1
|
Zhang T, Xu J, Sun Y, Fang S, Wu Z, Gao E, Zhu J, Wang W, Yao S, Li J. Unveiling the Role of Strong Metal-Support Interactions in Gold-Catalyzed CO Oxidation on MnO 2 Polymorphs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23739-23753. [PMID: 39483056 DOI: 10.1021/acs.langmuir.4c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The effectiveness of gold (Au)-based catalysts in CO oxidation is significantly influenced by strong metal-support interactions with surface oxygen structures, the mechanisms of which remain elusive. To investigate this property, we selected γ-MnO2, featuring Mn(-O-)2Mn and Mn-O-Mn structural motifs, and β-MnO2, characterized by Mn-O-Mn linkages, as support materials. The CO oxidation process was investigated by fabricating Au nanoparticles supported on these two MnO2 polymorphs. Our findings reveal that Au supported on β-MnO2 substantially enhanced CO oxidation, in stark contrast to the inhibitory effect observed with Au on γ-MnO2. Using operando diffuse reflectance infrared Fourier transform spectroscopy coupled with mass spectrometry, we detected an increase in the production of surface-adsorbed oxygen following Au deposition on β-MnO2. Conversely, Au supported on γ-MnO2 resulted in a diminished capacity for surface oxygen adsorption. The presence of Au+ and Mn2+ ions was identified as pivotal for CO oxidation. Moreover, the engagement of the Mn(-O-)2Mn structure in the reaction was impaired after Au loading on γ-MnO2, and the regeneration of the Mn-O-Mn linkage was similarly hindered. We propose a mechanism for the interactions between Au and the oxygen species associated with Mn(-O-)2Mn and Mn-O-Mn structures on MnO2, offering insights into the divergent catalytic behaviors exhibited by different MnO2 polymorphs.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jiacheng Xu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Shiyu Fang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry Changzhou 213164, China
| | - Erhao Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry Changzhou 213164, China
| | - Jiali Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry Changzhou 213164, China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry Changzhou 213164, China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry Changzhou 213164, China
| | - Jing Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry Changzhou 213164, China
| |
Collapse
|
2
|
Einaga H, Zheng X. Fundamental insights and recent advances in catalytic oxidation processes using ozone for the control of volatile organic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43540-43560. [PMID: 38909152 DOI: 10.1007/s11356-024-34004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
The development of technologies for highly efficient treatment of emissions containing low concentrations of volatile organic compounds (VOCs) remains an important challenge. Catalytic oxidation with ozone (catalytic ozonation) is useful for the oxidative decomposition of VOCs, particularly aromatic compounds, under ambient temperature conditions. Only inexpensive transition metal oxides are required as catalysts, and Mn-based catalysts are widely used for catalytic ozonation. This review describes the oxidation reaction mechanisms, reaction pathways of aromatic hydrocarbons, and dependence of the catalytic ozonation activity on the reaction conditions. The reasons why Mn oxides are effective in catalytic ozonation are also explained. The structure of the catalytic active sites and the types of supporting materials contributing to the reaction are also discussed in detail, with the aim of establishing a VOC control technology. In addition, recent progress in catalytic oxidation processes using ozone as an oxidant has been outlined, focusing on catalyst materials and reaction conditions.
Collapse
Affiliation(s)
- Hisahiro Einaga
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan.
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan.
| | - Xuerui Zheng
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
3
|
Liu L, Wu N, Ouyang M, Xing Y, Tian J, Chen P, Wu J, Hu Y, Niu X, Fu M, Ye D. Enhancement Effect Induced by the Second Metal to Promote Ozone Catalytic Oxidation of VOCs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6725-6735. [PMID: 38565876 DOI: 10.1021/acs.est.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
It is a promising research direction to develop catalysts with high stability and ozone utilization for low-temperature ozone catalytic oxidation of VOCs. While bimetallic catalysts exhibit excellent catalytic activity compared with conventional single noble metal catalysts, limited success has been achieved in the influence of the bimetallic effect on the stability and ozone utilization of metal catalysts. Herein, it is necessary to systematically study the enhancement effect in the ozone catalytic reaction induced by the second metal. With a simple continuous impregnation method, a platinum-cerium bimetallic catalyst is prepared. Also highlighted are studies from several aspects of the contribution of the second metal (Ce) to the stability and ozone utilization of the catalysts, including the "electronic effect" and "geometric effect". The synergistic removal rate of toluene and ozone is nearly 100% at 30 °C, and it still shows positive stability after high humidity and a long reaction time. More importantly, the instructive significance, which is the in-depth knowledge of enhanced catalytic mechanism of bimetallic catalysts resulting from a second metal, is provided by this work.
Collapse
Affiliation(s)
- Lei Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ning Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ming Ouyang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yun Xing
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Juntai Tian
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peirong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| | - Junliang Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| | - Yun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| |
Collapse
|
4
|
Hong W, Jiang X, An C, Huang H, Zhu T, Sun Y, Wang H, Shen F, Li X. Engineering the Crystal Facet of Monoclinic NiO for Efficient Catalytic Ozonation of Toluene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20053-20063. [PMID: 37936384 DOI: 10.1021/acs.est.3c06194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Modulating oxygen vacancies of catalysts through crystal facet engineering is an innovative strategy for boosting the activity for ozonation of catalytic volatile organic compounds (VOCs). In this work, three kinds of facet-engineered monoclinic NiO catalysts were successfully prepared and utilized for catalytic toluene ozonation (CTO). Density functional theory calculations revealed that Ni vacancies were more likely to form preferentially than O vacancies on the (110), (100), and (111) facets of monoclinic NiO due to the stronger Ni-vacancy formation ability, further affecting O-vacancy formation. Extensive characterizations demonstrated that Ni vacancies significantly promoted the formation of O vacancies and thus reactive oxygen species in the (111) facet of monoclinic NiO, among the three facets. The performance evaluation showed that the monoclinic NiO catalyst with a dominant (111) facet exhibits excellent performance for CTO, achieving a toluene conversion of ∼100% at 30 °C after reaction for 120 min under 30 ppm toluene, 210 ppm ozone, 45% relative humidity, and a space velocity of 120 000 h-1. This outperformed the previously reported noble/non-noble metal oxide catalysts used for CTO at room temperature. This study provided novel insight into the development of highly efficient facet-engineered catalysts for the elimination of catalytic VOCs.
Collapse
Affiliation(s)
- Wei Hong
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Xinxin Jiang
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Chenguang An
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianle Zhu
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Ye Sun
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Haining Wang
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
5
|
Zhang T, Xu J, Sun Y, Fang S, Wu Z, Gao E, Zhu J, Wang W, Yao S, Li J. Insight into the Metal-Support Interaction of Pt and β-MnO 2 in CO Oxidation. Molecules 2023; 28:6879. [PMID: 37836722 PMCID: PMC10574042 DOI: 10.3390/molecules28196879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Pt-based catalysts exhibit unique catalytic properties in many chemical reactions. In particular, metal-support interactions (MSI) greatly improve catalytic activity. However, the current MSI mechanism between platinum (Pt) and the support is not clear enough. In this paper, the interaction of 1 wt% Pt nanoparticles (NPs) on β-MnO2 in carbon monoxide (CO) oxidation was studied. The Pt on β-MnO2 inhibited CO oxidation below 210 °C but promoted it above 210 °C. A Pt/β-MnO2 catalyst contains more Pt4+ and less Pt2+. The results of operando DRIFTS-MS show that surface-terminal-type oxygen (M=O) plays an important role in CO oxidation. When the temperature was below 210 °C, Mn=O consumption on Pt/β-MnO2 was less than β-MnO2 due to Pt4+ inhibition on CO oxidation. When the temperature was above 210 °C, Pt4+ was reduced to Pt2+, and Mn=O consumption due to CO oxidation was greater than β-MnO2. The interaction of Pt and β-MnO2 is proposed.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China (Y.S.)
| | - Jiacheng Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China (Y.S.)
- School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China (Y.S.)
| | - Shiyu Fang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China (Y.S.)
| | - Zuliang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China (Y.S.)
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Erhao Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China (Y.S.)
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Jiali Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China (Y.S.)
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China (Y.S.)
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China (Y.S.)
- School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Jing Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China (Y.S.)
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| |
Collapse
|
6
|
Zhang L, Zhong L, Yu P, Li H, Zhou Z, Tong Q, Wan H, Dong L. Size Effect of Platinum Nanoparticles over Platinum-Manganese Oxide on the Low-Temperature Oxidation of Toluene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13620-13629. [PMID: 37702778 DOI: 10.1021/acs.langmuir.3c01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The effect of size of Pt nanoparticles has an important influence on the performance of supported Pt-based catalysts for the elimination of toluene. Herein, uniform Pt nanoparticles with average sizes of 1.5, 2.0, 2.5, 2.9, and 3.6 nm were obtained and supported on manganese oxide octahedral molecular sieves (OMS-2), and their catalytic performances for toluene oxidation were evaluated. Benefiting from the moderate interfacial interaction between nanoparticles and manganese oxide support, Pt/OMS-2-3 with the Pt particle size of 3.0 nm showed the best catalytic performance owing to the highest content of Pt2+ species. It also facilitates the formation of more abundant Mnδ+ (Mn2+ and Mn3+) and oxygen vacancies than that of the other sizes of the OMS-2-supported Pt nanoparticles, which can be filled by a large amount of adsorbed oxygen and converted into reactive oxygen species. We further showed that the resulting surface synergetic oxygen vacancies (Pt2+-Ov-Mnδ+) play a decisive part in catalyzing the complete oxidation of toluene. The result will provide new insights for designing efficient Pt-based catalysts for deep purification of toluene.
Collapse
Affiliation(s)
- Lixin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Linjun Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Pinhua Yu
- Research Institute of Sinopec Nanjing Chemical Industry Co. Ltd., Nanjing 210048, P. R. China
| | - Haitao Li
- Department of Science and Technology Development, Sinopec Nanjing Chemical Industry Co. Ltd., Nanjing 210048, P. R. China
| | - Zhou Zhou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, P. R. China
| | - Qing Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Hong W, Liu Y, Jiang X, An C, Zhu T, Sun Y, Wang H, Shen F, Li X. To promote catalytic ozonation of toluene by tuning Brönsted acid sites via introducing alkali metals into the OMS-2-SO 42-/ZSM-5 catalyst. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130900. [PMID: 36731324 DOI: 10.1016/j.jhazmat.2023.130900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Although free hydroxyl radical (·OH) generated on OMS-2-based catalysts during the catalytic ozonation process have been shown as important reactive oxygen species (ROSs) for toluene degradation, improvement of surface ·OH formation ability remains challenging. Here, Na, K, Rb, and Cs-OMS-2-SO42-/ZSM-5 catalysts were prepared, characterized and evaluated for catalytic ozonation of toluene. Both characterizations and DFT calculations showed that the appropriate alkali metal introduction made the catalyst possess with appropriate crystalline, reducibility, and acidity, which was favorable for catalytic ozonation of toluene. Characterizations also showed that alkali metal introduction resulted in water molecule adsorption on Brönsted acid sites of the catalysts, which made water molecule activation by ozone to form ·OH more easily. The introduction of K+ content of ∼ 5.9 wt% yielded K-OMS-2-SO42-/ZSM-5 catalyst with the highest Brönsted acid sites and thus formed the most ·OH among the five prepared catalysts. As a result, the catalyst exhibited excellent toluene conversion and COx selectivity for catalytic ozonation of toluene at room temperature and ambient humidity. Furthermore, the catalytic activity of deactivated K-OMS-2-SO42-/ZSM-5 catalyst was recovered after regeneration by a combination of water washing and heat treatment. Finally, a complete mechanism for toluene catalytic ozonation, catalyst deactivation, and regeneration was proposed.
Collapse
Affiliation(s)
- Wei Hong
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Yan Liu
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Xinxin Jiang
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Chenguang An
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Tianle Zhu
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China.
| | - Ye Sun
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China.
| | - Haining Wang
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Xiang Li
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| |
Collapse
|
8
|
Lu Y, Deng H, Pan T, Zhang C, He H. Thermal Annealing Induced Surface Oxygen Vacancy Clusters in α-MnO 2 Nanowires for Catalytic Ozonation of VOCs at Ambient Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9362-9372. [PMID: 36754841 DOI: 10.1021/acsami.2c21120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Catalytic ozonation has gained considerable interest in volatile organic compound (VOC) elimination due to its mild reaction conditions. However, the low activity and mineralization rate of VOCs over catalysts hinder its practical application. Herein, a series of α-MnO2 nanowire catalysts were prepared via thermal annealing treatment at various temperatures to tailor defect species. Numerous characterization techniques were used and combined to investigate the relationship between activity and microstructure. PALS and XAFS indicated that more unsaturated manganese and oxygen vacancies, especially surface oxygen vacancy clusters, were produced in α-MnO2 under the optimal high calcination temperature. As a result, MnO2-600 was found to exhibit the best-ever performance in toluene conversion (95%) and mineralization rate (89.5%) at 20 °C, making it a promising candidate for practical use. The roles of these defects in manipulating the reactive oxygen species of α-MnO2 were clarified by quantifying the amounts of reactive oxygen species by quenching experiments and density functional theory calculations. 1O2 and ·OH species generated in the vicinity of oxygen vacancy clusters, especially the dimer oxygen vacancy cluster, were identified as key oxygen species in the abatement of toluene. This study provides a facile method to engineer the microstructure of MnO2 by means of the manipulation of oxygen vacancies and an in-depth understanding of their roles in the catalytic ozonation of VOC.
Collapse
Affiliation(s)
- Yuqin Lu
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Deng
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Pan
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbin Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Zhang L, Zhu Z, Tan W, Ji J, Cai Y, Tong Q, Xiong Y, Wan H, Dong L. Thermal-Driven Optimization of the Strong Metal-Support Interaction of a Platinum-Manganese Oxide Octahedral Molecular Sieve to Promote Toluene Oxidation: Effect of the Interface Pt 2+-O v-Mn δ. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56790-56800. [PMID: 36524882 DOI: 10.1021/acsami.2c16923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Strong metal-support interactions (SMSIs) have a significant effect on the performance of supported noble-metal catalysts for volatile organic compound (VOC) elimination. Herein, the strength of the SMSI of Pt/OMS-2 between Pt and the OMS-2 support is regulated by simply changing calcination temperatures, and the catalyst calcined at 300 °C (Pt/OMS-2-300) performs the best in the catalytic combustion of toluene. Through systematic structural characterizations, it is revealed that much more Pt2+-Ov-Mnδ+ species are formed in Pt/OMS-2-300, which can help facilitate the generation of more reactive oxygen species and promote lattice oxygen mobility. Moreover, the results of in situ DRIFTS experiments further confirm that abundant Pt2+-Ov-Mnδ+ species at the Pt-MnO2 interface on Pt/OMS-2-300 can better enhance the adsorption and activation of toluene, thus boosting the catalytic performance in toluene combustion. This newly developed strategy of thermal-driven regulation of the SMSI provides a novel perspective for constructing highly efficient catalysts for VOC emission control.
Collapse
Affiliation(s)
- Lixin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Zhengxuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Jiawei Ji
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, P.R. China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Qing Tong
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, P.R. China
| | - Yan Xiong
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
10
|
Hong W, Liu Y, Zhu T, Wang H, Sun Y, Shen F, Li X. Promoting the Catalytic Ozonation of Toluene by Introducing SO 42- into the α-MnO 2/ZSM-5 Catalyst to Tune Both Oxygen Vacancies and Acid Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15695-15704. [PMID: 36259958 DOI: 10.1021/acs.est.2c05174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mn-based catalysts hold the promise of practical applications in catalytic ozonation of toluene at room temperature, yet improvement of toluene conversion and COx selectivity remains challenging. Here, an innovative α-MnO2/ZSM-5 catalyst modified with SO42- was successfully prepared, and both characterizations and density functional theory (DFT) calculations showed that SO42- introduction facilitated the formation of oxygen vacancies, Lewis and Brönsted acid sites, and active oxygen species and enhanced the adsorption ability of toluene on α-MnO2/ZSM-5. Characterizations also showed that SO42- introduction made the catalyst possess larger specific surface area, superior reducibility, and stronger surface acidity. As a result, α-MnO2/ZSM-5 with a S/Mn molar ratio of 0.019 exhibited the best toluene conversion and COx selectivity, 87 and 94%, respectively, after the reaction for 8 h at 30 °C under an initial concentration of 5 ppm toluene and 45 ppm ozone, relative humidity of 45%, and space velocity of 32,000 h-1, far superior to those of non-noble catalysts reported to date under comparable reaction conditions. The synergistic role of increased oxygen vacancies and acid sites of α-MnO2/ZSM-5 modified with SO42- resulted in excellent toluene conversion and COx selectivity. The findings represented a critical step toward the rational design and synthesis of highly efficient catalysts for catalytic ozonation of toluene.
Collapse
Affiliation(s)
- Wei Hong
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing100191, China
| | - Yan Liu
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing100191, China
| | - Tianle Zhu
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing100191, China
| | - Haining Wang
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing100191, China
| | - Ye Sun
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing100191, China
| | - Fangxia Shen
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing100191, China
| | - Xiang Li
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing100191, China
| |
Collapse
|
11
|
Zhao R, Wang H, Zhao D, Liu R, Liu S, Fu J, Zhang Y, Ding H. Review on Catalytic Oxidation of VOCs at Ambient Temperature. Int J Mol Sci 2022; 23:ijms232213739. [PMID: 36430218 PMCID: PMC9697337 DOI: 10.3390/ijms232213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
As an important air pollutant, volatile organic compounds (VOCs) pose a serious threat to the ecological environment and human health. To achieve energy saving, carbon reduction, and safe and efficient degradation of VOCs, ambient temperature catalytic oxidation has become a hot topic for researchers. Firstly, this review systematically summarizes recent progress on the catalytic oxidation of VOCs with different types. Secondly, based on nanoparticle catalysts, cluster catalysts, and single-atom catalysts, we discuss the influence of structural regulation, such as adjustment of size and configuration, metal doping, defect engineering, and acid/base modification, on the structure-activity relationship in the process of catalytic oxidation at ambient temperature. Then, the effects of process conditions, such as initial concentration, space velocity, oxidation atmosphere, and humidity adjustment on catalytic activity, are summarized. It is further found that nanoparticle catalysts are most commonly used in ambient temperature catalytic oxidation. Additionally, ambient temperature catalytic oxidation is mainly applied in the removal of easily degradable pollutants, and focuses on ambient temperature catalytic ozonation. The activity, selectivity, and stability of catalysts need to be improved. Finally, according to the existing problems and limitations in the application of ambient temperature catalytic oxidation technology, new prospects and challenges are proposed.
Collapse
Affiliation(s)
- Rui Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Han Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dan Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Rui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shejiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jianfeng Fu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Correspondence:
| |
Collapse
|
12
|
Tao J, Zhang Q, Zhao Y, Chen H, Liu W, He Y, Yin Y, He T, Chen J, Wang X, Wu D, Peng H. Elucidating the role of confinement and shielding effect over zeolite enveloped Ru catalysts for propane low temperature degradation. CHEMOSPHERE 2022; 302:134884. [PMID: 35551937 DOI: 10.1016/j.chemosphere.2022.134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) are the main precursor for ozone formation and hazardous to human health. Light alkane as one of the typical VOCs is difficult to degrade to CO2 and H2O by catalytic degradation method due to its strong C-H bond. Herein, a series of ultrafine Ru nanoclusters (<0.95 nm) enveloped in silicalite-1 (S-1) zeolite catalysts were designed and prepared by a simple one-pot method and applied for catalytic degradation of propane. The results demonstrate that the enveloped Ru1@S-1 catalyst has excellent propane degradation performance. Its T95 is as low as 294 °C with moisture, and the turnover frequency (TOF) value is up to 5.07 × 10-3 s-1, evidently higher than that of the comparison supported catalyst (Ru1/S-1). Importantly, Ru1@S-1 exhibits superior thermal stability, water resistance and recyclability, which should be attributed to the confinement and shielding effect of the S-1 shell. The in-situ DRIFTS result reveals that the propane degradation over Ru1@S-1 follows the Mars-van-Krevelen (MvK) mechanism, where the hydroxy from the framework of zeolite can provide the active oxygen species. Our work provides a new candidate and guideline for an efficient and stable catalyst for the low-temperature degradation of the light alkane VOCs.
Collapse
Affiliation(s)
- Jinxiong Tao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Qiuli Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Yonghua Zhao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Hunan Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Wenming Liu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Yuzhao He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuni Yin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tianyao He
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Xufang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Honggen Peng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
13
|
Diao F, Wang C, Qiu L, Yin Y, Zhao F, Chang H. Interaction between Nickel Oxide and Support Promotes Selective Catalytic Reduction of NOx with C3H6. Chem Asian J 2022; 17:e202200520. [PMID: 35818889 DOI: 10.1002/asia.202200520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Selective catalytic reduction of NO x by C 3 H 6 (C 3 H 6 -SCR) was investigated over NiO catalysts supported on different metaloxides. A NiAlO x mixed oxide phase was formed over NiO/γ-Al 2 O 3 catalyst, inducing an immediate interaction between NiO x and AlO x species. Such interaction resulted in a charge transfer from Ni to Al site and the formation of Ni species in high oxidation state. In comparison to other NiO-loaded catalysts, NiO/γ-Al 2 O 3 catalyst exhibited the highest NO x conversion at temperature higher than 450 °C, but a poor C 3 H 6 oxidation activity due to the decreased nucleophilicity for surface oxygen species. By temperatureprogramed NO oxidation, it is indicated that nitrate species were rapidly formed and stably maintained at high temperature over NiO/γ-Al 2 O 3 catalyst. In situ transient reactions further verified the LangmuirHinshelwood mechanism for C 3 H 6 -SCR, where both gaseous NO and C 3 H 6 were adsorbed and activated on catalyst surface and reacted to generate N 2 . Due to the strong metal-support interaction over NiO/γ-Al 2 O 3 catalyst, both nitrate and C x H y O z intermediates were well preserved to attain high C 3 H 6 -SCR activity.
Collapse
Affiliation(s)
- Fan Diao
- Renmin University of China, School of Environment and Natural Resources, Beijing, CHINA
| | - Chizhong Wang
- Renmin University of China, School of Environment and Natural Resources, Zhongguancun Road 2699, 100872, Beijing, CHINA
| | - Lei Qiu
- Renmin University of China, School of Environment and Natural Resources, Beijing, CHINA
| | - Yimeng Yin
- Renmin University of China, School of Environment and Natural Resources, Beijing, CHINA
| | - Feilin Zhao
- Renmin University of China, School of Environment and Natural Resources, Beijing, CHINA
| | - Huazhen Chang
- Renmin University of China, School of Environment and Natural Resources, Beijing, CHINA
| |
Collapse
|
14
|
Wang Z, Hao Z, Zhang Y, Zhang Y. Unravelling the intrinsic synergy between Pt and MnO x supported on porous calcium silicate during toluene oxidation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing efficient catalysts that enhance electronic interactions between active metal sites is a promising strategy for removing volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Ziqiang Wang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Inner Mongolia Key Laboratory of Efficient Cyclic Utilization of Coal-Based Solid Waste, Hohhot, 010051, China
- Key Laboratory of Resource Circulation at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
| | - Zhifei Hao
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Inner Mongolia Key Laboratory of Efficient Cyclic Utilization of Coal-Based Solid Waste, Hohhot, 010051, China
- Key Laboratory of Resource Circulation at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
| | - Yinmin Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Inner Mongolia Key Laboratory of Efficient Cyclic Utilization of Coal-Based Solid Waste, Hohhot, 010051, China
- Key Laboratory of Resource Circulation at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
| | - Yongfeng Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Inner Mongolia Key Laboratory of Efficient Cyclic Utilization of Coal-Based Solid Waste, Hohhot, 010051, China
- Key Laboratory of Resource Circulation at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
| |
Collapse
|