1
|
Mi N, Huang L, Wang X, Yu X, Shi Z, Ni X, Chen H, Shang Y, Shen X, Gu C, Chen Z. Photochemical Transformation of Ibuprofen and Chlorophene Induced by Dissolved Organic Matter. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:51. [PMID: 39394363 DOI: 10.1007/s00128-024-03953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/30/2024] [Indexed: 10/13/2024]
Abstract
Both ibuprofen (IBP) and chlorophene (CP) are frequently detected contaminants in surface aqueous environment. Dissolved organic matter (DOM) is an important component in water with high photo-reactivity, playing an important role in the transformation processes of various organic pollutants. This study systematically studied the influence of DOM on the photochemical transformation of IBP and CP by using humic acid as model DOM. In addition, the effect of inorganic salts on this process is also considered due to the high salt content in the ocean. Further quenching experiments and reactive oxygen species (ROSs) detection were also conducted to explore the reactive species acting on the IBP and CP transformation. Based on the products analysis and theoretical calculation, we proposed the IBP and CP transformation mechanism. Overall, this study provides some new insights into the transformation of organic pollutants in natural surface water, which is significant for assessing the fate of pollutants.
Collapse
Affiliation(s)
- Na Mi
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Liuqing Huang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Xueru Yu
- Nanjing Research Institute of Ecological and Environmental Protection, 175 Huju Road, Nanjing, 210013, China
| | - Zhenfeng Shi
- Shandong Huanrui Ecological Technology Co., Ltd, Jinan, 271100, China
| | - Xuan Ni
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Hanyang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yong Shang
- Shandong Huanrui Ecological Technology Co., Ltd, Jinan, 271100, China
| | - Xiufang Shen
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
2
|
Yu Y, Liu M, Wang S, Zhang C, Zhang X, Liu L, Xue S. Unveiling the Photodegradation Mechanism of Monochlorinated Naphthalenes under UV-C Irradiation: Affecting Factors Analysis, the Roles of Hydroxyl Radicals, and DFT Calculation. Molecules 2024; 29:4535. [PMID: 39407464 PMCID: PMC11477601 DOI: 10.3390/molecules29194535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Polychlorinated naphthalenes (PCNs) are a new type of persistent organic pollutant (POP) characterized by persistence, bioaccumulation, dioxin-like toxicity, and long-range atmospheric transport. Focusing on one type of PCN, monochlorinated naphthalenes (CN-1, CN-2), this study aimed to examine their photodegradation in the environment. In this work, CN-1 and CN-2 were employed as the model pollutants to investigate their photodegradation process under UV-C irradiation. Factors like the pH, initial concentrations of CN-1, and inorganic anions were investigated. Next, the roles of hydroxyl radicals (•OH), superoxide anion radicals (O2•-), and singlet oxygen (1O2) in the photodegradation process were discussed and proposed via theory computation. The results show that the photodegradation of CN-1 and CN-2 follows pseudo-first-order kinetics. Acidic conditions promote the photodegradation of CN-1, while the effects of pH on the photodegradation of CN-2 are not remarkable. Cl-, NO3-, and SO32- accelerate the photodegradation of CN-1, whereas the effect of SO42- and CO32- is not significant. Additionally, the contributions of •OH and O2•- to the photodegradation of CN-1 are 20.47% and 38.80%, while, for CN-2, the contribution is 16.40% and 16.80%, respectively. Moreover, the contribution of 1O2 is 15.7%. Based on DFT calculations, C4 and C6 of the CN-1 benzene ring are prioritized attack sites for •OH, while C2 and C9 of CN-2 are prioritized attack sites.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Liu
- School of Environment, Liaoning University, Shenyang 110036, China; (Y.Y.); (M.L.); (S.W.); (C.Z.); (X.Z.)
| | - Shuang Xue
- School of Environment, Liaoning University, Shenyang 110036, China; (Y.Y.); (M.L.); (S.W.); (C.Z.); (X.Z.)
| |
Collapse
|
3
|
Xu J, Wei J, Guo R, Zhang S, Teng X, Wang Z, Qu R. Environmental transformation and hazards of decachlorobiphenyl on suspended particles under sunlight irradiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134630. [PMID: 38762988 DOI: 10.1016/j.jhazmat.2024.134630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Decachlorobiphenyl (PCB-209) can be widely detected in suspended particles and sediments due to its large hydrophobicity, and some of its transformation products may potentially threaten organisms through the food chain. Here we investigate the photochemical transformation of PCB-209 on suspended particles from the Yellow River. It was found that the suspended particles had an obvious shielding effect to largely inhibit the photodegradation of PCB-209. Meanwhile, the presence of inorganic ions (e.g. Mg2+ and NO3-) and organic matters (e.g. humic acid, HA) in the Yellow River water inhibited the reaction. The main transformation products of PCB-209 were lower-chlorinated and hydroxylated polychlorinated biphenyls (OH-PCBs), and small amounts of pentachlorophenol (PCP) and polychlorinated dibenzofurans (PCDFs) were also observed. The mechanisms of PCP formation by double •OH attacking carbon bridge and PCDFs formation by elimination reaction of ionic state OH-PCBs were proposed using theoretical calculations, which provided some new insights into the inter-transformations between persistent organic pollutants. In combination with VEGA and EPI Suite software, some intermediates such as PCDFs were more toxic to organisms than PCB-209. This study deepens the understanding of the transformation behavior of PCB-209 on suspended particles under sunlight.
Collapse
Affiliation(s)
- Jianqiao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Xiaolei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China.
| |
Collapse
|
4
|
Yin Q, Ji Y, Guo Y, Manoli K, Chen W, Zhang L, Yu X, Feng M. Environmental fate and risk evolution of calcium channel blockers from chlorine-based disinfection to sunlit surface waters. WATER RESEARCH 2024; 249:120968. [PMID: 38070349 DOI: 10.1016/j.watres.2023.120968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Organic micropollutants present in disinfected wastewater and discharged to sunlit surface waters may be transformed by multiple processes, such as chlorination due to the presence of chlorine residuals, solar irradiation as well as solar-irradiated chlorine residues. This study reports, for the first time, the multi-scenario degradation kinetics, transformation products, and risk evolution of calcium channel blockers (CCBs), a class of emerging pharmaceutical contaminants with worldwide prevalence in natural waters and wastewater. It was found that the chlorination of the studied CCBs (amlodipine (AML) and verapamil (VER)) was dominated by the reaction of HOCl with their neutral species, with second-order rate constants of 6.15×104 M-1 s-1 (AML) and 7.93×103 M-1 s-1 (VER) at pH 5.0-11.0. Bromination is much faster than chlorination, with the measured kapp,HOBr values of 2.94×105 M-1 s-1 and 6.58×103 M-1 s-1 for AML and VER, respectively, at pH 7.0. Furthermore, both CCBs would undergo photolytic attenuations with hydroxyl and carbonate radicals as the dominant reactive species in water. Notably, free chlorine mainly contributed to their abatement during the solar/chlorine treatment. Additionally, the halogen addition on the aromatic ring was observed during chlorination and bromination of the two CCBs. Cyclization was observed under solar irradiation only, while the aromatic ring was opened in the solar/chlorine system. Some products generated by the three transformation processes exhibited non-negligible risks of high biodegradation recalcitrance and toxicity, potentially threatening the aquatic environment and public health. Overall, this study elucidated the environmental fate of typical CCBs under different transformation processes to better understand the resulting ecological risks in these environmental scenarios.
Collapse
Affiliation(s)
- Qian Yin
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yating Guo
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | | | - Wenzheng Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lei Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China; Core Facility of Biomedical, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Lousada ME, Lopez Maldonado EA, Nthunya LN, Mosai A, Antunes MLP, Fraceto LF, Baigorria E. Nanoclays and mineral derivates applied to pesticide water remediation. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104264. [PMID: 37984165 DOI: 10.1016/j.jconhyd.2023.104264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Although pesticides are vital in agroecosystems to control pests, their indiscriminate use generates innumerable environmental problems daily. Groundwater and surface water networks are the most affected environmental matrices. Since these water basins are mainly used to obtain water for human consumption, it is a challenge to find solutions to pesticide contamination. For these reasons, development of efficient and sustainable remedial technologies is key. Based on their unique properties including high surface area, recyclability, environmental friendliness, tunable surface chemistry and low cost, nanoclays and derived minerals emerged as effective adsorbents towards environmental remediation of pesticides. This study provides a comprehensive review of the use of nanoclays and mineral derivatives as adsorbents for pesticides in water. For this purpose, the characteristics of existing pesticides and general aspects of the relevant clays and minerals are discussed. Furthermore, the study provides insightful discussion on the potential application of nanoclays and their derivatives toward the mitigation of pesticide pollution in the environment. Finally, the outlook and future prospects on nanoclay implications and their environmental implementation are elucidated.
Collapse
Affiliation(s)
- María E Lousada
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil.
| | - Eduardo A Lopez Maldonado
- Faculty of Chemical Sciences and Engineering Autonomous University of Baja California, Parque Internacional Industrial Tijuana, 22424 Tijuana, B.C., Mexico.
| | - Lebea N Nthunya
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Alseno Mosai
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa.
| | - María Lucia Pereira Antunes
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil.
| | - Leonardo F Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil.
| | - Estefanía Baigorria
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil; Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), CONICET - Universidad Nacional de Mar del Plata (UNMdP), Av. Colón 10890, Mar del Plata, Buenos Aires 7600, Argentina.
| |
Collapse
|
6
|
Gong Z, Wang J, Shao S, Fan B, Shi Y, Qian L, Lu K, Gao S. H2O2 activation over Cu-Schiff bases nanozyme for the removal of amlodipine: Kinetics, mechanism and toxicity evaluation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Xu Y, Zhang Y, Wang X, Wang Z, Huang L, Wu H, Ren J, Gu C, Chen Z. Enhanced photodegradation of tylosin in the presence of natural montmorillonite: Synergistic effects of adsorption and surface hydroxyl radicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158750. [PMID: 36108839 DOI: 10.1016/j.scitotenv.2022.158750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Tylosin (TYL) is a ubiquitous macrolide antibiotic which has been frequently detected in natural aqueous environment. Montmorillonite (MMT), a major component of natural suspended particles, plays essential roles in the transportation and transformation processes of various organic contaminants. This study systematically investigated the photodegradation behavior and mechanism of TYL in MMT suspensions under simulated sunlight irradiation. In the existence of 0.1 g L-1 Na-MMT, >80.8 % TYL was degraded after 8 h irradiation, which was significantly higher than that in the absence of MMT (42.5 %). Further mechanistic studies suggested that the synergistic effects including the formation of surface complex and the generation of surface hydroxyl radicals play essential roles in the accelerated TYL phototransformation. Meanwhile, other factors like exchangeable cations of MMTs, pH and ionic strength could also strongly influence the TYL photodegradation. The probable degradation pathways of TYL in MMT suspension was further proposed based on the detected intermediates and DFT calculations. Photobacterium phospherium T3 bioluminescent assay revealed that the photodegradation products of TYL have a lower acute toxicity than bulk TYL, especially in the presence of MMT. This study provides new insights for the photodegradation pathways of organic contaminants in aqueous environments, which is of great importance for assessing the fate and risk of emerging pollutants in natural surface water bodies.
Collapse
Affiliation(s)
- Yichen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (arable), Ministry of Natural Resources Geological Survey of Jiangsu Province, Nanjing 210018, PR China
| | - Yutong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhe Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liuqing Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Hao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinghua Ren
- Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (arable), Ministry of Natural Resources Geological Survey of Jiangsu Province, Nanjing 210018, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (arable), Ministry of Natural Resources Geological Survey of Jiangsu Province, Nanjing 210018, PR China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
8
|
Olaniyan PO, Nadim MM, Subir M. Detection and binding interactions of pharmaceutical contaminants using quartz crystal microbalance - Role of adsorbate structure and surface functional group on adsorption. CHEMOSPHERE 2023; 311:137075. [PMID: 36336013 DOI: 10.1016/j.chemosphere.2022.137075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/08/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
HYPOTHESIS Emerging contaminants (ECs) can interact with soft solid/aqueous interfaces of particulate organic matter and microplastics in the aquatic environment but to what extent? It is hypothesized that EC adsorption can be detected using quartz crystal microbalance (QCM), a sensitive gravimetric tool, and their adsorption energetics and uptake capacity can be measured for various substrates of distinct functional group. This in turn reveals the specific vs. nonspecific interactions. EXPERIMENTS QCM has been used to detect and measure the adsorption of selected pharmaceuticals, amlodipine (AMP) and carbamazepine (CBZ), onto butyl, carboxyl, amine, and phenyl functionalized self-assembled monolayers (SAMs), mapping out the hydrophobic effect, H-bonding capability, and π- interactions. Adsorption free energy (ΔGads) and maximum interfacial concentration (cmax) for these surfaces are compared. Solvatochromic studies to elucidate the likelihood of H-bonding interactions for CBZ and AMP have been conducted using UV-Vis absorption spectroscopy. FINDINGS Amlodipine and carbamazepine adsorb onto butyl/aqueous interface with respective ΔGads values of -35.8 ± 1.1 and -37.7 ± 0.1 kJ/mol. Nonspecific interaction allows a greater extent of cmax on the hydrophobic/aqueous interface. CBZ does not bind to the phenyl surface. AMP and CBZ exhibit H-bonding and show proclivity for the amine and carboxyl SAMs. Interfacial chemical environment and adsorbate structural properties play a significant role on EC adsorption.
Collapse
Affiliation(s)
| | | | - Mahamud Subir
- Department of Chemistry, Ball State University, Muncie, IN, USA.
| |
Collapse
|
9
|
Idrees S, Jamil LA, Omer KM. Silver-Loaded Carbon and Phosphorous Co-Doped Boron Nitride Quantum Dots (Ag@CP-BNQDs) for Efficient Organic Waste Removal: Theoretical and Experimental Investigations. ACS OMEGA 2022; 7:37620-37628. [PMID: 36312368 PMCID: PMC9609080 DOI: 10.1021/acsomega.2c04480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
In this paper, silver-loaded phosphorous and carbon co-doped boron nitride quantum dot (Ag@CP-BNQD) nanocomposites were synthesized using a co-precipitation method followed by a hydrothermal approach. The nanocomposites of Ag@CP-BNQDs were characterized by scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and ultraviolet-visible spectrophotometry. The as-prepared Ag@CP-BNQDs were used for photocatalytic degradation of 10 common organic pollutants, including dyes, pharmaceuticals, and pesticides in aqueous solution under visible light irradiation. The high-performance photocatalysis of Ag@CP-BNQDs proved that Ag@CP-BNQDs is plasmonic and the n-p junction photocatalyst. Theoretical calculations were done to measure the crystals and electronic structures of Ag@CP-BNQDs. Theoretical results showed that loading of Ag behaves as plasmonic sensitizers and co-catalysts and provides extra bands, which make electron movement easier between valance and conduction bands. The mechanism of the charge separation enhancement was postulated. Our findings might deepen our understanding of how sensitizer surface modification works in photodegradation applications.
Collapse
Affiliation(s)
- Shinwar
A. Idrees
- Department
of Chemistry, Faculty of Science, University
of Zakho, Kurdistan Region, Zakho 42002, Iraq
| | - Lazgin A. Jamil
- Department
of Chemistry, Faculty of Science, University
of Zakho, Kurdistan Region, Zakho 42002, Iraq
| | - Khalid M. Omer
- Dept.
of Chemistry, College of Science, University
of Sulaimani, Kurdistan Region, Slemani 46002, Iraq
| |
Collapse
|
10
|
Gu P, Wu H, Li Q, Zheng Z. Effects of suspended solids on cyanobacterial bloom formation under different wind fields. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47025-47035. [PMID: 35175518 DOI: 10.1007/s11356-022-19231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Wind waves and suspended solids (SS) generated by the resuspension of sediments are ubiquitous characteristics of lake ecosystems. However, their effects on phytoplankton remain poorly elucidated in shallow eutrophic lakes. Laboratory experiments were carried out to investigate the responses of Microcystis aeruginosa to SS under static (wind speed of 0 m/s) and breeze (wind speed of 3 m/s) conditions. Results showed that 50 mg/L SS can promote the growth of M. aeruginosa, accelerate the formation of colonies, and increase the floating rate under no-wind conditions. Comparing with static environment, breeze can significantly increase the growth rate of M. aeruginosa and benefit the formation of larger colonies of algae cells. Driven by wind and SS, the buoyancy of the cyanobacteria community in different experimental groups was obviously different. The specific performance was that low SS concentration and breeze were in favor of the floating of cyanobacteria, while high SS concentration went against the floating of algal cells. As a conclusion, wind speed of 3 m/s and 20-50 mg/L SS have a synergistic effect on the formation of cyanobacterial blooms. This study can provide an improved current understanding of bloom formation and turbidity management strategies in shallow eutrophic lakes.
Collapse
Affiliation(s)
- Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
- Taihu Water Environment Research Center, Changzhou, 213169, People's Republic of China
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China
- Taihu Water Environment Research Center, Changzhou, 213169, People's Republic of China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China.
- Taihu Water Environment Research Center, Changzhou, 213169, People's Republic of China.
| |
Collapse
|
11
|
Lin Z, Tang J, Huang X, Chen JP. Gadolinium(III) terephthalate metal-organic framework for rapid sequestration of phosphate in 10 min: Material development and adsorption study. CHEMOSPHERE 2022; 292:133498. [PMID: 34979208 DOI: 10.1016/j.chemosphere.2021.133498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Phosphorus with concentration above a few ppm in waters can easily cause eutrophication and poor water quality (e.g. algal blooming). In this study, we synthesized a non-porous gadolinium terephthalic acid (Gd-PTA) metal-organic framework (MOF) for efficient and rapid removal of phosphorus. Gd-PTA was prepared with gadolinium as the core metal center and terephthalic acid as the organic ligand, by which a well defined structure of new MOF was established. The adsorption isotherm and kinetics were well described by Langmuir isotherm equation and the intraparticle surface diffusion model, respectively. The maximum adsorption capacity was as high as 206.13- PO43- mg/g, which outperforms many reported and/or commercially available adsorbents (normmaly 5-150 PO43- mg/g). The adsorption was completed at the end of 10-min contact time, much faster than many reported adsorbents for uptake of anions (normmaly hours to days). The MOF performed very well in the uptake in phosphate containing solution with initial pH 3 to 9 and ionic strength (NaNO3) of 0-1 M, and in the presences of competiting sulphate, nitrate, carbonate and humic acid (each with 30, 50, and 100 mg/L). The absorption of phosphate was mainly controlled by ion exchange between phosphate and organic ligand of MOF as well as the interaction between unsaturated metal center of coordination and phosphate. This study demonstrates that the newly developed MOF reported here is a promising adsorbent for cost-effective treatment of phosphorus in water and wastewater.
Collapse
Affiliation(s)
- Zhihong Lin
- Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, China; Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, China
| | - Jiali Tang
- Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, China; Technion-Israel Institute of Technology, Department of Chemical Engineering, Haifa, Israel
| | - Xiaochun Huang
- Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, China; Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, China
| | - J Paul Chen
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, Singapore.
| |
Collapse
|
12
|
Peng J, Chang Y, Wang Z, Liu J, Wang S, Zhang Y, Shao S, Liu D, Zhang Y, Shi J, Liu H, Yan G, Cao Z, Gao S. Amlodipine removal via peroxymonosulfate activated by carbon nanotubes/cobalt oxide (CNTs/Co 3O 4) in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11091-11100. [PMID: 34532799 DOI: 10.1007/s11356-021-16399-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Amlodipine (AML) is an effective drug that has been widely used for hypertension and angina. However, AML is frequently detected in aqueous environments, posing potential risks to human and ecological health. In this study, the degradation of AML via peroxymonosulfate (PMS) activated by CNTs/Co3O4 was investigated. CNTs/Co3O4 was prepared via a facile method, and multiple characterizations suggested that Co3O4 were uniformly dispersed on the surface of MWCNTs-COOH. Experimental results indicated that complete removal of 10 μM AML was achieved within 30 min by using 2 mg/L CNTs/Co3O4 and 4 μM PMS at 25 °C in PBS buffered solution (pH 7.0). The observed pseudo-first-order rate constant was calculated to be 0.1369 min-1. Interestingly, the presence of 100 mM Cl- resulted in a slight enhancement of AML removal rate from 0.0528 to 0.0642 min-1. The addition of 100 mM HCO3-, 5 mg/L Pony Lake fulvic acid (PLFA), or Suwannee River humic acid (SRHA) retarded AML degradation by 15.5, 0.7, and 1.6 times, respectively. As per the quenching experiments, SO4⦁- rather than ⦁OH were verified to be the dominant reactive oxygen species (ROS). Additionally, ten major intermediates were identified using TOF-LC-MS and three associated reaction pathways including ether bond broken, H-abstraction, and hydroxylation were proposed. We outlook these findings to advance the feasibility of organic contaminants removal via CNTs/Co3O4 + PMS systems that have extremely low-level PMS.
Collapse
Affiliation(s)
- Jianbiao Peng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China.
| | - Yu Chang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Zhexi Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Jin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Shiyin Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Ya Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, 210042, People's Republic of China.
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Dexin Liu
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yakun Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Jialu Shi
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Guangxuan Yan
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|