1
|
Hu J, Li C, Ge Y, Yang J, Zhu S, He C. Mapping the Evolution of Digital Health Research: Bibliometric Overview of Research Hotspots, Trends, and Collaboration of Publications in JMIR (1999-2024). J Med Internet Res 2024; 26:e58987. [PMID: 39419496 PMCID: PMC11528168 DOI: 10.2196/58987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND While bibliometric studies of individual journals have been conducted, to the best of our knowledge, bibliometric mapping has not yet been utilized to analyze the literature published by the Journal of Medical Internet Research (JMIR). OBJECTIVE In celebration of the journal's 25th anniversary, this study aimed to review the entire collection of JMIR publications from 1999 to 2024 and provide a comprehensive overview of the main publication characteristics. METHODS This study included papers published in JMIR during the 25-year period from 1999 to 2024. The data were analyzed using CiteSpace, VOSviewer, and the "Bibliometrix" package in R. Through descriptive bibliometrics, we examined the dynamics and trend patterns of JMIR literature production and identified the most prolific authors, papers, institutions, and countries. Bibliometric maps were used to visualize the content of published articles and to identify the most prominent research terms and topics, along with their evolution. A bibliometric network map was constructed to determine the hot research topics over the past 25 years. RESULTS This study revealed positive trends in literature production, with both the total number of publications and the average number of citations increasing over the years. And the global COVID-19 pandemic induced an explosive rise in the number of publications in JMIR. The most productive institutions were predominantly from the United States, which ranked highest in successful publications within the journal. The editor-in-chief of JMIR was identified as a pioneer in this field. The thematic analysis indicated that the most prolific topics aligned with the primary aims and scope of the journal. Currently and in the foreseeable future, the main themes of JMIR include "artificial intelligence," "patient empowerment," and "victimization." CONCLUSIONS This bibliometric study highlighted significant contributions to digital health by identifying key research trends, themes, influential authors, and collaborations. The findings underscore the necessity to enhance publications from developing countries, improve gender diversity among authors, and expand the range of research topics explored in the journal.
Collapse
Affiliation(s)
- Jing Hu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Chong Li
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yanlei Ge
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingyi Yang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Siyi Zhu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Chengqi He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Sheikh TA, Ismail M, Rabbee MF, Khan H, Rafique A, Rasheed Z, Siddique A, Rafiq MZ, Khattak ZAK, Jillani SMS, Shahzad U, Akhtar MN, Saeed M, Alzahrani KA, Uddin J, Rahman MM, Verpoort F. 2D MXene-Based Nanoscale Materials for Electrochemical Sensing Toward the Detection of Hazardous Pollutants: A Perspective. Crit Rev Anal Chem 2024:1-46. [PMID: 39046991 DOI: 10.1080/10408347.2024.2379851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
MXenes (Mn+1XnTx), a subgroup of 2-dimensional (2D) materials, specifically comprise transition metal carbides, nitrides, and carbonitrides. They exhibit exceptional electrocatalytic and photocatalytic properties, making them well-suited for the detection and removal of pollutants from aqueous environments. Because of their high surface area and remarkable properties, they are being utilized in various applications, including catalysis, sensing, and adsorption, to combat pollution and mitigate its adverse effects. Different characterization techniques like XRD, SEM, TEM, UV-Visible spectroscopy, and Raman spectroscopy have been used for the structural elucidation of 2D MXene. Current responses against applied potential were measured during the electrochemical sensing of the hazardous pollutants in an aqueous system using a variety of electroanalytical techniques, including differential pulse voltammetry, amperometry, square wave anodic stripping voltammetry, etc. In this review, a comprehensive discussion on structural patterns, synthesis, properties of MXene and their application for electrochemical detection of lethal pollutants like hydroquionone, phenol, catechol, mercury and lead, etc. are presented. This review will be helpful to critically understand the methods of synthesis and application of MXenes for the removal of environmental pollutants.
Collapse
Affiliation(s)
- Tahir Ali Sheikh
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ismail
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Hira Khan
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ayesha Rafique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zeerak Rasheed
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Amna Siddique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Zeeshan Rafiq
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Nadeem Akhtar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid A Alzahrani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- National Research Tomsk Polytechnic University, Tomsk, Russian
| |
Collapse
|
3
|
Li Z, Li X. Treatment techniques and resource recovery of source-separated urine: a bibliometric analysis and literature review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:238-255. [PMID: 39007317 DOI: 10.2166/wst.2024.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
Human urine, which is high in nutrients, acts as a resource as well as a contaminant. Indiscriminate urine discharge causes environmental pollution and wastes resources. To elucidate the research status and developmental trajectory of source-separated urine (SSU) treatment and recovery, this study was based on the Web of Science Core Collection (WOSCC) database and used the bibliometric software VOSviewer and CiteSpace to conduct a comprehensive and in-depth bibliometric analysis of the related literature in this field. The findings revealed a general upward trend in SSU treatment and recovery from 2000 to 2023. The compendium of 894 scholarly articles predominantly focused on the disciplines of Environmental Sciences, Environmental Engineering, and Water Resources. China and the USA emerged as the foremost contributors. Keyword co-occurrence mapping, clustering, and burst analysis have shown that the recovery of nitrogen and phosphorus from urine is currently the main focus, with future prospects leaning toward the retrieval of biochemicals and chemical energy. This study systematically categorizes and compares the developmental status, current advancements, and research progress in this field. The findings of this study provide a valuable reference for understanding developmental pathways in this field of research.
Collapse
Affiliation(s)
- Zhonghong Li
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environment Sciences, Beijing 10012, China; School Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaoguang Li
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environment Sciences, Beijing 10012, China E-mail:
| |
Collapse
|
4
|
Alam MS, Chowdhury MA, Islam MR, Islam MS, Islam MM, Ahmed R. Creation of a boron carbide-based Ti 3AlBC (312) MAX phase: a route to novel MXenes for energy storage. Chem Commun (Camb) 2024; 60:4585-4588. [PMID: 38576405 DOI: 10.1039/d4cc00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A novel boron carbide (B4C)-based Ti3AlBC (312) MAX phase was predicted for the first time via density functional theory (DFT). The stability of the MAX phase was confirmed by mechanical and thermal property analyses. The computational details revealed the attractive properties of Ti3AlBC, indicating its potential as an advanced material with improved characteristics. Its thermodynamic properties are reported as a function of temperature, indicating its potential for energy storage applications.
Collapse
Affiliation(s)
- Md Shahinoor Alam
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology, Gazipur, Gazipur 1707, Bangladesh.
- Vice Chancellor, Bangladesh Army University of Engineering and Technology, Qadirabad Cantonment, Natore-6431, Bangladesh
| | - Mohammad Asaduzzaman Chowdhury
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology, Gazipur, Gazipur 1707, Bangladesh.
| | - Md Rasidul Islam
- Department of Electrical and Electronic Engineering, Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur, 2012, Bangladesh
| | - Md Saiful Islam
- Department of Chemistry, Bangladesh Army University of Engineering and Technology, Qadirabad Cantonment, Natore-6431, Bangladesh
| | - Md Moynul Islam
- Department of Chemistry, Bangladesh Army University of Engineering and Technology, Qadirabad Cantonment, Natore-6431, Bangladesh
| | - Razu Ahmed
- Department of Physics, Bangladesh Army University of Engineering and Technology, Qadirabad Cantonment, Natore-6431, Bangladesh
| |
Collapse
|
5
|
Teenakul K, Ahmad Alem SA, Gond R, Thakur A, Anasori B, Khataee A. Treatment of carbon electrodes with Ti 3C 2T x MXene coating and thermal method for vanadium redox flow batteries: a comparative study. RSC Adv 2024; 14:12807-12816. [PMID: 38645525 PMCID: PMC11027479 DOI: 10.1039/d4ra01380h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024] Open
Abstract
One of the significant challenges of vanadium redox flow batteries is connected to the negative electrode where the main reaction of V(ii)/V(iii) and the side reaction of hydrogen evolution compete. To address this issue, we used titanium carbide (Ti3C2Tx) MXene coating via drop-casting to introduce oxygen functional groups and metals on the carbon electrode surface. Characterization through scanning electron microscopy and X-ray photoelectron spectroscopy confirmed the even distribution of Ti3C2Tx MXene on the electrodes and the presence of titanium and termination groups (-O, -Cl, and -F). The cyclic voltammetry analysis of MXene-coated electrodes showed more sharp electrochemical peaks for the V(ii)/V(iii) reaction than thermal-treated electrodes, even at relatively high scan rates. Notably, a relatively high reaction rate of 5.61 × 10-4 cm s-1 was achieved for the V(ii)/V(iii) reaction on MXene-coated electrodes, which shows the competitiveness of the method compared to thermal treatment (4.17 × 10-4 cm s-1). The flow battery tests, at a current density of 130 mA cm-2, using MXene-coated electrodes showed pretty stable discharge capacity for over 100 cycles. In addition, the voltage and energy efficiency were significantly higher than those of the system using untreated electrodes. Overall, this work highlights the potential application of MXene coating in carbon electrode treatment for vanadium redox flow batteries due to remarkable electrocatalytic activity and battery performance, providing a competitive method for thermal treatment.
Collapse
Affiliation(s)
- Kavin Teenakul
- Division of Applied Electrochemistry, Department of Chemical Engineering, KTH Royal Institute of Technology Stockholm SE-100 44 Sweden
| | - Sayed Ali Ahmad Alem
- Division of Applied Electrochemistry, Department of Chemical Engineering, KTH Royal Institute of Technology Stockholm SE-100 44 Sweden
- Montanuniversität Leoben, Institute of Chemistry of Polymeric Materials Otto-Glöckel-Strasse 2 A-8700 Leoben Austria
| | - Ritambhara Gond
- Department of Chemistry - Ångström Laboratory Uppsala University Box 538 751 21 Uppsala Sweden
| | - Anupma Thakur
- Department of Mechanical and Energy Engineering, Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis Indianapolis IN 46202 USA
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
| | - Babak Anasori
- Department of Mechanical and Energy Engineering, Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis Indianapolis IN 46202 USA
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
- School of Mechanical Engineering, Purdue University West Lafayette IN 47907 USA
| | - Amirreza Khataee
- Division of Applied Electrochemistry, Department of Chemical Engineering, KTH Royal Institute of Technology Stockholm SE-100 44 Sweden
| |
Collapse
|
6
|
Navitski I, Ramanaviciute A, Ramanavicius S, Pogorielov M, Ramanavicius A. MXene-Based Chemo-Sensors and Other Sensing Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:447. [PMID: 38470777 DOI: 10.3390/nano14050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
MXenes have received worldwide attention across various scientific and technological fields since the first report of the synthesis of Ti3C2 nanostructures in 2011. The unique characteristics of MXenes, such as superior mechanical strength and flexibility, liquid-phase processability, tunable surface functionality, high electrical conductivity, and the ability to customize their properties, have led to the widespread development and exploration of their applications in energy storage, electronics, biomedicine, catalysis, and environmental technologies. The significant growth in publications related to MXenes over the past decade highlights the extensive research interest in this material. One area that has a great potential for improvement through the integration of MXenes is sensor design. Strain sensors, temperature sensors, pressure sensors, biosensors (both optical and electrochemical), gas sensors, and environmental pollution sensors targeted at volatile organic compounds (VOCs) could all gain numerous improvements from the inclusion of MXenes. This report delves into the current research landscape, exploring the advancements in MXene-based chemo-sensor technologies and examining potential future applications across diverse sensor types.
Collapse
Affiliation(s)
- Ilya Navitski
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Agne Ramanaviciute
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Organic Chemistry, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, 2, Kharkivska Str., 40007 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas St., LV-1004 Riga, Latvia
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
7
|
Guo R, Hu D, Liu D, Jiang Q, Qiu J. MXene nanomaterials in biomedicine: A bibliometric perspective. Front Bioeng Biotechnol 2023; 11:1184275. [PMID: 37152656 PMCID: PMC10154466 DOI: 10.3389/fbioe.2023.1184275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose: MXene is two-dimensional (2D) nanomaterials that comprise transition metal carbides, nitrides, and carbonitrides. Their unique nanostructure attributes it a special role in medical applications. However, bibliometric studies have not been conducted in this field. Therefore, the aim of the present study was to conduct a bibliometric analysis to evaluate the global scientific output of MXene in biomedical research, explore the current situation of this field in the past years and predicte its research hotpots. Methods: We utilized visual analysis softwares Citespace and Bibliometrix to analyze all relevant documents published in the period of 2011-2022. The bibliometric records were obtained from the Web of Science Core Collection. Results: A total of 1,489 publications were analyzed in this study. We observed that China is the country with the largest number of publications, with Sichuan University being the institution with the highest number of publications in this field. The most publications on MXene medicine research in the past year were found primarily in journals about Chemistry/Materials/Physics. Moreover, ACS Applied Materials and Interfaces was found to be the most productive journal in this field. Co-cited references and keyword cluster analysis revealed that #antibacterial# and #photothermal therapy# are the research focus keyword and burst detection suggested that driven wearable electronics were newly-emergent research hot spots. Conclusion: Our bibliometric analysis indicates that research on MXene medical application remains an active field of study. At present, the research focus is on the application of MXene in the field of antibacterial taking advantage of its photothermal properties. In the future, wearable electronics is the research direction of MXene medical application.
Collapse
Affiliation(s)
- Runying Guo
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical College, Nanchang University, Nanchang, China
| | - Daorun Hu
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical College, Nanchang University, Nanchang, China
| | - Danrui Liu
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical College, Nanchang University, Nanchang, China
| | - Qingkun Jiang
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaxuan Qiu
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Omoregie AI, Muda K, Ojuri OO, Hong CY, Pauzi FM, Ali NSBA. The global research trend on microbially induced carbonate precipitation during 2001-2021: a bibliometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89899-89922. [PMID: 36369439 DOI: 10.1007/s11356-022-24046-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Microbially induced carbonate precipitation (MICP) is a remarkable method that creates sustainable cementitious binding material for use in geotechnical/structural engineering and environmental engineering. This is due to the increasing demand for alternative environmentally friendly technologies and materials that result in minimal or zero carbon footprint. In contrast to the previously published literature, through bibliometric analysis, this review paper focuses on the current prospects and future research trends of MICP technology via the Scopus database and VOSviewer analysis. The objective of the study was to determine the annual publications and citations trend, most contributing countries, the leading journals, prolific authors, productive institutions, funding sponsors, trending author keywords, and research directions of MICP. There were a total of 1058 articles published from 2001 to 2021 on MICP. The result demonstrated that the volume of publications is increasing. China, Construction and Building Materials, Satoru Kawasaki, Nanyang Technological University, and the National Natural Science Foundation of China are the leading country, journal, author, institution, and funding sponsor in terms of total publications. Through the co-occurrence analysis of the author keywords, MICP was revealed to be the most frequently used author keyword with 121 occurrences, a total link strength of 213, and 152 links to other author keywords. Furthermore, co-occurrence analysis of text data revealed that researchers are concentrating on four important research areas: precipitation, MICP, compressive strength, and biomineralization. This review can provide information to researchers that can lead to novel ideas and research collaboration or engagement on MICP technology.
Collapse
Affiliation(s)
- Armstrong Ighodalo Omoregie
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Khalida Muda
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Oluwapelumi Olumide Ojuri
- Built Environment and Sustainable Technologies (BEST) Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Ching Yi Hong
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Farhan Mohd Pauzi
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nur Shahidah Binti Aftar Ali
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
9
|
Meng H, Bai G, Wang L. Research trends and areas of focus on water rights: a bibliometric analysis 1971-2020. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75119-75133. [PMID: 36107298 DOI: 10.1007/s11356-022-22578-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the research trends, key areas, and directions of water rights (WRs) using bibliometric data based on the Science Citation Index Expanded (SCI-E) and Social Sciences Citation Index (SSCI). This paper presents a comprehensive review of annual output, research fields, cooperative networks, published journals, and hot spot evolution from 1971 to 2020. The results show that the number of published papers on WRs has an exponential upward trend. This research mainly focuses on water resources, environmental sciences, environmental studies, law, agronomy, and political science. Rutgerd Boelens and Barbara Van Koppen are authors of the most widely published and influential factors in the field. Leo Heller, Priscila Neves-Silva, and Jeroen Vos have been the most recently active authors. University of New Mexico and the United States Department of Agriculture are the organizations with the most publications and total citations, respectively. The USA, China, Australia, the UK, The Netherlands, and Spain are among the most productive countries for WR research. Keyword analysis showed that the study of WRs has gone through three stages: the exploration of laws and regulations, comprehensive management, and technology development and application. Literature citation cluster analysis shows that a highly central article provides a strong link between internal research on WRs. Western USA, trading WRs, and constitutional reform were hot spots before 2010, while economic anthropology, combined effect, public attitude, and integrated assessment modeling have become popular recently. The study results can help experts understand the research progress in WRs.
Collapse
Affiliation(s)
- Hongfei Meng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Guangzu Bai
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Liwei Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
10
|
Lokhande PE, Pakdel A, Pathan HM, Kumar D, Vo DVN, Al-Gheethi A, Sharma A, Goel S, Singh PP, Lee BK. Prospects of MXenes in energy storage applications. CHEMOSPHERE 2022; 297:134225. [PMID: 35259358 DOI: 10.1016/j.chemosphere.2022.134225] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The transition metal carbides/nitrides referred to as MXenes has emerged as a wonder material presenting newer opportunities owing to their unique properties such as high thermal and electrical conductivity, high negative zeta-potential and mechanical properties similar to the parent transition metal carbides/nitrides. These properties of MXenes can be utilized in various societal applications including for energy storage and energy conversion. In this focused review, we provide a ready glance into the evolutionary development of the MXene family and various efforts that are made globally towards property improvement and performance enhancement. Particular attention in this review is made to direct the attention of readers to the bright prospects of MXene in the energy storage and energy conversion process - which is extremely timely to tackle the current concern on climate change. The review concludes by offering fresh insights into the future research needs and challenges that need to be addressed to develop resilient energy solutions.
Collapse
Affiliation(s)
- P E Lokhande
- Department of Physics, Savitribai Phule Pune University, Pune, 411007, India; Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Amir Pakdel
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - H M Pathan
- Department of Physics, Savitribai Phule Pune University, Pune, 411007, India
| | - Deepak Kumar
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| | - Adel Al-Gheethi
- Faculty of Civil Engineering and Built Environment (FKAAB), Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Batu Pahat, Johor, Malaysia
| | - Ajit Sharma
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Saurav Goel
- School of Engineering, London South Bank University, London, SE1 0 AA, UK; University of Petroleum and Energy Studies, Dehradun, 248007, India; Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | | | - Byeong-Kyu Lee
- Department of Civil and Environmental Engineering, University of Ulsan, Daehak, South Korea
| |
Collapse
|
11
|
Xiang J, Wang X, Ding M, Tang X, Zhang S, Zhang X, Xie Z. The role of lateral size of MXene nanosheets in membrane filtration of dyeing wastewater: Membrane characteristic and performance. CHEMOSPHERE 2022; 294:133728. [PMID: 35085609 DOI: 10.1016/j.chemosphere.2022.133728] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
New two-dimensional (2D) material MXene based lamellar membranes constructed from 2D MXene nanosheets have shown promising potential for water treatment with excellent selective property and high water flux. However, the effect of lateral size of MXene nanosheets on the membrane property and performance was rarely considered. Herein, the MXene nanosheets with different lateral size (552.3 nm, 397.5 nm and 281.8 nm) segregated via adjusting centrifugation conditions were used to prepare MXene membranes. XRD and cross-sectional SEM images confirmed that the resulting MXene membranes had the similar d-spacing and thickness. The MXene membrane with the smallest lateral size, MXene(S)-M, owned the largest surface roughness with reduced surface hydrophilicity. Lateral size determined mass transfer pathway and transfer resistance, which consequently influenced the water permeance and rejection of MXene membranes for dyeing wastewater treatment. MXene(S)-M with the shortest mass transfer pathway had the high water permeance while the MXene membrane with larger lateral size (MXene(L)-M and MXene(M)-M), possessing longer mass transport pathway, promoted high dye rejection.
Collapse
Affiliation(s)
- Jing Xiang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, PR China
| | - Xingmin Wang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, PR China
| | - Mingmei Ding
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, PR China; CSIRO Manufacturing, Private bag 10, Clayton South, Vic, 3169, Australia
| | - Xiaomin Tang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, PR China; CSIRO Manufacturing, Private bag 10, Clayton South, Vic, 3169, Australia.
| | - Shixin Zhang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, PR China
| | - Xianming Zhang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Zongli Xie
- CSIRO Manufacturing, Private bag 10, Clayton South, Vic, 3169, Australia.
| |
Collapse
|
12
|
Challenges and Adaptive Measures for U.S. Municipal Solid Waste Management Systems during the COVID-19 Pandemic. SUSTAINABILITY 2022. [DOI: 10.3390/su14084834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The coronavirus pandemic has resulted in major disruptions in the way municipal solid waste management systems (MSWMSs) operate due to substantial distortions in waste generation trends, along with a variety of significant operational and managerial challenges. As critical infrastructure, MSWMSs have endeavored to adapt in response to such unprecedented stresses in order to maintain their operations during the pandemic. The challenges and their relevant adaptive measures, however, have varied with the progression of the pandemic across different MSWMSs. Currently, there is a limited understanding of such time-bound and system-specific phenomena, which impedes timely and effective adaptation. This study aims to fill this knowledge gap by performing a detailed and documented investigation of the longitudinal impact of the coronavirus pandemic on different MSWMSs across the United States, along with its evolution over time, using collected qualitative and quantitative data (i.e., monthly interviews with waste management personnel, online news media, and waste tonnages). This study also develops a relational database system to facilitate the systematic recording and monitoring of the pandemic’s impact on MSWMSs, as well as guide the implementation of different adaptation strategies based on distinct systems’ characteristics. Findings of this study will help solid waste decision-makers better understand the current pandemic, along with serving as a knowledge base for future pandemic scenarios towards more resilient MSWMSs.
Collapse
|
13
|
Zeng J, Xu C, Xu G, Wang D, Zhang W, Li H, Gan X, Xiong Y, Li J, Zhang L, Tang P. The Global Status of Research in Ankle Fracture: A Bibliometric and Visualized Study. Front Surg 2022; 9:853101. [PMID: 35360430 PMCID: PMC8963901 DOI: 10.3389/fsurg.2022.853101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Ankle fractures are common lower extremity fractures that pose a significant economic and social burden. This study analyzed the ankle fracture research literature between 2000 and 2021 to clarify the current status of ankle fracture research and predict future research trends. Methods Publications related to ankle fractures published between 2000 and 2021 were retrieved from the Web of Science Core Collection. Then Bibliometric analysis and Visualized Study were performed by VOSviewer software. Results A total of 2656 publications were retrieved. The number of publications related to ankle fractures is increasing every year. The top countries and journals in terms of the total number of publications, number of citations, and H-index ranking were USA and foot and ankle int. Lorich DG had the most publications in this field. University of Amsterdam's research group had the biggest number of publications in this field. Co-occurrence analysis clustered the keywords into seven clusters: survival analysis and prognosis study, internal fixation treatment study, treatment study of combined deltoid ligament rupture, treatment study of combined inferior tibiofibular ligament injury, treatment study of posterior ankle fracture, treatment study of postoperative traumatic arthritis of ankle fracture, and treatment study of ankle injury in children. Conclusions The importance of ankle fractures is increasing year by year with the aging process, and the number of publications related to ankle fractures will not continue to increase in the future. Survival and prognosis studies, internal fixation studies, combined deltoid ligament rupture studies, and combined inferior tibiofibular ligament injury studies may become the future research hotspots in the field of ankle fractures.
Collapse
Affiliation(s)
- Jianshuang Zeng
- School of Medicine, Nankai University, Tianjin, China
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Cheng Xu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Gaoxiang Xu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Daofeng Wang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Wupeng Zhang
- School of Medicine, Nankai University, Tianjin, China
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Hua Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xuewen Gan
- Department of Orthopedics, Kunming Medical University, Yanan Hospital, Kunming, China
| | - Ying Xiong
- Department of Orthopedics, Kunming Medical University, Yanan Hospital, Kunming, China
| | - Jiantao Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- Jiantao Li
| | - Licheng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- Licheng Zhang
| | - Peifu Tang
- School of Medicine, Nankai University, Tianjin, China
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- *Correspondence: Peifu Tang
| |
Collapse
|
14
|
Luo W, Ye Z, Ma P, Wu Q, Song D. Preparation of a disposable electrochemiluminescence sensor chip based on an MXene-loaded ruthenium luminescent agent and its application in the detection of carcinoembryonic antigens. Analyst 2022; 147:1986-1994. [DOI: 10.1039/d2an00450j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We developed a novel type of disposable ECL sensor chip for CEA detection in serum samples of healthy humans and cancer patients. The disposable ECL sensor chip has many advantages including convenience, rapid detection, low cost, and easy mass production.
Collapse
Affiliation(s)
- Weiwei Luo
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
- School of Chemistry and Life Science, Anshan Normal University, Ping'an Street 43, Anshan 114005, China
| | - Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Qiong Wu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Sendai Street 126, Changchun, 130033, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| |
Collapse
|