1
|
Li J, Peng X, Zeng P, Shen L, Li M, Guo Y. Removal of sulfonamides by persulfate-based advanced oxidation: A mini review. CHEMOSPHERE 2025; 370:143874. [PMID: 39638125 DOI: 10.1016/j.chemosphere.2024.143874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Sulfonamides (SAs) are known for their persistence and have become one of the most frequently detected pharmaceuticals and personal care products (PPCPs) in the environments. The widespread presence of SAs in natural waters, wastewater, soil, and sediment has prompted growing concern due to their potential threats to both human health and ecological systems. Persulfate-based advanced oxidation processes (PS-AOPs) have emerged as a promising technology for effectively mitigating the presence of these pollutants in the environment. This review offers a comprehensive overview of the degradation of SAs by PS-AOPs. The various activation methods of persulfate for the purpose of removing SAs are elaborated upon in detail. The factors influencing the removal efficiency of SAs through PS-AOPs is thoroughly discussed. Additionally, the conceivable mechanisms and degradation pathways associated with various types of SAs are discussed. Lastly, existing challenges are identified, and future prospects pertaining to the utilization of PS-AOPs for efficient SA removal are presented.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiangtian Peng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Shenyang University of Technology, Shenyang, 110870, China
| | - Ping Zeng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Liang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; North China Electric Power University, Beijing, 102206, China
| | - Yanfei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
2
|
Yi C, Zhang J, Yi R, Zeng J, Xu W, Sulemana H, Wang X, Yu H. Degradation mechanism and decomposition of sulfamethoxazole aqueous solution with persulfate activated by dielectric barrier discharge. ENVIRONMENTAL TECHNOLOGY 2025; 46:246-265. [PMID: 38753523 DOI: 10.1080/09593330.2024.2354058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
The present study focused on the degradation of sulfamethoxazole (SMX) aqueous solution and the toxicity of processing aqueous by the dielectric barrier discharge (DBD) activated persulfate (PS). The effects of input voltage, input frequency, duty cycle, and PS dosage ratio on the SMX degradation efficiency were measured. Based on the results of the Response Surface Methodology (RSM), SMX degradation efficiency reached 83.21% which is 10.54% higher than that without PS, and the kinetic constant was 0.067 min-1 in 30 min when the input voltage at 204 V (input power at 110.6 W), the input frequency at 186 Hz, the duty cycle at 63%, and the PS dosage ratio at 5.1:1. The addition of PS can produce more active particles reached 1.756 mg/L (O3), 0.118 mg/L (H2O2), 0.154 mmol/L (·OH) in 30 min. Furthermore, the DBD plasma system effectively activated an optimal amount of PS, leading to improved removal efficiency of COD, and TOC to 30.21% and 47.21%, respectively. Subsequently, eight primary by-products were pinpointed, alongside the observation of three distinct pathways of transformation. Predictions from the ECOSAR software indicated that most of the degradation intermediates were less toxic than SMX. The biological toxicity experiments elucidated that the treatment with the DBD/PS system effectively reduced the mortality of zebrafish larvae caused by SMX from 100% to 20.13% and improved the hatching rate from 55.69% to 80.86%. In particular, it is important to note that the degradation intermediates exhibit teratogenic effects on zebrafish larvae.
Collapse
Affiliation(s)
- Chengwu Yi
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water treatment, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Jianan Zhang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Rongjie Yi
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water treatment, Suzhou University of Science and Technology, Suzhou, People's Republic of China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Jiangwei Zeng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Wenlin Xu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Husseini Sulemana
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xinyi Wang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Huidi Yu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
3
|
Geng S, Yao J, Wang L, Wang Y, Wang X, Li J. Electrochemical Degradation of Sulfamethoxazole Enhanced by Bio-Inspired Iron-Nickel Encapsulated Biochar Particle Electrode. Int J Mol Sci 2024; 25:13579. [PMID: 39769341 PMCID: PMC11678343 DOI: 10.3390/ijms252413579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
In the electrocatalytic (EC) degradation process, challenges such as inefficient mass transfer, suboptimal mineralization rates, and limited current efficiency have restricted its broader application. To overcome these obstacles, this study synthesized spherical particle electrodes (FeNi@BC) with superior electrocatalytic performance using a bio-inspired preparation method. A three-dimensional electrocatalytic oxidation system based on FeNi@BC electrode, EC/FeNi@BC, showed excellent degradation efficiency of sulfamethoxazole (SMX), reaching 0.0456 min-1. Quenching experiments and electron paramagnetic resonance experiments showed that the excellent SMX degradation efficiency in the EC/FeNi@BC system was attributed to the synergistic effect of multiple reactive oxygen species (ROS) and revealed their evolution path. Characterization results showed that FeNi3 generated in the FeNi@BC electrode was a key bimetallic active site for improving electrocatalytic activity and repolarization ability. More importantly, the degradation pathway and reaction mechanism of SMX in the EC/FeNi@BC system were proposed. In addition, the influencing factors of the reaction system (voltage, pH, initial SMX concentration, electrode dosage, and sodium sulfate concentration, etc.) and the stability of the catalyst (maintained more than 81% after 5 cycles) were systematically evaluated. This study may provide help for the construction of environmentally friendly catalytic and efficient degradation of organic pollutants.
Collapse
Affiliation(s)
- Shuang Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.G.); (J.L.)
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China; (Y.W.); (X.W.)
| | - Jingang Yao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.G.); (J.L.)
| | - Lei Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China; (Y.W.); (X.W.)
| | - Yangyang Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China; (Y.W.); (X.W.)
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoshu Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China; (Y.W.); (X.W.)
| | - Junmin Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.G.); (J.L.)
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China; (Y.W.); (X.W.)
| |
Collapse
|
4
|
Ma H, Zhang L, Fan X, Wang G, Lv B, Xu Y, Pan Z, Zhao S, Lu H, Song C. Electrochemically Assisted Cobalt/MXene Membrane for Effective Water Treatment: Synchronously Improving Catalytic Performance and Anti-Interference Ability. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39570631 DOI: 10.1021/acsami.4c14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Catalytic membrane technology for water treatment is often constrained by a trade-off between permeability and catalytic efficiency as well as interference from coexisting anions and organic matter in natural water matrices. Herein, a novel cobalt-loaded MXene (Co/MXene) 2D membrane with good hydrophilicity, electrical conductivity, and PMS activation function is constructed. The negative voltage is exerted on the membrane to significantly enhance its PMS activation efficiency and anti-interference capacity toward effective water treatment. Under -2 V, the optimal Co/MXene catalytic membrane displays 100% rhodamine b (RhB) removal within a residence time of only 1.1 s, whose RhB degradation kinetic constant (k of 6.85 s-1) is 17.6 times higher than that of the Co/MXene catalytic membrane alone and is also greatly superior to other advanced catalysts and catalytic membranes. Meanwhile, the catalytic membrane displays obvious anti-interference ability in the presence of various coexisting substances of the water matrix and performs well in treating the secondary effluent of coking wastewater. The radical-dominated (SO4•- and •OH) mechanism accompanied by the nonradical species (1O2 and Co(VI)═O) is revealed in the system, and the reactive species production is obviously enhanced under negative voltage. Experimental results and theoretical calculations jointly confirm the key role of electrochemical assistance in enhancing membrane performance, which not only facilitates cycling of Co3+/Co2+ for enhanced PMS activation via improving PMS adsorption and promoting charge transfer from Co to PMS but also hinders interference from coexisting substances in water via electrostatic repulsion.
Collapse
Affiliation(s)
- Huanran Ma
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Lijun Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Bowen Lv
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Yuanlu Xu
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Shuaifei Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
- Deakin University, Geelong, Institute for Frontier Materials, Victoria 3216, Australia
| | - Huixia Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| |
Collapse
|
5
|
He S, Yu P, Shao Y, Gao X, Sakamaki T, Li X. Enhanced activity of mixed-culture electroactive biofilms and sulfamethoxazole removal efficiency by adding N-acyl-homoserine lactones in bio-electrochemical system. ENVIRONMENTAL TECHNOLOGY 2024:1-14. [PMID: 39541498 DOI: 10.1080/09593330.2024.2428441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
The addition of exogenous quorum sensing signaling molecules significantly enhanced the degradation efficiency of antibiotics, such as chloramphenicol in bio-electrochemical systems (BESs). However, the effects and mechanisms by which AHLs addition in BES facilitated the removal of sulfamethoxazole (SMX) remained inadequately explored. This study systematically compared the electrochemical performance and SMX removal efficiency in BES under two conditions: with and without the addition of N-acyl-homoserine lactones (AHLs) signaling molecules. In comparison to the control group, the AHL-treated group exhibited an increase in maximum output voltage from 340 to 489.67 mV, alongside a notable enhancement in SMX removal efficiency over 120 h ranging from 14.65% to 15.76%. Analyses of the live and dead cells and extracellular polymeric substances (EPS) composition revealed that following AHLs addition, both the ratio of live to dead cells and protein content within EPS increased by 12.66% and 74.37%, respectively. Furthermore, microbial community structure analysis indicated that after AHLs supplementation, there was a marked increase in the abundance of electroactive microorganisms as well as antibiotic-degrading and nitrogen-removing bacteria. Notably, Klebsiella - characterised by its electroactivity along with antibiotic degradation and nitrogen removal capabilities - exhibited a relative abundance reaching 56.84% in AHL, reflecting an increase of 28.31% compared to Blank; additionally, electroactive bacteria Dysgonomonas showed a relative abundance rise of 2.49%. Collectively, these findings suggested that enhancements in SMX removal efficiency upon AHLs addition were primarily driven by improvements in electrochemical performance coupled with alterations in microbial community structure.
Collapse
Affiliation(s)
- Saiyun He
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| | - Pan Yu
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| | - Yi Shao
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| | - Xintong Gao
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| | - Takashi Sakamaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Yu M, Yang C, Chen M, Li Y, Kang K, Wang C, Niu J, Mu S, Zhang J, Liu C, Ma J. Multi-chamber membrane capacitive deionization coupled with peroxymonosulfate to achieve simultaneous removal of tetracycline and peroxymonosulfate reaction byproducts. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135036. [PMID: 38936188 DOI: 10.1016/j.jhazmat.2024.135036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Advanced oxidation technologies based on peroxymonosulfate (PMS) have been extensively applied for the degradation of antibiotics. However, the degradation process inevitably introduces SO42- and other sulfur-containing anions, these pollutants pose a huge threat to the water and soil environment. Addressing these concerns, this study introduced PMS oxidation into a multi-chamber membrane capacitive deionization (MC-MCDI) device to achieve simultaneous tetracycline (TC) degradation and removal of PMS reaction byproduct ions. The experimental results demonstrated that when the TC solution (40 mg L-1) was pre-adsorbed for 10 min, the voltage was 1.2 V and the concentration of PMS solution added was 4 mg mL-1, the removal efficiency of TC and ion can reach 77.4 % and 46.5 % respectively. Furthermore, the activation process of PMS in MC-MCDI/PMS system and the reactive oxygen (ROS) that mainly produce degradation were deeply investigated. Finally, liquid chromatography-mass spectrometry (LC-MS) was employed to identify intermediates of TC degradation, propose potential degradation pathways, and analyze the toxicities of the intermediates. In addition, in five cycles, the MC-MCDI/PMS system demonstrated excellent stability. This study provides an effective strategy for treating TC wastewater and a novel approach for simultaneous TC degradation and desalination.
Collapse
Affiliation(s)
- Minghao Yu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Chenxu Yang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Meng Chen
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Yunke Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Kexin Kang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Cheng Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Jianrui Niu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Situ Mu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Jing Zhang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Chun Liu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Junjun Ma
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China.
| |
Collapse
|
7
|
Cai S, Wen Y, Zhang Q, Zeng Q, Yang Q, Gao B, Tang G, Zeng Q. Four-in-one multifunctional self-driven photoelectrocatalytic system for water purification: Organics degradation, U(VI) reduction, electricity generation and disinfection against bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172353. [PMID: 38614351 DOI: 10.1016/j.scitotenv.2024.172353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
This study addresses the energy-intensive nature of conventional wastewater treatment processes and proposes a solution through the development of a green, low-energy, and multifunctional wastewater treatment technology. The research focuses on a multifunctional self-driven photoelectrocatalytic (PEC) system, exploring its four-in-one applications in eliminating organic pollutants, reducing U(VI), generating electrical energy, and disinfecting pathogenic microorganisms. A TiO2-decorated carbon felt (CF@TiO2) cathode is synthesized to enhance interfacial charge transfer, with TiO2 coating improving surface binding sites (edge TiO and adsorbed -OH) for UO22+ adsorption and reduction. The self-driven PEC system, illuminated solely with simulated sunlight, exhibits remarkable efficiency in removing nearly 100 % of uranium within 0.5 h and simultaneously degrading 99.9 % of sulfamethoxazole (SMX) within 1.5 h, all while generating a maximum power output density (Pmax) of approximately 1065 μW·cm-2. The system demonstrates significant anti-interference properties across a wide pH range and coexisting ions. Moreover, 49.4 % of the fixed uranium on the cathode is reduced into U(IV) species, limiting its migration. The self-driven PEC system also excels in detoxifying various toxic organic compounds, including tetracycline, chlortetracycline, and oxytetracycline, and exhibits exceptional sterilization ability by disinfecting nearly 100 % of Escherichia coli within 0.5 h. This work presents an energy-saving, sustainable, and easily recyclable wastewater purification system with four-in-one capabilities, relying solely on sunlight for operation.
Collapse
Affiliation(s)
- Sixuan Cai
- School of Public Health, University of South China, Hengyang, Hunan 421001, China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qingyan Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qingming Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qingqing Yang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Beibei Gao
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Guolong Tang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qingyi Zeng
- School of Public Health, University of South China, Hengyang, Hunan 421001, China; School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
8
|
Hu P, Sun D, Ma H, Zhang X, Wang G, Hao J. Cerium oxide /Co-Co Prussian blue analogue composite catalyst for enhanced peroxymonosulfate activation for effective removal of tetracycline hydrochloride from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38399-38415. [PMID: 38805135 DOI: 10.1007/s11356-024-33758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
In this paper, a novel CeO2/Co3[Co(CN)6]2 (CeO2/PBACo-Co) composite was prepared with co-precipitation and utilized to activate peroxymonosulfate (PMS) to eliminate tetracycline hydrochloride (TCH). Catalyst screening showed that the composite with a CeO2:PBACo-Co mass ratio of 1:5 (namely, 0.2-CeO2/PBACo-Co) had the best performance. The degradation efficiency of TCH in 0.2-CeO2/PBACo-Co/Oxone system was investigated. The experimental results illustrated that 98% of 50 mg/L TCH and 48.5% of TOC were degraded by 50 mg/L 0.2-CeO2/PBACo-Co and 400 mg/L Oxone within 120 min at 25 °C and initial pH 5.3. Recycling studies showed that the elimination rate of TCH can still achieve 85.8% after five cycles, suggesting that 0.2-CeO2/PBACo-Co composite processes good reusability. Trapping experiments and EPR tests revealed that the reaction system produced multiple active species (1O2, O2•-, SO4•-, and •OH). We proposed the catalytic mechanism of 0.2-CeO2/PBACo-Co for PMS activation, which mainly involves the promoted Co3+/Co2+ cycle by Ce3+ donated electrons. These results indicate that CeO2/PBACo-Co composite is an effective catalyst for wastewater remediation.
Collapse
Affiliation(s)
- Pei Hu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, PR China
| | - Dedong Sun
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, PR China.
| | - Hongchao Ma
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, PR China
| | - Xinxin Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, PR China
| | - Guowen Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, PR China
| | - Jun Hao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, PR China
| |
Collapse
|
9
|
Li M, Cen P, Huang L, Yan J, Zhou S, Yeung KL, Mo CH, Zhang H. Iron complex regulated synergistic effect between the current and peroxymonosulfate enhanced ultrafast oxidation of perfluorooctanoic acid via free radical dominant electrochemical reaction. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134155. [PMID: 38552391 DOI: 10.1016/j.jhazmat.2024.134155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Iron complex regulated electrochemical reaction was triggered for revealing the reaction mechanism, degradation pathway, and applied potential of perfluorooctanoic acid (PFOA). The increased PMS concentrations, electrode spacing, and current density significantly enhanced PFOA elimination, with current density exhibiting a relatively strong interdependency to PFOA complete mineralization. The synergy between PMS and electrochemical reactions greatly accelerated PFOA decomposition by promoting the generation of key reaction sites, such as those for PMS activation and electrochemical processes, under various conditions. Furthermore, density functional theory calculations confirmed that the reciprocal transformation of Fe2+ and Fe3+ complexes was feasible under the electrochemical effect, further promoting the generation of active sites. The developed electrochemical oxidation with PMS reaction (EO/PMS) system can rapidly decompose and mineralize PFOA while maintaining strong tolerance to changing water matrices and organic and inorganic ions. Overall, it holds promise for use in treating and purifying wastewater containing PFOA.
Collapse
Affiliation(s)
- Meng Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China.
| | - Peitong Cen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Shaoqi Zhou
- College of Resources and Environmental Engineering, Guizhou University, 2708 Huaxi Road, Guiyang 550025, PR China
| | - King Lun Yeung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
10
|
Wang Y, Wang S, Liu Y, Wang J. Peroxymonosulfate activation by nanocomposites towards the removal of sulfamethoxazole: Performance and mechanism. CHEMOSPHERE 2024; 353:141586. [PMID: 38452980 DOI: 10.1016/j.chemosphere.2024.141586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Heterogeneous activation of peroxomonosulfate (PMS) has been extensively studied for the degradation of antibiotics. The cobalt ferrite spinel exhibits good activity in the PMS activation, but suffers from the disadvantage of low PMS utilization efficiency. Herein, the nanocomposites including FeS, CoS2, CoFe2O4 and Fe2O3 were synthesized by hydrothermal method and used for the first time to activate PMS for the removal of sulfamethoxazole (SMX). The nanocomposites showed superior catalytic activity in which the SMX could be completely removed at 40 min, 0.1 g L-1 nanocomposites and 0.4 mM PMS with the first order kinetic constant of 0.2739 min-1. The PMS utilization efficiency was increased by 29.4% compared to CoFe2O4. Both radicals and non-radicals contributed to the SMX degradation in which high-valent metal oxo dominated. The mechanism analysis indicated that sulfur modification, on one hand, enhanced the adsorption of nanocomposites for PMS, and promoted the redox cycles of Fe2+/Fe3+ and Co2+/Co3+ on the other hand. This study provides new way to enhance the catalytic activity and PMS utilization efficiency of spinel cobalt ferrite.
Collapse
Affiliation(s)
- Yuexinxi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology (INET) Tsinghua University, Beijing 100084, PR China
| | - Shizong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology (INET) Tsinghua University, Beijing 100084, PR China.
| | - Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology (INET) Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory for Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
11
|
Qiu F, Wang L, Li H, Pan Y, Song H, Chen J, Fan Y, Zhang S. Electrochemically enhanced activation of Co 3O 4/TiO 2 nanotube array anode for persulfate toward high catalytic activity, low energy consumption, and long lifespan performance. J Colloid Interface Sci 2024; 655:594-610. [PMID: 37956547 DOI: 10.1016/j.jcis.2023.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Advanced oxidation processes (AOPs) can directly degrade and mineralize organic pollutants (OPs) in water by generating reactive oxygen species with strong oxidizing ability. The development of advanced electrode materials with high catalytic performance, low energy consumption, no secondary pollution, and long lifespan has become a challenge that must be addressed in this field. A heterojunction catalyst loaded with Co3O4 on TDNAs (Co3O4/RTDNAs) was designed and constructed by a simple and efficient pyrolysis (Co3O4/TDNAs) and electrochemical reduction. Co3O4 can be uniformly distributed on the inner wall and surface of the TiO2 nanotubes, enhancing the specific surface area while forming a tight conductive interface with TiO2. This facilitates rapid transmission of electrons, thereby assisting Co3O4 in quickly activating PS to form reactive oxygen species. The Ti3+ and Ov generated in Co3O4/RTDNAs can significantly improve the electrocatalytic degradation of OPs. Also, the interface formed by Co3O4 and RTDNAs will effectively suppress Co2+ leakage, thereby reducing the risk of secondary pollution. When the reaction conditions were 1 mM PMS (PDS) and a current density of 5 mA/cm2 in the EA-PMS (PDS)/Co3O4/RTDNA system, 30 mg/L TC can achieve 83.24 % (81.89 %) removal in 120 min, with very low cobalt ion leaching, while the energy consumption was reduced significantly. Therefore, EA-PS/Co3O4/RTDNA system has strong stability and a high potential for treating the OPs in AOPs.
Collapse
Affiliation(s)
- Fan Qiu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Luyao Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Hongxiang Li
- School of Environment, Nanjing Normal University, Nanjing, 210097, PR China
| | - Yanan Pan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Haiou Song
- School of Environment, Nanjing Normal University, Nanjing, 210097, PR China.
| | - Junjie Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yang Fan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Shupeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
12
|
Jiang Z, Wei J, Niu X, Cui X, Li Y, Cui N, Li J, Huo J, Wang L, Ji W, Li J. Highly dispersed Fe 7S 8 anchored on sp 2/sp 3 hybridized carbon boosting peroxymonosulfate activation for enhanced EOCs elimination though singlet oxygen-dominated nonradical pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132607. [PMID: 37757558 DOI: 10.1016/j.jhazmat.2023.132607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
The synergistic effect of carbon materials with high sp2/sp3 hybridized carbon ratio and metal materials can enhance the efficiency of peroxymonosulfate (PMS) based advanced oxidation processes. In this study, a composite of highly dispersed Fe7S8 anchored on sp2/sp3 hybridized carbon (Fe7S8@HC) was developed by a facile synthesis for PMS activation. Within 10 min, the removal efficiency of the target pollutant doxycycline (DOX) could reach ca. 96 % in optimal Fe7S8@HC/PMS system through a 1O2-dominated non-radical pathway. Correlation mechanism analysis revealed that thiophene S, sp2/sp3 ratio and Fe(II) were critical factors for elongating of the O-O bond of PMS. Moreover, the Fe7S8@HC/PMS system exhibited favorable adaptability to interference such as common inorganic anions, humic acid and pH changes and could effectively remove various organic pollutants with low ionization potential. Moreover, the system maintained high DOX removal efficiency by running 30 cycles in a continuous flow reactor. Finally, susceptible sites of DOX and four degradation pathways were proposed by density functional theory calculation and LC-MS detection. This work not only offered new insights into the design of high-performance catalysts combining metal and biomass-based carbon materials, but also provided technical support for the remediation of water bodies containing emerging organic contaminants.
Collapse
Affiliation(s)
- Zijian Jiang
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jia Wei
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Xiruo Niu
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Xueru Cui
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yanan Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Nan Cui
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jiamei Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jiangkai Huo
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Linhao Wang
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Wei Ji
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jun Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
13
|
Liu Y, Xu J, Fu X, Wang P, Li D, Zhang Y, Chen S, Zhang C, Liu P. Development of MoS 2-stainless steel catalyst by 3D printing for efficient destruction of organics via peroxymonosulfate activation. J Environ Sci (China) 2024; 135:108-117. [PMID: 37778788 DOI: 10.1016/j.jes.2023.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 10/03/2023]
Abstract
Herein, a novel MoS2-stainless steel composite material was first synthetized via a 3D printing method (3DP MoS2-SS) for peroxymonosulfate (PMS) activation and organics degradation. Compared with MoS2-SS powder/PMS system (0.37 g/(m2/min)), 4.3-fold higher kFLO/SBET value was obtained in 3DP MoS2-SS/PMS system (1.60 g/(m2/min), resulting from the superior utilization of active sites. We observed that 3DP MoS2-SS significantly outperformed the 3DP SS due to the enhanced electron transfer rate and increased active sites. Moreover, Mo4+ facilitated the Fe2+/Fe3+ cycle, resulting in the rapid degradation of florfenicol (FLO). Quenching experiments and electron paramagnetic resonance spectra indicated that •OH, SO4•-, O2•- and 1O2 were involved in the degradation of FLO. The effect of influencing factors on the degradation of FLO were evaluated, and the optimized degradation efficiency of 98.69% was achieved at 1 mM PMS and pH of 3.0. Six degradation products were detected by UPLC/MS analyses and several possible degradation pathways were proposed to be the cleavage of C-N bonds, dechlorination, hydrolysis, defluorination and hydroxylation. In addition, 3DP MoS2-SS/PMS system also demonstrated superior degradation performance for 2-chlorophenol, acetaminophen, ibuprofen and carbamazepine. This study provided deep insights into the MoS2-SS catalyst prepared by 3DP technology for PMS activation and FLO-polluted water treatment.
Collapse
Affiliation(s)
- Yufeng Liu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jianhui Xu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Xin Fu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Pengxu Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Yunfei Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shenggui Chen
- School of Art and Design, Guangzhou Panyu Polytechnic, Guangzhou 511483, China; Dongguan Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, China; School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Chunhui Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Peng Liu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
14
|
Wu S, Liu J, Li J, You W, Zhong K, Feng L, Han S, Zhang X, Pan T, Liu W, Zheng H. PMS coupled Mn(II) mediated electrochemistry processes (E-Mn(II)-PMS) on the efficient RB19 wastewater treatment: Focus on the regulation and reinforcement of Mn(III)/Mn(II). ENVIRONMENTAL RESEARCH 2024; 240:117220. [PMID: 37863166 DOI: 10.1016/j.envres.2023.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
Dye wastewater, represented by reactive blue 19 (RB19), severely threatens the aquatic ecological environment and human health, such that an efficient RB19 wastewater treatment technology should be urgently developed. Based on manganese ion-mediated electrochemistry, PMS was introduced to develop a novel electrocatalytic system (E-Mn(II)-PMS) that can efficiently remove and degrade RB19. The synergistic effect between E, Mn(II), and PMS was verified in this study through comparative experiments of a wide variety of systems. The removal efficiency of RB19 reached 95.1% in 50 min under reasonable power consumption (3.29 kWh/m3). Moreover, the effects exerted by different operating conditions (e.g., initial pH, current density, RB19 concentration, Mn(II) concentration, as well as PMS concentration) and water matrix on the degradation efficiency of RB19 were explored through single factor experiments. The active oxidation species (ROS) and their contribution rate for the degrading and removing RB19 were studied through quenching experiments, EPR experiments, TMT-15 metal capture experiments, as well as PP complexation experiments. The role played by non-free radicals took on critical significance in the oxidation removal of RB19, which comprised direct electro oxidation, Mn(III) oxidation, and 1O2 oxidation. The enhancement effect of free radicals (SO4·- and HO∙) was not sufficiently significant, with a low degree of contribution. The oxidation effect of the anode facilitated the conversion of Mn (II) to Mn (III), which was employed in PMS for expediting the production of 1O2. The reduction effect of the cathode blocked the production of Mn (IV) as a side reaction, such that the continuous circulation of manganese ions between divalent and trivalent was promoted. Meanwhile, the cathode reacted with PMS to generate a small part of SO4·- and HO∙. In addition, the reaction active site of RB19 was predicted, and a possible degradation pathway was proposed in accordance with the mass spectrometry results and the DFT calculation. As revealed by the results of the QSAR analysis and the plant culture experiments, the biological toxicity of RB19 was markedly reduced after the sample was administrated with E-Mn(II)-PMS. E-Mn(II)-PMS-mediated electrochemical technology displays several advantages (e.g., high efficiency, low consumption, recyclability, wide pH window, and strong applicability) while showing promising market development and utilization for treating dye wastewater.
Collapse
Affiliation(s)
- Shenyu Wu
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Jiajun Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Junda Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Weihong You
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Kunyu Zhong
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China.
| | - Shuai Han
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Xionghao Zhang
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Tingyu Pan
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Weiseng Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, No100, Waihuan Xi Road, Guangzhou, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
15
|
Wang X, Li Y, Qin J, Pan P, Shao T, Long X, Jiang D. Degradation of Ciprofloxacin in Water by Magnetic-Graphene-Oxide-Activated Peroxymonosulfate. TOXICS 2023; 11:1016. [PMID: 38133416 PMCID: PMC10747872 DOI: 10.3390/toxics11121016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Antibiotics are extensively applied in the pharmaceutical industry, while posing a tremendous hazard to the ecosystem and human health. In this study, the degradation performance of ciprofloxacin (CIP), one of the typical contaminants of antibiotics, in an oxidation system of peroxymonosulfate (PMS) activated by magnetic graphene oxide (MGO) was investigated. The effects of the MGO dosage, PMS concentration and pH on the degradation of CIP were evaluated, and under the optimal treatment conditions, the CIP degradation rate was up to 96.5% with a TOC removal rate of 63.4%. A kinetic model of pseudo-secondary adsorption indicated that it involves an adsorption process with progressively intensified chemical reactions. Furthermore, the MGO exhibited excellent recyclability and stability, maintaining strong catalytic activity after three regenerative cycles, with a CIP removal rate of 87.0%. EPR and LC-MS experiments suggested that •OH and SO4-• generated in the MGO/PMS system served as the main reactants contributing to the decomposition of the CIP, whereby the CIP molecule was effectively destroyed to produce other organic intermediates. Results of this study indicate that organic pollutants in the aqueous environment can be effectively removed in the MGO/PMS system, in which MGO has excellent catalytic activity and stabilization for being recycled to avoid secondary pollution, with definite research value and application prospects in the field of water treatment.
Collapse
Affiliation(s)
- Xiaoping Wang
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Yulan Li
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Jiayuan Qin
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Ping Pan
- Chongqing Ecological Environment Monitoring Center, No. 252, Qishan Road, Ranjiaba, Yubei District, Chongqing 401147, China;
| | - Tianqing Shao
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Xue Long
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Debin Jiang
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| |
Collapse
|
16
|
Liu HL, Zhang Y, Lv XX, Cui MS, Cui KP, Dai ZL, Wang B, Weerasooriya R, Chen X. Efficient Degradation of Sulfamethoxazole by Diatomite-Supported Hydroxyl-Modified UIO-66 Photocatalyst after Calcination. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3116. [PMID: 38133013 PMCID: PMC10745632 DOI: 10.3390/nano13243116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Sulfamethoxazole (SMX) is a widely used antibiotic to treat bacterial infections prevalent among humans and animals. SMX undergoes several transformation pathways in living organisms and external environments. Therefore, the development of efficient remediation methods for treating SMX and its metabolites is needed. We fabricated a photo-Fenton catalyst using an UIO-66 (Zr) metal-organic framework (MOF) dispersed in diatomite by a single-step solvothermal method for hydroxylation (HO-UIO-66). The HO-UIO-66-0/DE-assisted Fenton-like process degraded SMX with 94.7% efficiency; however, HO-UIO-66 (Zr) is not stable. We improved the stability of the catalyst by introducing a calcination step. The calcination temperature is critical to improving the catalytic efficiency of the composite (for example, designated as HO-UIO-66/DE-300 to denote hydroxylated UIO-66 dispersed in diatomite calcined at 300 °C). The degradation of SMX by HO-UIO-66/DE-300 was 93.8% in 120 min with 4 mmol/L H2O2 at pH 3 under visible light radiation. The O1s XPS signatures signify the stability of the catalyst after repeated use for SMX degradation. The electron spin resonance spectral data suggest the role of h+, •OH, •O2-, and 1O2 in SMX degradation routes. The HO-UIO-66/DE-300-assisted Fenton-like process shows potential in degrading pharmaceutical products present in water and wastewater.
Collapse
Affiliation(s)
- Hui-Lai Liu
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
| | - Yu Zhang
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
| | - Xin-Xin Lv
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
| | - Min-Shu Cui
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
| | - Kang-Ping Cui
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
| | - Zheng-Liang Dai
- Anqing Changhong Chemical Co., Ltd., Anqing 246002, China; (Z.-L.D.); (B.W.)
| | - Bei Wang
- Anqing Changhong Chemical Co., Ltd., Anqing 246002, China; (Z.-L.D.); (B.W.)
| | - Rohan Weerasooriya
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
- National Centre for Water Quality Research, National Institute of Fundamental Studies, Hantana, Kandy 20000, Sri Lanka
| | - Xing Chen
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
- National Centre for Water Quality Research, National Institute of Fundamental Studies, Hantana, Kandy 20000, Sri Lanka
| |
Collapse
|
17
|
Yu N, Ma H, Wen Z, Zhang W, Chen J, Yuan Y, Zhou L. Bacteria-based biochar as a persulfate activator to degrade organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83289-83301. [PMID: 37338679 DOI: 10.1007/s11356-023-28202-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Carbon-based catalysts for activating persulfate to drive advanced oxidation processes (AOPs) are widely used in wastewater treatment. In this study, Shewanella oneidensis MR-1, a typical ferric reducing electroactive microorganism, was utilized as the raw material of biochar (BC) to prepare a novel green catalyst (MBC). The effect of MBC on activating persulfate (PS) to degrade rhodamine B (RhB) was evaluated. Experimental results showed that MBC could effectively activate PS to degrade RhB to reach 91.70% within 270 min, which was 47.4% higher than that of pure strain MR-1. The increasing dosage of PS and MBC could improve the removal of RhB. Meanwhile, MBC/PS can well perform in a wide pH range, and MBC showed good stability, achieving 72.07% removal of RhB with MBC/PS after 5 cycles. Furthermore, the free radical quenching test and EPR experiments confirmed the presence of both free radical and non-free radical mechanisms in the MBC/PS system, with •OH, SO4•- and 1O2 contributing to the effective degradation of RhB. This study successfully provided a new application for bacteria to be used in the biochar field.
Collapse
Affiliation(s)
- Na Yu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hanyu Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhihong Wen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenbin Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiahao Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lihua Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Wu D, Hua T, Han S, Lan X, Cheng J, Wen W, Hu Y. Two-dimensional manganese-iron bimetallic MOF-74 for electro-Fenton degradation of sulfamethoxazole. CHEMOSPHERE 2023; 327:138514. [PMID: 36972871 DOI: 10.1016/j.chemosphere.2023.138514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
This study reported a novel application of Mn0.67Fe0.33-MOF-74 with two-dimensional (2D) morphology grown on carbon felt as a cathode for efficiently removing antibiotic sulfamethoxazole in the heterogeneous electro-Fenton system. Characterization demonstrated the successful synthesis of bimetallic MOF-74 by a simple one-step method. Electrochemical detection showed that the second metal addition and morphological change improved the electrochemical activity of the electrode and contributed to pollutant degradation. At pH 3 and 30 mA of current, the degradation efficiency of SMX reached 96% with 12.09 mg L-1 H2O2 and 0.21 mM ·OH detected in the system after 90 min. During the reaction, electron transfer between ≡FeII/III and ≡MnII/III promoted divalent metal ions regeneration, which ensured the continuation of the Fenton reaction. Two-dimensional structures exposed more active sites favoring ·OH production. The pathway of sulfamethoxazole degradation and the reaction mechanisms were proposed based on the intermediates identification by LC-MS and radical capture results. High degradation rates were still observed in tap and river water, revealing the potential of Mn0.67Fe0.33-MOF-74@CF for practical applications. This study provides a simple MOF-based cathode synthesis method, which enhances our understanding of constructing efficient electrocatalytic cathodes based on morphological design and multi-metal strategies.
Collapse
Affiliation(s)
- Danhui Wu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Tao Hua
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shuaipeng Han
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiuquan Lan
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianhua Cheng
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; South China Institute of Collaborative Innovation, Dongguan 523808, China.
| | - Weiqiu Wen
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; South China Institute of Collaborative Innovation, Dongguan 523808, China.
| | - Yongyou Hu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
19
|
Wang Z, Liu B, Ji C, Tang L, Huang B, Feng L, Feng Y. Insight into electrochemically boosted trace Co(II)-PMS catalytic process: Sustainable Co(IV)/Co(III)/Co(II) cycling and side reaction blocking. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130905. [PMID: 36738620 DOI: 10.1016/j.jhazmat.2023.130905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
A novel homogeneous electrocatalytic system was constructed by current-assisted trace Co(II) activating PMS (ECP) to remove reactive blue 19 (RB19). More than 93 % of RB19 was rapidly removed with only a trace dose, and the PMS was 98.35 % utilized during the reaction. By exploring the active species and analyzing the PMS consumption, it was found that current strongly accelerated the Co(III)/Co(II) redox cycle by providing electrons to Co(III), and inhibited the side reaction thus improving the PMS utilization. Electric energy per order was very low, only 0.26 kWh·m3. Radicals (SO4•-) and non-radicals (Co(III), Co(IV) and 1O2) participated in ECP system, in which SO4•- was dominant. By excluding the other three precursors (PMS, •OH and O2•-), the side reaction product SO5•- was identified as the source of 1O2 in ECP system. Combining chelating agent EDTA and chemical probe PMSO, Co(IV) was considered formed by single and double charge transfer. Five degradation pathways of RB19 were proposed using mass spectrometry and DFT calculation. The ecotoxicity and mutagenicity of RB19 and its transformation products were predicted using software simulation. These studies provided an interesting insights into the synergistic Co(II)-PMS systems and offered a new strategy for electrochemical processes.
Collapse
Affiliation(s)
- Zizeng Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Bingzhi Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | - Changhao Ji
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Lei Tang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Baorong Huang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Yong Feng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
20
|
Ali I, Barros de Souza A, De Laet S, Van Eyck K, Dewil R. Anodic oxidation of sulfamethoxazole paired to cathodic hydrogen peroxide production. CHEMOSPHERE 2023; 319:137984. [PMID: 36720407 DOI: 10.1016/j.chemosphere.2023.137984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
A double chamber electrochemical system is developed consisting of a boron-doped diamond (BDD) anode and a graphite cathode, which not only degrades sulfamethoxazole (SMX) but also simultaneously generates hydrogen peroxide (H2O2). The degradation of SMX is carried out by (in)direct oxidation at the BDD anode and H2O2 is produced by two electron oxygen (O2) reduction reaction (ORR) at the cathode. The effect of different parameters on the kinetics of both mechanisms was investigated. The performance of the system at the optimized conditions (pH 3, 0.05 M Na2SO4 as electrolyte, and 10 mA as applied current) showed that after 180 min of electrolysis, SMX was almost fully degraded (95% removal and ∼90% COD reduction) as well as about 535 μM H2O2 was accumulated. With the help of LC-MS, five intermediates formed during SMX electrolysis were properly identified and a degradation pathway was proposed. This study advocates methods for improving the effectiveness of energy use in advanced wastewater treatment.
Collapse
Affiliation(s)
- Izba Ali
- InOpSys - Mobiele Waterzuivering voor Chemie en Farma, Zandvoortstraat 12a, 2800, Mechelen, Belgium; KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Sint-Katelijne-Waver, Belgium
| | | | - Steven De Laet
- InOpSys - Mobiele Waterzuivering voor Chemie en Farma, Zandvoortstraat 12a, 2800, Mechelen, Belgium
| | - Kwinten Van Eyck
- InOpSys - Mobiele Waterzuivering voor Chemie en Farma, Zandvoortstraat 12a, 2800, Mechelen, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford, OX1 3PJ, United Kingdom.
| |
Collapse
|
21
|
Gasim MF, Veksha A, Lisak G, Low SC, Hamidon TS, Hussin MH, Oh WD. Importance of carbon structure for nitrogen and sulfur co-doping to promote superior ciprofloxacin removal via peroxymonosulfate activation. J Colloid Interface Sci 2023; 634:586-600. [PMID: 36549207 DOI: 10.1016/j.jcis.2022.12.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Herein, five N, S-co-doped carbocatalysts were prepared from different carbonaceous precursors, namely sawdust (SD), biochar (BC), carbon-nanotubes (CNTs), graphite (GP), and graphene oxide (GO) and compared. Generally, as the graphitization degree increased, the extent of N and S doping decreased, graphitic N configuration is preferred, and S configuration is unaltered. As peroxymonosulfate (PMS) activator for ciprofloxacin (CIP) removal, the catalytic performance was in order: NS-CNTs (0.037 min-1) > NS-BC (0.032 min-1) > NS-rGO (0.024 min-1) > NS-SD (0.010 min-1) > NS-GP (0.006 min-1), with the carbonaceous properties, rather than the heteroatoms content and textural properties, being the major factor affecting the catalytic performance. NS-CNTs was found to have the supreme catalytic activity due to its remarkable conductivity (3.38 S m-1) and defective sites (ID/IG = 1.28) with high anti-interference effect against organic and inorganic matter and varying water matrixes. The PMS activation pathway was dominated by singlet oxygen (1O2) generation and electron transfer regime between CIP and PMS activated complexes. The CIP degradation intermediates were identified, and a degradation pathway is proposed. Overall, this study provides a better understanding of the importance of selecting a suitable carbonaceous platform for heteroatoms doping to produce superior PMS activator for antibiotics decontamination.
Collapse
Affiliation(s)
| | - Andrei Veksha
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Siew-Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, Nibong Tebal, 14300 Pulau Pinang, Malaysia
| | | | - M Hazwan Hussin
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
22
|
Zhu D, Zhou F, Ma Y, Xiong Y, Li X, Li W, Wang D. An economic, self-supporting, robust and durable LiFe 5O 8 anode for sulfamethoxazole degradation. CHEMOSPHERE 2023; 316:137810. [PMID: 36634712 DOI: 10.1016/j.chemosphere.2023.137810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Electrochemically activating peroxydisulfate (PDS) to degrade organic pollutants is one of the most attractive advanced oxidation processes (AOPs) to address environmental issues, but the high cost, poor stability, and low degradation efficiency of the anode materials hinder their application. Herein, an economic, self-supporting, robust, and durable LiFe5O8 on Fe substrate (Fe@LFO) anode is reported to degrade sulfamethoxazole (SMX). When PDS is electrochemically activated by the Fe@LFO anode, the degradation rate of SMX is significantly improved. It is found that hydroxyl radicals (•OH), superoxide radical (O2•-), singlet oxygen (1O2), Fe(Ⅳ), activated PDS (PDS*), and direct electron transfer (DET) reactions synergistically contribute to the degradation of SMX, which can realize the degradation of SMX in four possible routes: cleavage of the isoxazole ring, hydroxylation of the benzene ring, oxidation of the aniline group, and cleavage of the S-N bond, as evidenced by a series of tests of radicals quenching, electron paramagnetic resonance (EPR), linear sweep voltammetry (LSV) and liquid chromatograph mass spectrometer (LC-MS). Furthermore, Fe@LFO has good structural stability, excellent cyclability and low degradation cost, demonstrating its great potential for practical applications. This work contributes to a stable and effective anode material in the field of AOPs.
Collapse
Affiliation(s)
- Dongdong Zhu
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Fengyin Zhou
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Yongsong Ma
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Yu Xiong
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Xiangyun Li
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Wei Li
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China.
| | - DiHua Wang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
23
|
Chen Y, Jiao X, Du M, Li R, Wei Y, Zhang Y. Electrochemically promoted oxidation of oxytetracycline on MnO2@(PSS/PDDA)Au anode with peroxymonosulfate: Mechanism and toxicity study. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
24
|
Chen X, Qian S, Ma Y, Zhu J, Shen S, Tang J, Ding Y, Zhi S, Zhang K, Yang L, Zhang Z. Efficient degradation of sulfamethoxazole in various waters with peroxymonosulfate activated by magnetic-modified sludge biochar: Surface-bound radical mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121010. [PMID: 36608732 DOI: 10.1016/j.envpol.2023.121010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
First time, this study synthesized a magnetic-modified sludge biochar (MSBC) as an activator of peroxymonosulfate (PMS) to eliminate sulfamethoxazole (SMX). The removal efficiency of SMX reached 96.1% at t = 60 min by PMS/MSBC system. The larger surface area and magnetic Fe3O4 of MSBC surface enhanced its activation performance for PMS. The PMS decomposition, premixing and reactive oxygen species (ROS) identification experiments combined with Raman spectra analysis demonstrated that the degradation process was dominated by surface-bound radicals. The transformed products (TPs) of SMX and the main degradation pathways were identified and proposed. The ecotoxicity of all TPs was lower than that of SMX. The magnetic performance was beneficial for its reuse and the removal efficiency of SMX was 83.3% even after five reuse cycles. Solution pH, HCO3- and CO32- were the critical environmental factors affecting the degradation process. MSBC exhibited environmental safety for its low heavy metal leaching. PMS/MSBC system also performed excellent removal performance for SMX in real waters including drinking water (88.1%), lake water (84.3%), Yangtze River water (83.0%) and sewage effluent (70.2%). This study developed an efficient PMS activator for SMX degradation in various waters and provided a workable way to reuse and recycle municipal sludge.
Collapse
Affiliation(s)
- Xi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Shufang Qian
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Shitai Shen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiayi Tang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
25
|
Zhong W, Peng Q, Liu K, Zhang Y, Xing J. Al3+ doped CuFe2O4 efficiently activates peroxymonosulfate for long-term and stable degradation of tetracycline: synergistic and regulatory role of Al3+. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Yuan X, Geng G, Liu X, Wang Z, Wang Z, Shah NS, Song J, Guo Y, Kong L, Liu S, Zhang W. Cobalt and nitrogen co-doped monolithic carbon foam for ultrafast degradation of emerging organic pollutants via peroxymonosulfate activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114455. [PMID: 38321674 DOI: 10.1016/j.ecoenv.2022.114455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/22/2022] [Accepted: 12/18/2022] [Indexed: 02/08/2024]
Abstract
Cobalt-based catalysts are expected as one of the most promising peroxymonosulfate (PMS) activators for the removal of organic pollutants from industrial wastewater. However, the easy agglomeration, difficult separation, and secondary pollution of cobalt ions limit their practical application. In this study, a novel, highly efficient, reusable cobalt and nitrogen co-doped monolithic carbon foam (Co-N-CMF) was utilized to activate PMS for ultrafast pollutant degradation. Co-N-CMF (0.2 g/L) showed ultrafast catalytic kinetics and higher total organic carbon (TOC) removal efficiency. Bisphenol A, ciprofloxacin, 2,4-dichlorophenoxyacetic acid, and 2,4-dichlorophenol could be completely degraded after 2, 4, 5, and 5 min, and the TOC removal efficiencies were 77.4 %, 68.9 %, 72.8 %, and 79.8 %, respectively, corresponding to the above pollution. The sulfate radical (SO4•-) was the main reactive oxygen species in Co-N-CMF/PMS based on electron paramagnetic resonance. The ecological structure-activity relationship program analysis via the quantitative structure activity relationship analysis and phytotoxicity assessment revealed that the Co-N-CMF/PMS system demonstrates good ecological safety and ecological compatibility. The Co-N-CMF catalyst has good catalytic activity and facile recycling, which provides a fine method with excellent PMS activation capacity for 2,4-dichlorophenol elimination from simulated industrial wastewater. This study provides new insights into the development of monolithic catalysts for ultrafast wastewater treatment via PMS activation.
Collapse
Affiliation(s)
- Xiaoying Yuan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Guomin Geng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xu Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zucheng Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhaoxin Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Jianjun Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Lingshuai Kong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Shuhua Liu
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014, PR China
| | - Wenyu Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
27
|
Wang T, Ta M, Guo J, Liang LE, Bai C, Zhang J, Ding H. Insight into the synergy between rice shell biochar particle electrodes and peroxymonosulfate in a three-dimensional electrochemical reactor for norfloxacin degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Deng Y, Liu S, Liu Y, Tang Y, Dai M, Chen Q, Wang H. Efficient degradation of norfloxacin by carbonized polydopamine-decorated g-C 3N 4 activated peroxymonosulfate: Performance and mechanism. CHEMOSPHERE 2022; 306:135439. [PMID: 35752311 DOI: 10.1016/j.chemosphere.2022.135439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The use of metal-free graphite carbon nitride (CN) to activate peroxymonosulfate (PMS) has attracted extensive attention for organic pollutants degradation. In this work, we prepared carbonized polydopamine-decorated g-C3N4 (CP-700) for activation of PMS to degrade norfloxacin (NOR). The CP-700 composite was obtained by using CN as a base material on which dopamine underwent an autopolymerization reaction to form a CN-PDA complex, followed by pyrolysis. The apparent porous structure and graphitization provided a large number of active sites for catalytic degradation, enabling CP-700 to exhibit excellent catalytic performance during PMS activation. The degradation of NOR was not hindered by sulfate radical (SO4•-) and hydroxyl radical (•OH). Singlet oxygen (1O2) and mediated electron transfer were ultimately identified as the primary mechanisms. According to the linear positive correlation (R2 = 0.9922) between the semi-quantitative carbonyl group (CO) and the reaction rate constant, it was determined that the carbonyl group served as the important active site. The excellent electron transfer ability of CP-700 was evidenced by electrochemical techniques and the electron transfer pathway in the system was that PMS was adsorbed on the CP-700 surface to form metastable complex, and then the electron transfer between NOR and metastable complex was achieved. Based on the non-radical pathway, CP-700/PMS system showed a high tolerance to solution pH (3.0-11.0) and inorganic anions. The cyclic degradation experiments indicated that the system maintained a high degradation capability without the addition of additional CP-700, elucidating its potential application in the degradation of organic pollutants in the water.
Collapse
Affiliation(s)
- Yuqi Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Shaobo Liu
- College of Architecture and Art, Central South University, Changsha, 410083, PR China.
| | - Yunguo Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mingyang Dai
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Qiang Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Huan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| |
Collapse
|
29
|
Mo F, Zhou Q, Hou Z, Wang S, Wang Q, Kang W. Efficient electro-catalyzed PMS activation on a Fe-ZIF-8 based BTNAs/Ti anode: An in-depth investigation on anodic catalytic behavior. ENVIRONMENT INTERNATIONAL 2022; 169:107548. [PMID: 36179645 DOI: 10.1016/j.envint.2022.107548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Phenanthrene (PHE), mainly released from coal tar and petroleum distillation, is an important kind of prevalent polycyclic aromatic hydrocarbons (PAHs) contamination in China (up to 2.38 ± 0.02 mg/kg in soil and 8668 ng/L in surface water) and other countries in the world. Metal-organic frameworks (MOFs) show promising application prospects in the decontamination field, however, suffering from the intrinsic fragility and fine powder forms. Therefore, macroscopic MOFs architecture-sandwich-like Fe-ZIF-8/blue TiO2 nanotube arrays (BTNAs)/Ti substrate (FBTT) anode with strong interfacial bonding (Fe-O-Ti and Fe-2-MIM-Ti coordination) was constructed using innovative in situ growth, condensation-crystallization-deposition, and pyrolysis methods, aiming at exploring the feasibility of MOFs-based anode/peroxymonosulfate (PMS) mediated PHE elimination, revealing the in-depth mechanisms, simultaneously overcoming the intrinsic drawbacks of MOFs. The FBTT-4 (doping content of 30 %) efficiently degraded PHE by 90.01 % and 74.5 % within 10 min at 350 μg/L and 3 mg/L, respectively, mediated by the ·OH compared to the SO4·-, 1O2, and O2·-. Post-optimized range of anodic potential enabled (i) anodic oxidation, (ii) activation of water and PMS molecules to produce active species, (iii) capture of electrons in reactants to reduce Fe3+/Ti4+ to Fe2+/Ti3+, maintaining the proportion of Fe/Ti with low valence and thus stable PMS activation capacity, and (iv) regulation of the Fe/Ti d-band center to modulate the anode adsorption capacity. The further increment in anodic potential could promote "dark photocatalysis" with a Z-scheme-like mechanism. Thus, it is proposed that the development of macroscopic MOFs-based anode, especially those with small band gaps, represents vast potentials in electrocatalytic contamination elimination. Simultaneously, the MOFs-based anode is expected to fully exploit their catalytic capacities and solve their intrinsic defects as well.
Collapse
Affiliation(s)
- Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zelin Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuting Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
30
|
Zhao Y, Sun M, Zhao Y, Wang L, Lu D, Ma J. Electrified ceramic membrane actuates non-radical mediated peroxymonosulfate activation for highly efficient water decontamination. WATER RESEARCH 2022; 225:119140. [PMID: 36167000 DOI: 10.1016/j.watres.2022.119140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Electrified ceramic membranes (ECMs) achieve high water decontamination efficiency mainly through implementing in situ radical-mediated oxidation in membrane filtration, whereas ECMs leveraging non-radical pathways are rarely explored. Herein, we demonstrated a Janus ECM realizing ultra-efficient micropollutant (MP) removal via electro-activating peroxymonosulfate (PMS) in a fast, flow-through single-pass electro-filtration. The Janus ECM features two separate palladium (Pd) functionalized electrocatalytic reaction zones engineered on its two sides. We confirmed that the PMS/electro-filtration system induced non-radical pathways for MP degradation, including singlet oxygenation and mediating direct electron transfer (DET) from MP to PMS. Under the design of the ECM featuring dual electrocatalytic reaction zones in the ceramic membrane intrapores, the Janus ECM showed over one-fold increase in micropollutant removal rate as 94.5% and lower electric energy consumption as 1.78 Wh g-1 MP in the PMS electro-activation process, as compared with the conventional ECM assembly implementing only half-cell reaction. This finding manifested the Janus ECM configuration advantage for maximizing the PMS electro-activation efficiency via singlet oxygenation intensification and direct usage of cathode for DET mediation. The Janus ECM boosted the PMS electro-activation and water decontamination efficiency by enhancing the convective mass transfer and the spatial confinement effect. Our work demonstrated a high-efficiency PMS electro-activation method based on electro-filtration and maximized the non-radical mediated PMS oxidation for MP removal, expanding the ECM filtration strategies for water decontamination.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yanxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
31
|
Zhang H, Xiao S, Du Y, Song S, Hu K, Huang Y, Wang H, Wu Q. Catalysis of MnO2-cellulose acetate composite films in DBD plasma system and sulfamethoxazole degradation by the synergistic effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Xie F, Zhu W, Lin P, Zhang J, Hao Z, Zhang J, Huang T. A bimetallic (Co/Fe) modified nickel foam (NF) anode as the peroxymonosulfate (PMS) activator: Characteristics and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Li N, Wang Y, Cheng X, Dai H, Yan B, Chen G, Hou L, Wang S. Influences and mechanisms of phosphate ions onto persulfate activation and organic degradation in water treatment: A review. WATER RESEARCH 2022; 222:118896. [PMID: 35914502 DOI: 10.1016/j.watres.2022.118896] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/18/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Currently, various strategies have been applied to activate persulfate (PS) for contaminant removal from water. However, the background phosphate ions in water affect PS activation and organic degradation, and the mechanism of their influence on the processes is still controversial. In this review, the possible effects of different phosphate forms (HPO42-, H2PO4-, and PO43-) on PS activation and contaminant degradation were systematically evaluated and summarized. Specifically, HPO42- promotes contaminant degradation in direct peroxymonosulfate (PMS) oxidation and thermal/PMS systems, while it exhibits inhibition to thermal/peroxodisulfate (PDS) and ultraviolet (UV)/PDS systems. Meanwhile, H2PO4- inhibits most oxidation processes based on PMS and PDS, except for non-metal dominated and metal assisted PMS systems. Coexisting HPO42- and H2PO4- could present beneficial effects in thermal, Co2+ and non-metal activated and metal assisted PMS systems. Nevertheless, their inhibitory effects were found in direct PMS oxidation, UV/PMS (or PDS) and metal dominated PMS systems. Generally, phosphate ions inhibit PMS/PDS activation through competing adsorption with PMS or PDS on the solid surface, forming a complex with metal ions, as well as occupying active sites on solid catalysts. In addition, phosphate ions can quench radicals for reduced degradation of contaminants. However, phosphate ions could weaken the bond dissociation energy via combining with PMS and contaminants or form a complex with Co2+, thus displaying a facilitative effect. This review further discusses major challenges and opportunities of PS activation with co-existing phosphates and will provide guidance for better PS utilization in real water treatment practice.
Collapse
Affiliation(s)
- Ning Li
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, PR China
| | - Yanshan Wang
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
| | - Xiaoshuang Cheng
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
| | - Haoxi Dai
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China.
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, PR China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Li'an Hou
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
34
|
Wang C, Wang Y, Yu Y, Cui X, Yan B, Song Y, Li N, Chen G, Wang S. Effect of phosphates on oxidative species generation and sulfamethoxazole degradation in a pig manure derived biochar activated peroxymonosulfate system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Zhang X, Su H, Gao P, Li B, Feng L, Liu Y, Du Z, Zhang L. Effects and mechanisms of aged polystyrene microplastics on the photodegradation of sulfamethoxazole in water under simulated sunlight. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128813. [PMID: 35395526 DOI: 10.1016/j.jhazmat.2022.128813] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/09/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical and microplastics (MPs) have been frequently detected in aquatic environment. In this study, the effects of polystyrene MPs (PS MPs) with different aging degrees on the photolysis of sulfamethoxazole (SMX) in simulated sunlit water were investigated. The results showed that the presence of PS MPs inhibited the photodegradation of SMX, and the photodegradation rate (kobs) of SMX was negatively correlated with the aging degree of PS MPs (R2 = 0.998). The aged PS MPs would cause light-screening effect, thereby reducing the photodegradation of SMX in sunlit water. Further, the free radical quenching experiment showed that the mechanism for inhibiting the photolysis of SMX was the reduction of the triplet excited state SMX (3SMX*). According to sample characterization, aging PS MPs formed more unsaturated chromophores and produced organic intermediates that enhanced photon absorption. Additionally, aged PS MPs also decreased the types and yields of degradation products of SMX via product analysis. This study provides an insight into the environmental behaviors of SMX and the photochemical roles of aged MPs in sunlit surface waters.
Collapse
Affiliation(s)
- Xushen Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Hui Su
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Peng Gao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Benhang Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Ziwen Du
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China.
| |
Collapse
|
36
|
Reconstruction of Electronic Structure of MOF-525 via Metalloporphyrin for Enhanced Photoelectro-Fenton Process. Catalysts 2022. [DOI: 10.3390/catal12060671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photoelectro-Fenton (PEF) process can continuously promote the occurrence of Fenton reaction and the generation of active species, which is an advanced oxidation technology for pollutant degradation. However, the lack of bifunctional catalysts restricts the development of PEF technology. In this study, the electronic rearrangement MOF-525 modified by metalloporphyrin (named MOF-525-Fe/Zr) was prepared, to load on the carbon felt as a novel cathode catalyst, which is used in PEF process. A series of characterization and photoelectric chemical properties tests combined with DFT calculation showed that the modification of MOF-525 could not only have the large specific surface area and multistage pore structure but also co-stimulate the metal-to-ligand charge transfer (MLCT) and ligand-to-cluster charge transfer (LCCT) by photoelectric synergy. These charge transitions provide periodic electron donor-acceptor conduction paths in MOF-525-Fe/Zr, which can improve the active species formation and transfer efficiency. Owing to their favorable pore and electronic structure as well as stability, MOF-525-Fe/Zr shows great promise for the application in the catalytic process of PEF. Sulfamethoxazole (SMX) degradation was enhanced by MOF-525-Fe/Zr with the TOC removal rate above 75% both in river water and tap water. Finally, the reasonable pathway of PEF catalytic degradation of SMX was proposed by HPLC-MS analysis. In conclusion, this study provides a new idea for reconstructing the electronic structure of MOFs catalyst and broadening the practical application of PEF technology.
Collapse
|