1
|
Yang X, Liu J, Huang X, Cui H, Wei L, Shao G, Fu X, Liu N, An Q, Zhai S. Magnetically nanorized seaweed residue for the adsorption of methylene blue in aqueous solutions. RSC Adv 2024; 14:23606-23620. [PMID: 39077309 PMCID: PMC11284532 DOI: 10.1039/d4ra04416a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
The cost-effective and green separation of dye pollutants from wastewater is of great importance in environmental remediation. Industrial seaweed residue (SR), as a low-cost cellulose source, was used to produce carboxylated nanorized-SR (NSR) via oxalic acid (OA)-water pretreatments followed by ultrasonic disintegration. Fourier transform infrared spectroscopy, X-ray polycrystalline diffraction, nitrogen isotherms, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, X-ray photoelectron spectrometry, particle charge detection, zeta potential and retro titration experiments were utilized to explore the physiochemical properties of samples. The NSRs with carboxyl content of 4.58-6.73 mmol g-1 were prepared using 10-60% OA-water pretreatment. In the case of 20% OA-water pretreatment, the highest NSR yield (73.9%) and nanocellulose content (80.2%) were obtained. Through self-assembly induced by the electrostatic interaction, magnetic NSR composite adsorbents (MNSRs) were prepared with the combination of NSR and Fe3O4 nanoparticles (NPs). The carboxylated NSR with negative charge demonstrated good affinity for Fe3O4 NPs. The Fe3O4 NPs were perfectly microencapsulated with the NSR when the NSR/Fe3O4 mass ratio was higher than 1/1. The adsorption properties of the MNSR for methylene blue (MB) removal from aqueous solution were investigated. The adsorbent with NSR/Fe3O4 mass ratio of 1/1 (MNSR1/1) exhibited optimum performance in terms of the magnetic properties and adsorption capacity. The MNSR1/1 showed high adsorption ability in a pH ≥7 environment. According to the Langmuir fitting, the maximum adsorption capacity of MNSR1/1 for MB reached 184.25 mg g-1. The adsorption of MB complies with the pseudo-second-order kinetic model. MNSR1/1 still maintained good adsorption properties after the fifth cycle of adsorption-desorption. MNSR1/1 could selectively adsorb cationic dye (i.e., MB and methyl violet) from wastewater, with hydrogen bonding and electrostatic interaction as the main force.
Collapse
Affiliation(s)
- Xinyi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
| | - Jingjing Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
| | - Xuejin Huang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
| | - Hemin Cui
- Dalian Zhonghuida Scientific Instrument Co. Ltd Dalian 116023 China
| | - Ligang Wei
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
| | - Guolin Shao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
| | - Xu Fu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian Polytechnic University Dalian 116034 China
| | - Na Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
| | - Qingda An
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian Polytechnic University Dalian 116034 China
| | - Shangru Zhai
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
2
|
Chen C, Li Q, Wang F, Hu C, Ma J. Dual-vacancies modulation of 1T/2H heterostructured MoS 2-CdS nanoflowers via radiolytic radical chemistry for efficient photocatalytic H 2 evolution. J Colloid Interface Sci 2024; 661:345-357. [PMID: 38301471 DOI: 10.1016/j.jcis.2024.01.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Precise defect engineering of photocatalysts is highly demanding but remains a challenge. Here, we developed a facile and controllable γ-ray radiation strategy to assemble dual-vacancies confined MoS2-CdS-γ nanocomposite photocatalyst. We showed the solvated electron induced homogeneous growth of defects-rich CdS nanoparticles, while the symbiotic •OH radicals etched flower-like 1T/2H MoS2 substrate surfaces. The optimal MoS2-CdS-γ exhibited a H2 evolution rate of up to 37.80 mmol/h/g under visible light irradiation, which was 36.7 times higher than that of bare CdS-γ, and far superior to those synthesized by hydrothermal method. The microscopic characterizations and theoretical calculations revealed the formation of such unprecedented dual-sulfur-vacancies ensured the tight interfacial contact for fast charge separation. Besides, the existence of 1T-MoS2 phase further improved the conductivity and strengthened the adsorption interaction with H+ intermediate. Therefore, the radiolytic radical chemistry offered a facile, ambient and effective synthetic strategy to improve the catalytic performances of photocatalytic materials.
Collapse
Affiliation(s)
- Chong Chen
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, PR China.
| | - Qiuhao Li
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, PR China
| | - Fengqing Wang
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, PR China
| | - Changjiang Hu
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, PR China
| | - Jun Ma
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, PR China; School of Nuclear Science and Technology, University of Science and Technology of China, Anhui 230026, PR China.
| |
Collapse
|
3
|
Liu X, Wang J. Decolorization and degradation of various dyes and dye-containing wastewater treatment by electron beam radiation technology: An overview. CHEMOSPHERE 2024; 351:141255. [PMID: 38244870 DOI: 10.1016/j.chemosphere.2024.141255] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The treatment of dye-containing wastewater generated from textile industries is still a challenge, and various technologies, including physical, chemical and biological ones have been used. In recent years, the ionizing radiation (usually including gamma ray generated by radionuclide, such as 60Co and 137Cs, and electron beam generated by electron accelerator) technology has received increasing attention for degrading refractory or toxic organic pollutants in wastewater because of its unique advantages, such as no chemical additives, fast reaction rate, strong degradation capacity, high efficiency, flexibility, controllability. Compared to the conventional wastewater treatment processes, ionizing radiation technology, as a disruptive wastewater treatment technology, is more efficient for the decolorization and degradation of dyes and the treatment of dye-containing wastewater. In this paper, the recent advances in the treatment of dye-containing wastewater by ionizing radiation, in particular by electron beam (EB) radiation were summarized and analyzed, focusing on the decolorization and degradation of various dyes. Firstly, the formation of various reactive species induced by radiation and their interactions with dye molecules, as well as the influencing factors on the removal efficiency of dyes were discussed. Secondly, the researches on the treating dye-containing wastewater by electron beam radiation technology were systematically reviewed. Then, the decolorization and degradation mechanisms by electron beam radiation were further discussed in detail. And the integrated processes that would contribute to the advancement of this technology in practical applications were examined. More importantly, the recent advances of electron beam radiation technology from laboratory to application were reviewed, especially successful operation of dye-containing wastewater treatment facilities in China. And eventually, current challenges, future research directions, and outlooks of electron beam radiation technology were proposed for further advancing this technology for the sustainable development of water resources.
Collapse
Affiliation(s)
- Xinyu Liu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
4
|
Hu M, Li Z, Huang X, Chen M, Hu ZT, Tang S, Chou IM, Pan Z, Wang Q, Wang J. Catalytic supercritical water oxidation of o-chloroaniline over Ru/rGO: Reaction variables, conversion pathways and nitrogen distribution. CHEMOSPHERE 2023; 333:138907. [PMID: 37169091 DOI: 10.1016/j.chemosphere.2023.138907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/22/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
To ascertain the reaction variables on o-chloroaniline (o-ClA) mineralization, total nitrogen (TN) removal rate, and N-species distribution, o-ClA was subjected to catalytic supercritical water oxidation (CSCWO) in a fused quartz tube reactor (FQTR). The findings demonstrated that when the temperature, reaction time, and excess oxidant were 400 °C, 90 min, and 150%, respectively, the mineralization rate of o-ClA could reach more than 95%. Moreover, potential degradation pathways of o-ClA in supercritical water oxidation (SCWO) was proposed according to the GC-MS results. TN removal rate is significantly impacted by Ru/rGO, despite the fact that its catalytic effect on the mineralization of o-ClA was not particularly noteworthy. Compared with no catalyst, the TN removal rate of o-ClA obviously increased from 44.1% to 90.3% at 400 °C, 10 wt% Ru loading, 90 min and 200% excess oxidant. In addition, N-species distribution in SCWO and CSCWO were also investigated. Results indicated that the Ru/rGO catalyst could accelerate the oxidation of ammonia-N and convert it to nitrate-N, promoting N2 generation. Finally, the possible N transformation pathway in CSCWO of o-ClA was proposed. As a result, this work offers fundamental information about o-ClA catalytic oxidation removal in the SCWO process.
Collapse
Affiliation(s)
- Mian Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Zhibing Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Xiaotong Huang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Meiqi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Suqin Tang
- Hangzhou Environmental Group Co., Ltd, Zhejiang, China
| | - I-Ming Chou
- CAS Key Laboratory of Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, Hainan, China
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Qi Wang
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Junliang Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| |
Collapse
|
5
|
Wang J, Wang S, Chen C, Hu J, He S, Zhou Y, Zhu H, Wang X, Hu D, Lin J. Treatment of hospital wastewater by electron beam technology: Removal of COD, pathogenic bacteria and viruses. CHEMOSPHERE 2022; 308:136265. [PMID: 36055595 PMCID: PMC9424868 DOI: 10.1016/j.chemosphere.2022.136265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/10/2023]
Abstract
The effective treatment of hospital sewage is crucial to human health and eco-environment, especially during the pandemic of COVID-19. In this study, a demonstration project of actual hospital sewage using electron beam technology was established as advanced treatment process during the outbreak of COVID-19 pandemic in Hubei, China in July 2020. The results indicated that electron beam radiation could effectively remove COD, pathogenic bacteria and viruses in hospital sewage. The continuous monitoring date showed that the effluent COD concentration after electron beam treatment was stably below 30 mg/L, and the concentration of fecal Escherichia coli was below 50 MPN/L, when the absorbed dose was 4 kGy. Electron beam radiation was also an effective method for inactivating viruses. Compared to the inactivation of fecal Escherichia coli, higher absorbed dose was required for the inactivation of virus. Absorbed dose had different effect on the removal of virus. When the absorbed dose ranged from 30 to 50 kGy, Hepatitis A virus (HAV) and Astrovirus (ASV) could be completely removed by electron beam treatment. For Rotavirus (RV) and Enterovirus (EV) virus, the removal efficiency firstly increased and then decreased. The maximum removal efficiency of RV and EV was 98.90% and 88.49%, respectively. For the Norovirus (NVLII) virus, the maximum removal efficiency was 81.58%. This study firstly reported the performance of electron beam in the removal of COD, fecal Escherichia coli and virus in the actual hospital sewage, which would provide useful information for the application of electron beam technology in the treatment of hospital sewage.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China
| | - Chuanhong Chen
- Dasheng Electron Accelerator Technology Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu, 215214, PR China
| | - Jun Hu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Shijun He
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Dasheng Electron Accelerator Technology Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu, 215214, PR China
| | - Yuedong Zhou
- Dasheng Electron Accelerator Technology Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu, 215214, PR China
| | - Huanzheng Zhu
- Dasheng Electron Accelerator Technology Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu, 215214, PR China
| | - Xipo Wang
- Dasheng Electron Accelerator Technology Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu, 215214, PR China
| | - Dongming Hu
- Dasheng Electron Accelerator Technology Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu, 215214, PR China
| | - Jian Lin
- Dasheng Electron Accelerator Technology Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu, 215214, PR China
| |
Collapse
|