotechnology, Ali Mendjeli University City, BP E66, 25100, Constantine, Algeria.
| | - Akila Benaissa
- Pharmaceutical Research and Sustainable Development Laboratory (ReMeDD), Department of Pharmaceutical Engineering, Faculty of Process Engineering, Constantine 3 University, Constantine, 25000, Algeria
| | - Amin Shavandi
- 3BIO-BioMatter Unit, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050, Brussels, Belgium
| | - Maroua Gares
- Laboratory of Mycology, Biotechnology and Microbial Activity (LaMyBAM), Department of Applied Biology, Constantine 1 University, BP, 325, Aïn El Bey, Constantine, 25017, Algeria
| | - Camellia Danesh
- The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa.
| | - Delloula Lakhdari
- Biotechnology Laboratory, National Higher School of Biotechnology, Ali Mendjeli University City, BP E66, 25100, Constantine, Algeria; Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga 16014, Algiers, Algeria
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Noreddine Kacem Chaouche
- Laboratory of Mycology, Biotechnology and Microbial Activity (LaMyBAM), Department of Applied Biology, Constantine 1 University, BP, 325, Aïn El Bey, Constantine, 25017, Algeria
| |
Collapse
|
7
|
Liya SM, Umesh M, Nag A, Chinnathambi A, Alharbi SA, Jhanani GK, Shanmugam S, Brindhadevi K. Optimized production of keratinolytic proteases from Bacillus tropicus LS27 and its application as a sustainable alternative for dehairing, destaining and metal recovery. ENVIRONMENTAL RESEARCH 2023; 221:115283. [PMID: 36639016 DOI: 10.1016/j.envres.2023.115283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The present study describes the isolation and characterization of Bacillus tropicus LS27 capable of keratinolytic protease production from Russell Market, Shivajinagar, Bangalore, Karnataka, with its diverse application. The ability of this strain to hydrolyze chicken feathers and skim milk was used to assess its keratinolytic and proteolytic properties. The strain identification was done using biochemical and molecular characterization using the 16S rRNA sequencing method. Further a sequential and systematic optimization of the factors affecting the keratinase production was done by initially sorting out the most influential factors (NaCl concentration, pH, inoculum level and incubation period in this study) through one factor at a time approach followed by central composite design based response surface methodology to enhance the keratinase production. Under optimized levels of NaCl (0.55 g/L), pH (7.35), inoculum level (5%) and incubation period (84 h), the keratinase production was enhanced from 41.62 U/mL to 401.67 ± 9.23 U/mL (9.65 fold increase) that corresponds to a feather degradation of 32.67 ± 1.36% was achieved. With regard to the cost effectiveness of application studies, the crude enzyme extracted from the optimized medium was tested for its potential dehairing, destaining and metal recovery properties. Complete dehairing was achieved within 48 h of treatment with crude enzyme without any visible damage to the collagen layer of goat skin. In destaining studies, combination of crude enzyme and detergent solution [1 mL detergent solution (5 mg/mL) and 1 mL crude enzyme] was found to be most effective in removing blood stains from cotton cloth. Silver recovery from used X-ray films was achieved within 6 min of treatment with crude enzyme maintained at 40 °C.
Collapse
Affiliation(s)
- Stanly Merin Liya
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India.
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sabarathinam Shanmugam
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014, Tartu, Estonia
| | - Kathirvel Brindhadevi
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Mohali, India.
| |
Collapse
|
8
|
Antioxidant-polyphenols of saw palmetto seeds: statistical optimized production and improved functional properties under solid-state fermentation by Trichoderma reesei. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AbstractSaw palmetto seeds (SPS) contain essential phenolic compounds that provide antioxidant, antimicrobial, anti-inflammatory, and anti-diabetic benefits when added to food. Maximized/improved production of these valuable phenolic compounds is the main purpose of this study. Solid-state fermentation (SSF) is a promising processing technique that positively alters the levels of health-promoting compounds in plants and plant residues. Here, a central composite design matrix (16 runs) and response surface methodology were experimentally applied to investigate the best SSF conditions and their interactions for maximum production of phenolic compounds from SPS. A good correlation between actual and expected results was observed with higher multiple coefficients (R2 ~ 0.93–0.97) and strongly significant P values (< 0.0001) proving the accuracy of the statistical model/design. Under optimized SSF conditions, temperature 30 °C, moisture 10%, pH 7.0, and fermentation time 6 days, the total phenolic content and total antioxidant activity of SPS were maximized by 11-fold and 46–49 folds, respectively. According to HPLC analysis, the contents of all identifying polyphenols were 3.3–30.0 times greater in fermented SPS extract (FSPS) than in the unfermented SPS extract (UFSPS). The FSPS extract also contained four new/additional polyphenols (vanillic, p-coumaric, cinnamic, and quercetin). FSPS extract demonstrated much greater antibacterial and antifungal activities than UFSPS extract against various human pathogenic bacteria and fungi. Consequently, the FSPS-phenolic compounds can be exploited as a food supplement and an antimicrobial remedy.
Collapse
|
9
|
Agro-Industrial Food Waste as a Low-Cost Substrate for Sustainable Production of Industrial Enzymes: A Critical Review. Catalysts 2022. [DOI: 10.3390/catal12111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The grave environmental, social, and economic concerns over the unprecedented exploitation of non-renewable energy resources have drawn the attention of policy makers and research organizations towards the sustainable use of agro-industrial food and crop wastes. Enzymes are versatile biocatalysts with immense potential to transform the food industry and lignocellulosic biorefineries. Microbial enzymes offer cleaner and greener solutions to produce fine chemicals and compounds. The production of industrially important enzymes from abundantly present agro-industrial food waste offers economic solutions for the commercial production of value-added chemicals. The recent developments in biocatalytic systems are designed to either increase the catalytic capability of the commercial enzymes or create new enzymes with distinctive properties. The limitations of low catalytic efficiency and enzyme denaturation in ambient conditions can be mitigated by employing diverse and inexpensive immobilization carriers, such as agro-food based materials, biopolymers, and nanomaterials. Moreover, revolutionary protein engineering tools help in designing and constructing tailored enzymes with improved substrate specificity, catalytic activity, stability, and reaction product inhibition. This review discusses the recent developments in the production of essential industrial enzymes from agro-industrial food trash and the application of low-cost immobilization and enzyme engineering approaches for sustainable development.
Collapse
|
10
|
Espoui AH, Larimi SG, Darzi GN. Optimization of protease production process using bran waste using Bacillus licheniformis. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0965-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|