1
|
Zambrano-Luna BA, Milne R, Wang H. Cyanobacteria hot spot detection integrating remote sensing data with convolutional and Kolmogorov-Arnold networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178271. [PMID: 39765174 DOI: 10.1016/j.scitotenv.2024.178271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/18/2025]
Abstract
Prompt and accurate monitoring of cyanobacterial blooms is essential for public health management and understanding aquatic ecosystem dynamics. Remote sensing, in particular satellite observations, presents a good alternative for continuous monitoring. This study employs multispectral images from the Sentinel-2 constellation alongside ERA5-Land to enable broad-scale data acquisition. A simple deep convolutional neural network (CNN) architecture was proposed to analyze cyanobacteria (CB) concentration dynamics in Pigeon Lake, Canada, over five years. The model achieved an R2 value of 0.81 and an RMSE score of 0.03 for the training set and 0.15 for the testing set, demonstrating high predictive accuracy. Using the Local Getis-Ord statistic, we identified and analyzed trends in hot and cold spots under the null hypothesis that such spots are randomly distributed, observing changes in their distribution and the median CB concentration in hot spots over time. Additionally, a Kolmogorov-Arnold Network (KAN) and dense neural networks (NN) with a single hidden layer were trained to classify sections of the lake shoreline into hot and no hot spots using the Dynamic World dataset within a 500m radius of the lake. The KAN achieved a recall metric of 0.83 for detecting hot spots.
Collapse
Affiliation(s)
- B A Zambrano-Luna
- Interdisciplinary Lab for Mathematical Ecology and Epidemiology & Department of Mathematical and Statistical Sciences, University of Alberta, Canada
| | - Russell Milne
- Interdisciplinary Lab for Mathematical Ecology and Epidemiology & Department of Mathematical and Statistical Sciences, University of Alberta, Canada
| | - Hao Wang
- Interdisciplinary Lab for Mathematical Ecology and Epidemiology & Department of Mathematical and Statistical Sciences, University of Alberta, Canada.
| |
Collapse
|
2
|
Lin W, Hu F, Zou W, Wang S, Shi P, Li L, Yang J, Yang P. Rice Straw-Derived Biochar Mitigates Microcystin-LR-Induced Hepatic Histopathological Injury and Oxidative Damage in Male Zebrafish via the Nrf2 Signaling Pathway. Toxins (Basel) 2024; 16:549. [PMID: 39728807 DOI: 10.3390/toxins16120549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of MC-LR and BC on fish, male adult zebrafish (Danio rerio) were sub-chronically co-exposed to varying concentrations of MC-LR (0, 1, 5, and 25 μg/L) and BC (0 and 100 μg/L) in a fully factorial experiment. After 30 days exposure, our findings suggested that the existence of BC significantly decreased MC-LR bioavailability in liver. Furthermore, histopathological analysis revealed that BC mitigated MC-LR-induced hepatic lesions, which were characterized by mild damage, such as vacuolization, pyknotic nuclei, and swollen mitochondria. Compared to the groups exposed solely to MC-LR, decreased malondialdehyde (MDA) and increased catalase (CAT) and superoxide dismutase (SOD) were noticed in the mixture groups. Concurrently, significant changes in the mRNA expression levels of Nrf2 pathway genes (cat, sod1, gstr, keap1a, nrf2a, and gclc) further proved that BC reduces the oxidative damage induced by MC-LR. These findings demonstrate that BC decreases MC-LR bioavailability in the liver, thereby alleviating MC-LR-induced hepatotoxicity through the Nrf2 signaling pathway in zebrafish. Our results also imply that BC could serve as a potentially environmentally friendly material for mitigating the detrimental effects of MC-LR on fish.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Fen Hu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Wansheng Zou
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Suqin Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Pengling Shi
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jifeng Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| |
Collapse
|
3
|
Bouteiller P, Biré R, Foss AJ, Guérin T, Lance E. Analysis of total microcystins by Lemieux oxidation and liquid chromatography-mass spectrometry in fish and mussels tissues: Optimization and comparison of protocols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175339. [PMID: 39117191 DOI: 10.1016/j.scitotenv.2024.175339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Microcystins (MCs) can be detected in various matrices in two forms: a freely extractable fraction and a total (free and covalently protein-bound) fraction. Although the majority of MCs analyses are limited to the free fraction, they do not allow the analysis of all MCs variants or protein-bound forms. Other methods, known as total MCs analysis methods, enable simultaneous analysis of all MCs variants, as well as bound forms, which may be a major form of toxin accumulation in organisms. Among these techniques, the chemical oxidation method (e.g. Lemieux) allows the detection of total forms of MC (and nodularins) by oxidizing the common part to all MC and nodularins, and analyzing the resultant MMPB product (2-methyl-3-methoxy-4-phenylbutyric acid). However, the execution of this method in the context of health monitoring is challenging due to the variability of the protocols, the recoveries obtained with these protocols, and the important matrix effects associated with the method. The objectives of this study were i) to optimize an existing protocol of chemical oxidation "Lemieux1" on fresh fish fillet matrices, ii) to compare two existing protocols ("Lemieux1" and "Lemieux2"), and iii) apply Lemieux oxidation to fish fillets and livers naturally contaminated with MCs-producing cyanobacteria and to freshwater mussels contaminated with MCs in laboratories. Optimization of the "Lemieux1" protocol, in particular in the oxidation and SPE (solid phase extraction) steps improved the method's yields on the fresh fish fillet matrix (from <5 % to around 40 %). Moreover, several quantification methods have been compared through various calibration techniques (solvent calibration curve, matrix-matched calibration curve, oxidized MC-LR calibration curve and also by testing the addition of d3-MMPB as an internal standard). Comparison with the "Lemieux2" protocol showed the best results on the same matrix, with yields of around 65 %. MMPB was analyzed using this "Lemieux 2" protocol, in livers of carps sampled during an episode of cyanobacteria proliferation, at concentrations ranging from 17.9 to 27.5 μg/kg MMPB and at concentrations ranging from 50 to 2890 μg/kg MMPB in freshwater mussels laboratory contaminated to MCs.
Collapse
Affiliation(s)
- Pierre Bouteiller
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687 Reims Cedex, France; ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France
| | - Ronel Biré
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France
| | - Amanda J Foss
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL 32177, USA
| | - Thierry Guérin
- ANSES, Strategy and Programmes Department, F-94701 Maisons-Alfort, France
| | - Emilie Lance
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687 Reims Cedex, France.
| |
Collapse
|
4
|
Han H, Zhang JM, Ji S, Zeng XB, Jin XC, Shen ZQ, Xie B, Luo XN, Li K, Liu LP. Histology and transcriptomic analysis reveal the inflammation and affected pathways under 2-methylisoborneol (2-MIB) exposure on grass carp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173233. [PMID: 38763196 DOI: 10.1016/j.scitotenv.2024.173233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/19/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
2-Methylisoborneol (2-MIB) is a common and widely distributed off-flavor compound in water. However, the toxic mechanisms of 2-MIB on aquatic organisms remain largely unexplored. In this study, grass carp larvae were exposed to different concentrations (0, 5, and 20 μg L-1) of 2-MIB for 96 h. The accumulation of 2-MIB in the dorsal muscle was measured. Histological analysis, ultrastructure observations, and transcriptomic sequencing were conducted on the liver tissues. The results showed that 2-MIB accumulated significantly in the fish muscle, with the accumulation increasing as the exposure concentration increased through gas chromatography-mass spectrometry (GC-MS) detection. Histological and ultrastructure observations indicated that 2-MIB caused concentration-dependent inflammatory infiltration and mitochondrial damage in the liver. Transcriptomic analysis revealed lipid metabolism disorders induced by exposure to 2-MIB in grass carp. Additionally, 5 μg L-1 2-MIB affected the neurodevelopment and cardiovascular system of grass carp larvae through extracellular matrix (ECM)-receptor interaction and focal adhesion pathway. Furthermore, several pathways related to the digestive system were significantly enriched, implying that 2-MIB may impact pancreatic secretion function, protein digestion and absorption processes. These findings provide new insights into the potential toxicological mechanisms of 2-MIB.
Collapse
Affiliation(s)
- Huan Han
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Jun-Ming Zhang
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Ji
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xiang-Biao Zeng
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xi-Chen Jin
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Zi-Qian Shen
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Bin Xie
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xue-Neng Luo
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Kang Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Li-Ping Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Drobac Backović D, Tokodi N. Blue revolution turning green? A global concern of cyanobacteria and cyanotoxins in freshwater aquaculture: A literature review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121115. [PMID: 38749125 DOI: 10.1016/j.jenvman.2024.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
To enhance productivity, aquaculture is intensifying, with high-density fish ponds and increased feed input, contributing to nutrient load and eutrophication. Climate change further exacerbates cyanobacterial blooms and cyanotoxin production that affect aquatic organisms and consumers. A review was conducted to outline this issue from its inception - eutrophication, cyanobacterial blooms, their harmful metabolites and consequential effects (health and economic) in aquacultures. The strength of evidence regarding the relationship between cyanobacteria/cyanotoxins and potential consequences in freshwater aquacultures (fish production) globally were assessed as well, while identifying knowledge gaps and suggesting future research directions. With that aim several online databases were searched through June 2023 (from 2000), and accessible publications conducted in aquacultures with organisms for human consumption, reflecting cyanotoxin exposure, were selected. Data on cyanobacteria/cyanotoxins in aquacultures and its products worldwide were extracted and analyzed. Selected 63 papers from 22 countries were conducted in Asia (48%), Africa (22%), America (22%) and Europe (8%). Microcystis aeruginosa was most frequent, among over 150 cyanobacterial species. Cyanobacterial metabolites (mostly microcystins) were found in aquaculture water and fish from 18 countries (42 and 33 papers respectively). The most affected were small and shallow fish ponds, and omnivorous or carnivorous fish species. Cyanotoxins were detected in various fish organs, including muscles, with levels exceeding the tolerable daily intake in 60% of the studies. The majority of research was done in developing countries, employing less precise detection methods, making the obtained values estimates. To assess the risk of human exposure, the precise levels of all cyanotoxins, not just microcystins are needed, including monitoring their fate in aquatic food chains and during food processing. Epidemiological research on health consequences, setting guideline values, and continuous monitoring are necessary as well. Further efforts should focus on methods for elimination, prevention, and education.
Collapse
Affiliation(s)
- Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Nada Tokodi
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia; Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Metabolomics, Gronostajowa 7, Krakow, 30387, Poland.
| |
Collapse
|
6
|
Mohammed V, Arockiaraj J. Unveiling the trifecta of cyanobacterial quorum sensing: LuxI, LuxR and LuxS as the intricate machinery for harmful algal bloom formation in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171644. [PMID: 38471587 DOI: 10.1016/j.scitotenv.2024.171644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Harmful algal blooms (HABs) are causing significant disruptions in freshwater ecosystems, primarily due to the proliferation of cyanobacteria. These blooms have a widespread impact on various lakes globally, leading to profound environmental and health consequences. Cyanobacteria, with their ability to produce diverse toxins, pose a particular concern as they negatively affect the well-being of humans and animals, exacerbating the situation. Notably, cyanobacteria utilize quorum sensing (QS) as a complex communication mechanism that facilitates coordinated growth and toxin production. QS plays a critical role in regulating the dynamics of HABs. However, recent advances in control and mitigation strategies have shown promising results in effectively managing and reducing the occurrence of HABs. This comprehensive review explores the intricate aspects of cyanobacteria development in freshwater ecosystems, explicitly focusing on deciphering the signaling molecules associated with QS and their corresponding genes. Furthermore, a concise overview of diverse measures implemented to efficiently control and mitigate the spread of these bacteria will be provided, shedding light on the ongoing global efforts to address this urgent environmental issue. By deepening our understanding of the mechanisms driving cyanobacteria growth and developing targeted control strategies, we hope to safeguard freshwater ecosystems and protect the health of humans and animals from the detrimental impacts of HABs.
Collapse
Affiliation(s)
- Vajagathali Mohammed
- Department of Forensic Science, Yenepoya Institute of Arts, Science, Commerce, and Management, Yenepoya (Deemed to be University), Mangaluru 575013, Karnataka, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
7
|
Lin W, Hu F, Liu F, Liao L, Ling L, Li L, Yang J, Yang P. Microcystin-LR and polystyrene microplastics jointly lead to hepatic histopathological damage and antioxidant dysfunction in male zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123789. [PMID: 38490526 DOI: 10.1016/j.envpol.2024.123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The co-occurrence of cyanobacterial blooms and nano-microplastic pollution in the water is becoming an emerging risk. To assess the combined hepatotoxicity of microcystin-LR (MC-LR) and polystyrene microplastics (PSMPs) on zebrafish (Danio rerio), male adult zebrafish were exposed to single MC-LR (0, 1, 5, 25 μg/L) and a mixture of MC-LR and PSMPs (100 μg/L). After 60 d exposure, the results indicated that PSMPs significantly increased the MC-LR bioaccumulation in the livers in contrast to the single 25 μg/L MC-LR treatment group. Moreover, the severity of hepatic pathological lesions was aggravated in the MC-LR + PSMPs treatment groups, which were mainly characterized by cellular vacuolar degeneration, swollen hepatocytes, and pyknotic nucleus. The ultrastructural changes also proved that PSMPs combined with MC-LR could enhance the swollen mitochondria and dilated endoplasmic reticulum. The biochemical results, including increased malondialdehyde (MDA) and decreased glutathione (GSH), indicated that PSMPs intensified the MC-LR-induced oxidative damage in the combined treatment groups. Concurrently, alterations of sod1 and keap1a mRNA levels also confirmed that PSMPs together with MC-LR jointly lead to enhanced oxidative injury. Our findings demonstrated that PSMPs enhanced the MC-LR bioavailability by acting as a vector and exacerbating the hepatic injuries and antioxidant dysfunction in zebrafish.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, PR China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, PR China
| | - Fen Hu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Fang Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Ling Liao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Ling Ling
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jifeng Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, PR China.
| |
Collapse
|
8
|
Luo Y, Dao G, Zhou G, Wang Z, Xu Z, Lu X, Pan X. Effects of low concentration of gallic acid on the growth and microcystin production of Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169765. [PMID: 38181948 DOI: 10.1016/j.scitotenv.2023.169765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Gallic acid (GA) is an allelochemical that has been utilized in high concentrations for the management of harmful algal blooms (HABs). However, there is limited knowledge regarding its impact on the growth of M. aeruginosa as the GA concentration transitions from high to low during the HABs control process. This study has revealed that as the GA concentration decreases (from 10 mg/L to 0.001 μg/L), a dose-response relationship becomes apparent in the growth of M. aeruginosa and microcystin production, characterized by high-dose inhibition and low-dose stimulation. Notably, at the concentration of 0.1 μg/L GA, the most significant growth-promoting effect on both growth and MCs synthesis was observed. The growth rate and maximum cell density were increased by 1.09 and 1.16 times, respectively, compared to those of the control group. Additionally, the contents of MCs synthesis saw a remarkable increase, up by 1.85 times. Furthermore, lower GA concentrations stimulated the viability of cyanobacterial cells, resulting in substantially higher levels of reactive oxygen species (ROS) and chlorophyll-a (Chl a) compared to other concentrations. Most importantly, the expression of genes governing MCs synthesis was significantly upregulated, which appears to be the primary driver behind the significantly higher MCs levels compared to other conditions. The ecological risk quotient (RQ) value of 0.1 μg/L GA was the highest of all experimental groups, which was approximately 30 times higher than that of the control, indicating moderate risk. Therefore, it is essential to pay attention to the effect of M. aeruginosa growth, metabolism and water ecological risk under the process of reducing GA concentration after dosing during the HABs control process.
Collapse
Affiliation(s)
- Yu Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, Yunnan, China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Guoquan Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Zhuoxuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Xinyue Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China.
| |
Collapse
|
9
|
Langan LM, Lovin LM, Taylor RB, Scarlett KR, Kevin Chambliss C, Chatterjee S, Scott JT, Brooks BW. Proteome changes in larval zebrafish (Danio rerio) and fathead minnow (Pimephales promelas) exposed to (±) anatoxin-a. ENVIRONMENT INTERNATIONAL 2024; 185:108514. [PMID: 38394915 DOI: 10.1016/j.envint.2024.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Anatoxin-a and its analogues are potent neurotoxins produced by several genera of cyanobacteria. Due in part to its high toxicity and potential presence in drinking water, these toxins pose threats to public health, companion animals and the environment. It primarily exerts toxicity as a cholinergic agonist, with high affinity at neuromuscular junctions, but molecular mechanisms by which it elicits toxicological responses are not fully understood. To advance understanding of this cyanobacteria, proteomic characterization (DIA shotgun proteomics) of two common fish models (zebrafish and fathead minnow) was performed following (±) anatoxin-a exposure. Specifically, proteome changes were identified and quantified in larval fish exposed for 96 h (0.01-3 mg/L (±) anatoxin-a and caffeine (a methodological positive control) with environmentally relevant treatment levels examined based on environmental exposure distributions of surface water data. Proteomic concentration - response relationships revealed 48 and 29 proteins with concentration - response relationships curves for zebrafish and fathead minnow, respectively. In contrast, the highest number of differentially expressed proteins (DEPs) varied between zebrafish (n = 145) and fathead minnow (n = 300), with only fatheads displaying DEPs at all treatment levels. For both species, genes associated with reproduction were significantly downregulated, with pathways analysis that broadly clustered genes into groups associated with DNA repair mechanisms. Importantly, significant differences in proteome response between the species was also observed, consistent with prior observations of differences in response using both behavioral assays and gene expression, adding further support to model specific differences in organismal sensitivity and/or response. When DEPs were read across from humans to zebrafish, disease ontology enrichment identified diseases associated with cognition and muscle weakness consistent with the prior literature. Our observations highlight limited knowledge of how (±) anatoxin-a, a commonly used synthetic racemate surrogate, elicits responses at a molecular level and advances its toxicological understanding.
Collapse
Affiliation(s)
- Laura M Langan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | - Lea M Lovin
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Raegyn B Taylor
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Chemistry, Baylor University, Waco, TX 76798, USA
| | - Kendall R Scarlett
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - C Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Chemistry, Baylor University, Waco, TX 76798, USA
| | - Saurabh Chatterjee
- Department of Medicine, Department of Environmental and Occupational Health, University of California Irvine, Irvine, CA 92617, USA
| | - J Thad Scott
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
10
|
Ma T, Zhang J, Yang L, Zhang S, Long X, Zeng Q, Li Z, Ren X, Yang F. Reusable and Practical Biocomposite Based on Sphingopyxis sp. YF1 and Polyacrylonitrile-Based Carbon Fiber for the Efficient Bioremediation of Microcystin-LR-Contaminated Water. Toxins (Basel) 2023; 16:20. [PMID: 38251236 PMCID: PMC10819031 DOI: 10.3390/toxins16010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Microbial degradation is a cost-effective and environmentally friendly method for removing microcystin-LR (MC-LR). However, the application of free bacteria has limitations due to low operational stability and difficulties in recovery. In a previous study, our group successfully isolated a highly efficient MC-LR-degrading bacterium, Sphingopyxis sp. YF1, from Taihu. To enhance its practical potential in addressing MC-LR-contaminated water pollution, a novel biological material named polyacrylonitrile-based carbon fiber @Sphingopyxis sp. YF1 (PAN-CF@YF1) was synthesized. The immobilization conditions of strain Sphingopyxis sp. YF1 on PAN-CF surfaces were optimized using Box-Behnken design and response surface methodology (RSM), which turned out to be an optimal pH of 7.6 for the culture medium, a ratio of 0.038 g of supporting materials per 100 mL of culture media, and an incubation time of 53.4 h. The resultant PAN-CF@YF1 showed a great degradation effect both for low and high concentrations of MC-LR and exhibited satisfactory cyclic stability (85.75% after six cycles). Moreover, the application of PAN-CF@YF1 in the bioreactors demonstrated effective and sustainable MC-LR removal, with a removal efficiency of 78.83% after three consecutive treatments. Therefore, PAN-CF@YF1 with high degradation activity, environmental compatibility, straightforward preparation, and recyclability shows significant application potential for the bioremediation of MC-LR-contaminated water bodies.
Collapse
Affiliation(s)
- Tian Ma
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China
| | - Lili Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Shengyu Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China
| |
Collapse
|
11
|
Li T, Fan X, Cai M, Jiang Y, Wang Y, He P, Ni J, Mo A, Peng C, Liu J. Advances in investigating microcystin-induced liver toxicity and underlying mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167167. [PMID: 37730048 DOI: 10.1016/j.scitotenv.2023.167167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Microcystins (MCs) are a class of biologically active cyclic heptapeptide pollutants produced by the freshwater alga Microcystis aeruginosa. With increased environmental pollution, MCs have become a popular research topic. In recent years, the hepatotoxicity of MCs and associated effects and mechanisms have been studied extensively. Current epidemiological data indicate that long-term human exposure to MCs can lead to severe liver toxicity, acute toxicity, and death. In addition, current toxicological studies on the liver, a vital target organ of MCs, indicate that MC contamination is associated with the development of liver cancer, nonalcoholic fatty liver, and liver fibrosis. MCs produce hepatotoxicity that affects the metabolic homeostasis of the liver, induces apoptosis, and acts as a pro-cancer factor, leading to liver lesions. MCs mainly mediate the activation of signaling pathways, such as the ERK/JNK/p38 MAPK and IL-6-STAT3 pathways, which leads to oxidative damage and even carcinogenesis. Moreover, MCs can act synergistically with other pollutants to produce combined toxicity. However, few systematic reviews have been performed on these new findings. This review systematically summarizes the toxic effects and mechanisms of MCs on the liver and discusses the combined liver toxicity effects of MCs and other pollutants to provide reference for subsequent research. The toxicity of different MC isomers deserves further study. The detection methods and limit standards of MCs in agricultural and aquatic products will represent important research directions in the future. Standard protocols for fish sampling during harmful algal blooms or to evaluate the degree of MC toxicity in nature are lacking. In future, bioinformatics can be applied to offer insights into MC toxicology research and potential drug development for MC poisoning. Further research is essential to understand the molecular mechanisms of liver function damage in combined-exposure toxicology studies to establish treatment for MC-induced liver damage.
Collapse
Affiliation(s)
- Tong Li
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Xinting Fan
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Meihan Cai
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Yuanyuan Jiang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Yaqi Wang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Peishuang He
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Juan Ni
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Aili Mo
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
12
|
Huang S, Chen Y, Wang J, Lao A, Huang H, Wang Z, Luo X, Zheng Z. Understanding the dynamics of Microcystis bloom: Unraveling the influence of suspended solids through proteomics and metabolomics approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 908:168079. [PMID: 39492530 DOI: 10.1016/j.scitotenv.2023.168079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/21/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Light plays a crucial role in blue-green algae bloom formation in lakes, while suspended solids (SS) influence underwater light intensity. This study investigates the integrated effects of SS concentrations (0-125 mg/L) on Microcystis aeruginosa in natural conditions. Results show that SS inhibits cyanobacterial growth above 100 mg/L, with 25-75 mg/L favoring bloom formation. Proteomic analysis reveals differential protein involvement in ribosomes, ABC transporters, cofactor biosynthesis, and photosynthesis pathways at 25 mg/L SS. SS concentrations within the range of 25-125 mg/L significantly impact the metabolism of algal cells, resulting in an increase in lipid metabolism and a decrease in the biosynthesis of secondary metabolites in cyanobacteria. These coordinated biochemical adaptations play a vital role in the survival of cyanobacteria in challenging environmental conditions. Employing a multi-omics approach enhances our comprehension of how M. aeruginosa responds to SS and the underlying molecular mechanisms, thereby contributing to our understanding of cyanobacteria outbreaks. This underscores the importance of monitoring SS concentrations in lakes as a proactive measure for future control of cyanobacteria dominance.
Collapse
Affiliation(s)
- Suzhen Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yican Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jie Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - An Lao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Haiqing Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhikai Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Fuhuan Qingyun Technology Zhejiang Co., Ltd., Zhejiang 312000, China
| | - Xingzhang Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
13
|
Shartau RB, Turcotte LDM, Bradshaw JC, Ross ARS, Surridge BD, Nemcek N, Johnson SC. Dissolved Algal Toxins along the Southern Coast of British Columbia Canada. Toxins (Basel) 2023; 15:395. [PMID: 37368696 DOI: 10.3390/toxins15060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Harmful algal blooms (HABs) in coastal British Columbia (BC), Canada, negatively impact the salmon aquaculture industry. One disease of interest to salmon aquaculture is Net Pen Liver Disease (NPLD), which induces severe liver damage and is believed to be caused by the exposure to microcystins (MCs). To address the lack of information about algal toxins in BC marine environments and the risk they pose, this study investigated the presence of MCs and other toxins at aquaculture sites. Sampling was carried out using discrete water samples and Solid Phase Adsorption Toxin Tracking (SPATT) samplers from 2017-2019. All 283 SPATT samples and all 81 water samples tested positive for MCs. Testing for okadaic acid (OA) and domoic acid (DA) occurred in 66 and 43 samples, respectively, and all samples were positive for the toxin tested. Testing for dinophysistoxin-1 (DTX-1) (20 samples), pectenotoxin-2 (PTX-2) (20 samples), and yessotoxin (YTX) (17 samples) revealed that all samples were positive for the tested toxins. This study revealed the presence of multiple co-occurring toxins in BC's coastal waters and the levels detected in this study were below the regulatory limits for health and recreational use. This study expands our limited knowledge of algal toxins in coastal BC and shows that further studies are needed to understand the risks they pose to marine fisheries and ecosystems.
Collapse
Affiliation(s)
- Ryan B Shartau
- Department of Biology, The University of Texas at Tyler, Tyler, TX 75799, USA
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Lenora D M Turcotte
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Julia C Bradshaw
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Andrew R S Ross
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
| | | | - Nina Nemcek
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
| | - Stewart C Johnson
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
14
|
Shahmohamadloo RS, Bhavsar SP, Ortiz Almirall X, Marklevitz SAC, Rudman SM, Sibley PK. Cyanotoxins accumulate in Lake St. Clair fish yet their fillets are safe to eat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162381. [PMID: 36870491 DOI: 10.1016/j.scitotenv.2023.162381] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Consuming fish exposed to cyanobacterial harmful algal blooms (HABs) may be a major route of microcystin toxin exposure to humans. However, it remains unknown whether fish can accumulate and retain microcystins temporally in waterbodies with recurring seasonal HABs, particularly before and after a HAB event when fishing is active. We conducted a field study on Largemouth Bass, Northern Pike, Smallmouth Bass, Rock Bass, Walleye, White Bass, and Yellow Perch to assess the human health risks to microcystin toxicity via fish consumption. We collected 124 fish in 2016 and 2018 from Lake St. Clair, a large freshwater ecosystem in the North American Great Lakes that is actively fished pre- and post-HAB periods. Muscles were analyzed using the 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) Lemieux Oxidation method for total microcystins, which was used to perform a human health risk assessment for comparison against fish consumption advisory benchmarks available for Lake St. Clair. From this collection 35 fish livers were additionally extracted to confirm the presence of microcystins. Microcystins were detected in all livers at widely varying concentrations (1-1500 ng g-1 ww), suggesting HABs are an underappreciated and pervasive stressor to fish populations. Conversely, microcystin levels were consistently low in muscles (0-15 ng g-1 ww) and presented negligible risk, empirically supporting that fillets may be safely consumed before and after HAB events following fish consumption advisories.
Collapse
Affiliation(s)
- René S Shahmohamadloo
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, United States; School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada.
| | - Satyendra P Bhavsar
- Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto, ON M9P 3V6, Canada; Department of Physical & Environmental Sciences, University of Toronto, 1065 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Xavier Ortiz Almirall
- Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto, ON M9P 3V6, Canada; IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Stephen A C Marklevitz
- Lake Erie Management Unit, Ministry of Natural Resources and Forestry, 320 Milo Road, Wheatley, ON N0P 2P0, Canada
| | - Seth M Rudman
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, United States
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
15
|
Su C, Jiang D, Jia S, Shan X, Chen Z. Fast cathodic electrodeposition of ZnTCPP-functionalized metal-organic framework films for preparation of a fluorescent aptamer sensor for microcystin determination. Mikrochim Acta 2023; 190:180. [PMID: 37043083 DOI: 10.1007/s00604-023-05711-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/19/2023] [Indexed: 04/13/2023]
Abstract
A one-step electrodeposition-assisted self-assembly technique has been developed for preparation of ZnTCPP@MOF films with three-dimensional mesoporous structure in a three-electrode system. The internal structure of the ZnTCPP@MOF films was tuned by adjusting the electrochemical deposition voltage, deposition time, and the concentration of ZnTCPP at room temperature. The ZnTCPP@MOF films under different deposition conditions were characterized by scanning electron microscopy, Fourier transformation infrared spectroscopy, and X-ray photoelectron spectroscopy. The prepared ZnTCPP@MOF films exhibited excellent fluorescence properties, in which ZnTCPP molecules were encapsulated inside the MOF as fluorescent signal probes and structure-directing agents, which affected the electrochemical response of the ZnTCPP@MOF films. The sensing platform based on ZnTCPP@MOF film was used to detect microcystin with a wide determination range (1.0 × 10-12 mol/L ~ 1.0 × 10-5 mol/L), low determination limit (3.8 × 10-13 mol/L), and high sensitivity. More importantly, the strategy is simple, low-cost, green, and environmentally friendly, and it provides a new strategy for the direct use of MOFs films as signaling components.
Collapse
Affiliation(s)
- Chang Su
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Shuyong Jia
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
- Lite-On OPTO Tech(CZ) Co., Ltd, No. 88, Yanghu Rd., Wujin Hi-Tech. Industrial Development Zone, Changzhou City, China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Zhidong Chen
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
16
|
Zhao Y, Huang Y, Hu S, Xu T, Fang Y, Liu H, Xi Y, Qu R. Combined effects of fluoroquinolone antibiotics and organophosphate flame retardants on Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53050-53062. [PMID: 36853534 DOI: 10.1007/s11356-023-25974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
As freshwater harmful algal blooms continue to rise in frequency and severity, increasing focus is made on the effects of mixed pollutants and the dominant cyanobacterial species Microcystis aeruginosa (M. aeruginosa). However, few studies have investigated whether M. aeruginosa has a synergistic relationship with two common pollutants, namely, organophosphate flame retardants (OPFRs) and fluoroquinolone antibiotics (FQs). In this paper, three FQs and three OPFRs commonly detected in freshwaters were selected to construct a ternary mixture of FQs, a ternary mixture of OPFRs, and a six-component mixture of OPFRs and FQs. The effects of single substance and mixture on the growth of M. aeruginosa were determined at 24, 48, 72, and 96 h, and the toxicities of the mixture were evaluated by concentration addition model and independent action model. The results showed that the mixture of FQs and the mixture of OPFRs do not show toxicological interaction. However, partial mixtures of OPFRs and FQs showed antagonism or synergism at different concentrations and times. This indicated that combined toxicities of OPFRs and FQs on M. aeruginosa were mixture ratio dependent, concentration dependent and time dependent. This study improves our understanding of the role of OPFRs and FQs in cyanobacterial outbreaks of Microcystis.
Collapse
Affiliation(s)
- Yang Zhao
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Shuang Hu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Tao Xu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Yanfen Fang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Huigang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Ying Xi
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Rui Qu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China.
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China.
| |
Collapse
|
17
|
Shahmohamadloo RS, Bhavsar SP, Ortiz Almirall X, Marklevitz SAC, Rudman SM, Sibley PK. Lake Erie fish safe to eat yet afflicted by algal hepatotoxins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160474. [PMID: 36481113 DOI: 10.1016/j.scitotenv.2022.160474] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Toxic harmful algal blooms (HABs) pose serious threats to human health and instances of wildlife death have been documented across taxa. However, the extent of toxicological impacts on wildlife species is largely unresolved, raising uncertainty about the repercussions of increasingly severe HABs on the biodiversity and functioning of aquatic ecosystems. Here, we conducted a field study to assess human health risks from consuming fish caught across all stages of a HAB and to determine the pervasiveness of potentially harmful levels of the cosmopolitan toxin microcystin on fish populations. We collected 190 fish in 2015 and 2017 from Lake Erie, a large freshwater ecosystem that is highly productive for fisheries and is an epicenter of HABs and microcystin toxicity events. Fish muscles and livers were analyzed for total microcystins, which was used to conduct a human health risk assessment for comparison against fish consumption advisory benchmarks available for Lake Erie. We found microcystins pose low risks to human health from fillet consumption (mean 1.80 ng g-1 ww) but substantial risks to fish health and recruitment from liver concentrations measured well before and after seasonal bloom events (mean 460.13 ng g-1 ww). Our findings indicate HABs are a previously underappreciated but pervasive threat to fish populations.
Collapse
Affiliation(s)
- René S Shahmohamadloo
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, United States; School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada.
| | - Satyendra P Bhavsar
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto, ON M9P 3V6, Canada; Department of Physical & Environmental Sciences, University of Toronto, 1065 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Xavier Ortiz Almirall
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto, ON M9P 3V6, Canada; IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Stephen A C Marklevitz
- Lake Erie Management Unit, Ontario Ministry of Natural Resources and Forestry, 320 Milo Road, Wheatley, ON N0P 2P0, Canada
| | - Seth M Rudman
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, United States
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
18
|
Mielewczyk DA, Glover CN, Klaczek CE, Goss GG, Saari GN. Sub-chronic exposure to waterborne extracellular microcystin-LR impairs calcium homeostasis in rainbow trout. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114542. [PMID: 36638564 DOI: 10.1016/j.ecoenv.2023.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Fish mortality is associated with harmful algal blooms, although whether toxicity is related directly to the presence of cyanotoxins or the prevailing water chemistry remains unclear. Similarly, while planktivorous fish may be exposed to toxin through the diet, the hazard posed by waterborne extracellular toxin to carnivorous fish is less well understood. In this study rainbow trout (Oncorhynchus mykiss) were exposed for up to 28 d to waterborne microcystin-LR at nominal concentrations of 1.5 and 50 µg L-1 (measured values 2 and 49 µg L-1, respectively). The former represents the Canadian drinking water guideline, and the latter an elevated environmental level. This study hypothesised that waterborne toxin exposure would specifically impact gill function, and given the importance of this tissue in freshwater fish ion regulation, effects on plasma ions and branchial ion transporter activity would be observed. Microcystin-LR exposure resulted in a significant and persistent hypocalcaemia at the higher exposure concentration, but plasma sodium and branchial activities of the sodium/potassium ATPase, proton ATPase and calcium ATPase enzymes remained unaffected. An in vitro assessment failed to show any effect of microcystin-LR on branchial calcium ATPase activity even at exposure concentrations as high as 1000 µg L-1. A transient increase in hepatic alkaline phosphatase activity was also observed at 49 µg L-1, but there were no effects of toxin exposure on branchial or hepatic lactate dehydrogenase activity. These results suggest that microcystin-LR exposure does not have a general effect on ion regulation, but instead produces a novel and specific impact on calcium metabolism in rainbow trout, although the mechanism underlying this effect remains unknown.
Collapse
Affiliation(s)
- Diane A Mielewczyk
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chris N Glover
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Chantelle E Klaczek
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin N Saari
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Falfushynska H, Kasianchuk N, Siemens E, Henao E, Rzymski P. A Review of Common Cyanotoxins and Their Effects on Fish. TOXICS 2023; 11:toxics11020118. [PMID: 36850993 PMCID: PMC9961407 DOI: 10.3390/toxics11020118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 05/31/2023]
Abstract
Global warming and human-induced eutrophication drive the occurrence of various cyanotoxins in aquatic environments. These metabolites reveal diversified mechanisms of action, encompassing cyto-, neuro-, hepato-, nephro-, and neurotoxicity, and pose a threat to aquatic biota and human health. In the present paper, we review data on the occurrence of the most studied cyanotoxins, microcystins, nodularins, cylindrospermopsin, anatoxins, and saxitoxins, in the aquatic environment, as well as their potential bioaccumulation and toxicity in fish. Microcystins are the most studied among all known cyanotoxins, although other toxic cyanobacterial metabolites are also commonly identified in aquatic environments and can reveal high toxicity in fish. Except for primary toxicity signs, cyanotoxins adversely affect the antioxidant system and anti-/pro-oxidant balance. Cyanotoxins also negatively impact the mitochondrial and endoplasmic reticulum by increasing intracellular reactive oxygen species. Furthermore, fish exposed to microcystins and cylindrospermopsin exhibit various immunomodulatory, inflammatory, and endocrine responses. Even though cyanotoxins exert a complex pressure on fish, numerous aspects are yet to be the subject of in-depth investigation. Metabolites other than microcystins should be studied more thoroughly to understand the long-term effects in fish and provide a robust background for monitoring and management actions.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany
- Faculty of Electrical, Mechanical and Industrial Engineering, Anhalt University for Applied Sciences, 06366 Köthen, Germany
| | - Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University, 61712 Poznan, Poland
| | - Eduard Siemens
- Faculty of Electrical, Mechanical and Industrial Engineering, Anhalt University for Applied Sciences, 06366 Köthen, Germany
| | - Eliana Henao
- Research Group Integrated Management of Ecosystems and Biodiversity XIUÂ, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61701 Poznan, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 61701 Poznań, Poland
| |
Collapse
|
20
|
Recent advance in the investigation of aquatic “blue foods” at a molecular level: A proteomics strategy. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Zhang J, Yu M, Gao Y, Zhang M, Dong J, Li M, Li X. Feeding behavior, microcystin accumulation, biochemical response, and ultramicrostructure changes in edible freshwater bivalve Corbicula fluminea exposed to Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13560-13570. [PMID: 36136196 DOI: 10.1007/s11356-022-22833-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
As filter-feeders, bivalves naturally come into direct contact with microcystins (MCs) in eutrophic water bodies suffering from cyanobacteria blooms. To date, however, no studies have quantified the dynamics of microcystin accumulation and depuration in the edible freshwater bivalve Corbicula fluminea when exposed to dense bloom concentrations of Microcystis aeruginosa, while considering dynamic changes of biochemical indexes and feeding structure. In the present study, the bioaccumulation and detoxification of microcystin-LR (MC-LR) in C. fluminea were investigated. Our results showed that C. fluminea would graze equally efficiently on green algae and M. aeruginosa, irrespective of whether the M. aeruginosa strains were toxic or non-toxic. MCs could be accumulated and depurated by C. fluminea efficiently. In addition, linear and exposure time-dependent MC-LR accumulation patterns were observed in C. fluminea. Activities of biotransformation (glutathione S-transferase, GST) and antioxidant enzymes (superoxide dismutase, SOD, and catalase, CAT) and malondialdehyde (MDA) contents in various tissues of treated clams were stimulated by MCs in a tissue-specific manner. Our findings indicated that C. fluminea hepatopancreas was the primary target organ for MC-LR detoxification processes, as evidenced by a significant increase in GST activity. Besides, gills and mantle were more sensitive than the other tissues to oxidative stress in the initial microcystin exposure period with a significant increase in SOD activity. The scanning electron microscopy (SEM) observations revealed that the lateral cilia in the gill aperture were well developed during the MCs exposure period, which could perform the filter-feeding function instead of the damaged frontal cilium. This study provides insight into the possible tolerance of C. fluminea exposed to dense bloom concentrations of M. aeruginosa.
Collapse
Affiliation(s)
- Jingxiao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Miao Yu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Yunni Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Man Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jing Dong
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Mei Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
22
|
Painefilú JC, González C, Cárcamo JG, Bianchi VA, Luquet CM. Microcystin-LR modulates multixenobiotic resistance proteins in the middle intestine of rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106327. [PMID: 36274501 DOI: 10.1016/j.aquatox.2022.106327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Global climate change favors explosive population growth events (blooms) of phytoplanktonic species, often producing toxic products, e.g., several genera of cyanobacteria synthesize a family of cyanotoxins called microcystins (MCs). Freshwater fish such as the rainbow trout Oncorhynchus mykiss can uptake MCs accumulated in the food chain. We studied the toxic effects and modulation of the activity and expression of multixenobiotic resistance proteins (ABCC transporters and the enzyme glutathione S-transferase (GST) in the O. mykiss middle intestine by microcystin-LR (MCLR). Juvenile fish were fed with MCLR incorporated in the food every 12 h and euthanized at 12, 24, or 48 h. We estimated the ABCC-mediated transport in ex vivo intestinal strips to estimate ABCC-mediated transport activity. We measured total and reduced (GSH) glutathione contents and GST and glutathione reductase (GR) activities. We studied MCLR cytotoxicity by measuring protein phosphatase 1 (PP1) activity and lysosomal membrane stability. Finally, we examined the relationship between ROS production and lysosomal membrane stability through in vitro experiments. Dietary MCLR had a time-dependent effect on ABCC-mediated transport, from inhibition at 12 h to a significant increase after 48 h. GST activity decreased only at 12 h, and GR activity only increased at 48 h. There were no effects on GSH or total glutathione contents. MCLR inhibited PP1 activity and diminished the lysosomal membrane stability at the three experimental times. In the in vitro study, the lysosomal membrane stability decreased in a concentration-dependent fashion from 0 to 5 µmol L - 1 MCLR, while ROS production increased only at 5 µmol L - 1 MCLR. MCLR did not affect mRNA expression of abcc2 or gst-π. We conclude that MCLR modulates ABCC-mediated transport activity in O. mykiss's middle intestine in a time-dependent manner. The transport rate increase does not impair MCLR cytotoxic effects.
Collapse
Affiliation(s)
- Julio C Painefilú
- Laboratorio de Ictiología y Acuicultura Experimental, IPATEC (CONICET-UNCo). Quintral 1250. San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - Carolina González
- Agua y Saneamientos Argentinos, Tucumán 752, 1049 Buenos Aires, Argentina; Laboratorio de Limnología, Facultad de Ciencias Exactas y Naturales, UBA, Argentina
| | - Juan G Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Virginia A Bianchi
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-UNCo). Ruta provincial 61, km 3, Junín de los Andes, 8371 Neuquén, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-UNCo). Ruta provincial 61, km 3, Junín de los Andes, 8371 Neuquén, Argentina.
| |
Collapse
|
23
|
Passos LS, Gomes LC, Pereira TM, Sadauskas-Henrique H, Pont GD, Ostrensky A, Pinto E. Response of Oreochromis niloticus (Teleostei: Cichlidae) exposed to a guanitoxin-producing cyanobacterial strain using multiple biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155471. [PMID: 35472340 DOI: 10.1016/j.scitotenv.2022.155471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Changes in environmental conditions in aquatic ecosystems caused by anthropic actions can modify the composition of primary producers, promoting the excessive proliferation of cyanobacteria. These organisms can form cyanobacterial blooms, which directly affect aquatic life. The present study investigated the mutagenicity of the cyanobacterium Sphaerospermopsis torques-reginae (strain ITEP-024), guanitoxin-producing (natural organophosphate), and sublethal effects on fish in relevant environment concentrations. For this, the Ames test (Salmonella/microsome) was performed as a mutagenic assay for extracts of the ITEP-024 strain. Specimens of Oreochromis niloticus (Teleostei: Cichlidae) were subjected to acute 96 h exposure to different concentrations of aqueous extract of the strain: C = control group; T1 = 31.25 mg/L; T2 = 62.5 mg/L; T3 = 125 mg/L; and T4 = 250 mg/L. Genotoxic, biochemical, osmoregulatory, and physiologic biomarkers were analyzed. Our results showed that the cyanobacterium had a weak mutagenic response for the TA102 strain of Salmonella with and without metabolic activation by S9. Strains TA98 and TA100 were not affected. Fish from treatments T3 and T4 showed changes in oxidative stress (CAT, SOD, and GST enzymes), inhibition of the enzyme acetylcholinesterase activity, micronucleus formation, and osmoregulatory disorders. No guanitoxin accumulation was detected in the different tissues of O. niloticus by LC-MS/MS. Our results showed unprecedented mutagenicity data of the guanitoxin-producing cyanobacteria by the Ames test and biochemical, osmoregulatory, and genotoxic disorders in fish, providing efficient aquatic contamination biomarkers. Despite the great concern related to the presence of guanitoxin in blooms in freshwater ecosystems, its concentration is not yet regulated, and thus there is no monitoring agenda in current legislation.
Collapse
Affiliation(s)
- Larissa Souza Passos
- Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 05508-000 São Paulo, Brazil.
| | - Levy Carvalho Gomes
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | - Tatiana Miura Pereira
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | - Helen Sadauskas-Henrique
- Laboratory of Marine and Coastal Organisms, University of Santa Cecília, Rua Oswaldo Cruz, 11045-907 Santos, Brazil
| | - Giorgi Dal Pont
- Integrated Group for Aquaculture and Environmental Studies, Department of Animal Science, Federal University of Paraná, Rua dos Funcionários, 80035-050 Curitiba, Brazil
| | - Antonio Ostrensky
- Integrated Group for Aquaculture and Environmental Studies, Department of Animal Science, Federal University of Paraná, Rua dos Funcionários, 80035-050 Curitiba, Brazil
| | - Ernani Pinto
- Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 05508-000 São Paulo, Brazil; Tropical Ecosystems Operation Division, Nuclear Energy in Agriculture Center, University of São Paulo, Av. Centenário, 13416-000 Piracicaba, Brazil; Food Research Center (FoRC-CEPID), University of São Paulo, Rua do Lago, 05508-080 São Paulo, Brazil
| |
Collapse
|
24
|
Xin R, Yu X, Fan J. Physiological, biochemical and transcriptional responses of cyanobacteria to environmentally relevant concentrations of a typical antibiotic-roxithromycin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152703. [PMID: 34973318 DOI: 10.1016/j.scitotenv.2021.152703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The frequent occurrence of antibiotics in source waters may affect the formation of harmful algal blooms (HABs) dominated by the cyanobacterium Microcystis aeruginosa. However, it remains poorly understood whether dissolved algal organic matters (AOM) can be altered by the introduction of antibiotics in source waters. To resolve these discrepancies, this study investigated the physiological, biochemical, and transcriptional responses of a toxigenic strain of M. aeruginosa to the commonly-detected antibiotic roxithromycin (ROX) at environmentally relevant concentrations ranging from 30 to 8000 ng L-1. The growth and microcystin (MC) production of M. aeruginosa was significantly stimulated by 300 and 1000 ng L-1 ROX, whereas inhibited by 5000 and 8000 ng L-1 ROX. This may be owing to the regulation of genes related to photosynthesis and MCs. Although the membrane of cyanobacterial cells remained intact, the release of MCs was increased significantly with the growing ROX dosages, which may cause additional challenges in drinking water treatment. The amounts of AOM were enhanced by 300 and 1000 ng L-1 ROX, while decreased by 5000 and 8000 ng L-1 ROX. It may be attributed to the changes of cyanobacterial cell growth and the gene expression related to carbon fixation, carbohydrate metabolism and nitrogen metabolism. To further understand the regulation of related genes in M. aeruginosa exposed to ROX, trend analysis of differentially expressed genes was performed. The results indicated that the regulation of metabolism-related genes (e.g., lipopolysaccharide biosynthesis) may be also responsible for the changes of cyanobacterial cell densities. Generally, low levels of ROX (300 and 1000 ng L-1) could stimulated the cyanobacterial growth, MC synthesis and AOM production, which may promote the formation of HABs and reduce the source water quality. Although higher levels of ROX (5000 and 8000 ng L-1) inhibited the formation of HABs, the threat of increasing extracellular MCs should be considered.
Collapse
Affiliation(s)
- Ruoxue Xin
- Ocean College, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Jiaja Fan
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
25
|
Rodrigues NB, Pitol DL, Tocchini de Figueiredo FA, Tenfen das Chagas Lima AC, Burdick Henry T, Mardegan Issa JP, de Aragão Umbuzeiro G, Pereira BF. Microcystin-LR at sublethal concentrations induce rapid morphology of liver and muscle tissues in the fish species Astyanax altiparanae (Lambari). Toxicon 2022; 211:70-78. [DOI: 10.1016/j.toxicon.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 11/25/2022]
|
26
|
Biodegradation of Nodularin by a Microcystin-Degrading Bacterium: Performance, Degradation Pathway, and Potential Application. Toxins (Basel) 2021; 13:toxins13110813. [PMID: 34822597 PMCID: PMC8618024 DOI: 10.3390/toxins13110813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 01/19/2023] Open
Abstract
Currently, studies worldwide have comprehensively recognized the importance of Sphingomonadaceae bacteria and the mlrCABD gene cluster in microcystin (MC) degradation. However, knowledge about their degradation of nodularin (NOD) is still unclear. In this study, the degradation mechanism of NOD by Sphingopyxis sp. m6, an efficient MC degrader isolated from Lake Taihu, was investigated in several aspects, including degradation ability, degradation products, and potential application. The strain degraded NOD of 0.50 mg/L with a zero-order rate constant of 0.1656 mg/L/d and a half-life of 36 h. The average degradation rate of NOD was significantly influenced by the temperature, pH, and initial toxin concentrations. Moreover, four different biodegradation products, linear NOD, tetrapeptide H-Glu-Mdhb-MeAsp-Arg-OH, tripeptide H-Mdhb-MeAsp-Arg-OH, and dipeptide H-MeAsp-Arg-OH, were identified, of which the latter two are the first reported. Furthermore, the four mlr genes were upregulated during NOD degradation. The microcystinase MlrA encoded by the mlrA gene hydrolyzes the Arg-Adda bond to generate linear NOD as the first step of NOD biodegradation. Notably, recombinant MlrA showed higher degradation activity and stronger environmental adaptability than the wild strain, suggesting future applications in NOD pollution remediation. This research proposes a relatively complete NOD microbial degradation pathway, which lays a foundation for exploring the mechanisms of NOD degradation by MC-degrading bacteria.
Collapse
|