1
|
Maglione G, Zinno P, Tropea A, Mussagy CU, Dufossé L, Giuffrida D, Mondello A. Microbes' role in environmental pollution and remediation: a bioeconomy focus approach. AIMS Microbiol 2024; 10:723-755. [PMID: 39219757 PMCID: PMC11362270 DOI: 10.3934/microbiol.2024033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Bioremediation stands as a promising solution amid the escalating challenges posed by environmental pollution. Over the past 25 years, the influx of synthetic chemicals and hazardous contaminants into ecosystems has required innovative approaches for mitigation and restoration. The resilience of these compounds stems from their non-natural existence, distressing both human and environmental health. Microbes take center stage in this scenario, demonstrating their ability of biodegradation to catalyze environmental remediation. Currently, the scientific community supports a straight connection between biorefinery and bioremediation concepts to encourage circular bio/economy practices. This review aimed to give a pre-overview of the state of the art regarding the main microorganisms employed in bioremediation processes and the different bioremediation approaches applied. Moreover, focus has been given to the implementation of bioremediation as a novel approach to agro-industrial waste management, highlighting how it is possible to reduce environmental pollution while still obtaining value-added products with commercial value, meeting the goals of a circular bioeconomy. The main drawbacks and challenges regarding the feasibility of bioremediation were also reported.
Collapse
Affiliation(s)
- Giuseppe Maglione
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Paola Zinno
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Alessia Tropea
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc 98168–Messina, Italy
| | - Cassamo U. Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| | - Laurent Dufossé
- CHEMBIOPRO Laboratoire de Chimie et Biotechnologie des Produits Naturels, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, F-97400 Saint-Denis, Ile de La Réunion, France
| | - Daniele Giuffrida
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alice Mondello
- Department of Economics, University of Messina, Via dei Verdi, 75, 98122 Messina, Italy
| |
Collapse
|
2
|
Wani NR, Rather RA, Farooq A, Padder SA, Baba TR, Sharma S, Mubarak NM, Khan AH, Singh P, Ara S. New insights in food security and environmental sustainability through waste food management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17835-17857. [PMID: 36988800 PMCID: PMC10050807 DOI: 10.1007/s11356-023-26462-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Food waste has been identified as one of the major factors that constitute numerous anthropogenic activities, especially in developing countries. There is a growing problem with food waste that affects every part of the waste management system, from collection to disposal; finding long-term solutions necessitates involving all participants in the food supply chain, from farmers and manufacturers to distributors and consumers. In addition to food waste management, maintaining food sustainability and security globally is crucial so that every individual, household, and nation can always get food. "End hunger, achieve food security and enhanced nutrition, and promote sustainable agriculture" are among the main challenges of global sustainable development (SDG) goal 2. Therefore, sustainable food waste management technology is needed. Recent attention has been focused on global food loss and waste. One-third of food produced for human use is wasted every year. Source reduction (i.e., limiting food losses and waste) and contemporary treatment technologies appear to be the most promising strategy for converting food waste into safe, nutritious, value-added feed products and achieving sustainability. Food waste is also employed in industrial processes for the production of biofuels or biopolymers. Biofuels mitigate the detrimental effects of fossil fuels. Identifying crop-producing zones, bioenergy cultivars, and management practices will enhance the natural environment and sustainable biochemical process. Traditional food waste reduction strategies are ineffective in lowering GHG emissions and food waste treatment. The main contribution of this study is an inventory of the theoretical and practical methods of prevention and minimization of food waste and losses. It identifies the trade-offs for food safety, sustainability, and security. Moreover, it investigates the impact of COVID-19 on food waste behavior.
Collapse
Affiliation(s)
- Nazrana Rafique Wani
- Division of Food Science and Technology, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190025, India
| | - Rauoof Ahmad Rather
- Division of Environmental Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190025, India.
| | - Aiman Farooq
- Division of Food Science and Technology, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190025, India
| | - Shahid Ahmad Padder
- Division of Basic Science and Humanities, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190025, India
| | - Tawseef Rehman Baba
- Division of Fruit Science, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190025, India
| | - Sanjeev Sharma
- Centre for the Study of Regional Development (CSRD), School of Social Sciences-III, Jawaharlal Nehru University, 110 067, New Delhi, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Afzal Husain Khan
- Department of Civil Engineering, College of Engineering, Jazan University, PO Box. 706, Jazan, 45142, Saudi Arabia
| | | | - Shoukat Ara
- Division of Environmental Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190025, India
| |
Collapse
|
3
|
He M, Wu F, Qu G, Liu X. Harmless and resourceful utilization of solid waste: Multi physical field regulation in the microbiological treatment process of solid waste treatment. ENVIRONMENTAL RESEARCH 2023; 238:117149. [PMID: 37716393 DOI: 10.1016/j.envres.2023.117149] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Solid waste (SW) treatment methods mainly include physical, chemical, and biological methods, while physical and chemical methods have advantages such as fast effectiveness and short treatment time, but have high costs and were prone to secondary pollution. Due to the advantages of mild conditions and environmental protection, microbial methods have attracted the attention of numerous researchers. Recently, promotion of biological metabolic activity in biotreatment technology by applying multiple physical conditions, and reducing the biochemical reaction energy base to promote the transfer of protons and electrons, has made significant progress in harmless and resourceful utilization of SW. This paper main summarized the harmless and resourceful treatment methods of common bulk SW. The research of physical field-enhanced microbial treatment of inorganic solid waste (ISW) and organic solid waste (OSW) was discussed. The advantages and mechanisms of microbial treatment compared to traditional SW treatment methods were analyzed. The multi-physical field coupling enhanced microbial treatment technology was proposed to further improving the efficiency of large-scale treatment of bulk SW. The application prospects and potential opportunities of this technology were analyzed. Novel research ideas for the large-scale harmless and resourceful treatment of bulk SW were provided.
Collapse
Affiliation(s)
- Minjie He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Fenghui Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China.
| | - Xinxin Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| |
Collapse
|
4
|
Hao W, Lee SH, Peera SG. Xerogel-Derived Manganese Oxide/N-Doped Carbon as a Non-Precious Metal-Based Oxygen Reduction Reaction Catalyst in Microbial Fuel Cells for Energy Conversion Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2949. [PMID: 37999303 PMCID: PMC10674280 DOI: 10.3390/nano13222949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 11/25/2023]
Abstract
Current study provides a novel strategy to synthesize the nano-sized MnO nanoparticles from the quick, ascendable, sol-gel synthesis strategy. The MnO nanoparticles are supported on nitrogen-doped carbon derived from the cheap sustainable source. The resulting MnO/N-doped carbon catalysts developed in this study are systematically evaluated via several physicochemical and electrochemical characterizations. The physicochemical characterizations confirms that the crystalline MnO nanoparticles are successfully synthesized and are supported on N-doped carbons, ascertained from the X-ray diffraction and transmission electron microscopic studies. In addition, the developed MnO/N-doped carbon catalyst was also found to have adequate surface area and porosity, similar to the traditional Pt/C catalyst. Detailed investigations on the effect of the nitrogen precursor, heat treatment temperature, and N-doped carbon support on the ORR activity is established in 0.1 M of HClO4. It was found that the MnO/N-doped carbon catalysts showed enhanced ORR activity with a half-wave potential of 0.69 V vs. RHE, with nearly four electron transfers and excellent stability with just a loss of 10 mV after 20,000 potential cycles. When analyzed as an ORR catalyst in dual-chamber microbial fuel cells (DCMFC) with Nafion 117 membrane as the electrolyte, the MnO/N-doped carbon catalyst exhibited a volumetric power density of ~45 mW m2 and a 60% degradation of organic matter in 30 days of continuous operation.
Collapse
Affiliation(s)
| | - Sang-Hun Lee
- Department of Environmental Science, Keimyung University, Daegu 42601, Republic of Korea
| | - Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
5
|
Sharma P, Bano A, Singh SP, Srivastava SK, Singh SP, Iqbal HMN, Varjani S. Different stages of microbial community during the anaerobic digestion of food waste. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2079-2091. [PMID: 37273563 PMCID: PMC10232690 DOI: 10.1007/s13197-022-05477-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 10/17/2022]
Abstract
Large-scale food waste (FW) disposal has resulted in severe environmental degradation and financial losses around the world. Although FW has a high biomass energy contents and a growing large number of national projects to recover energy from FW by anaerobic digestion (AD) are being developed. AD is a promising solution for FW management and energy generation when compared to typical disposal options including landfill disposal, incineration, and composting. AD of FW can be combined with an existing AD operation or linked to the manufacture of value-added products to reduce costs and increase income. AD is a metabolic process that requires four different types of microbes: hydrolyzers, acidogens, acetogens, and methanogens. Microbes use a variety of strategies to avoid difficult situations in the AD, such as competition for the same substrate between sulfate-reducing bacteria and methane-forming bacteria. An improved comprehension of the microbiology involved in the anaerobic digestion of FW will provide new insight into the circumstances needed to maximize this procedure, including its possibilities for use in co-digestion mechanisms. This paper reviewed the present scientific knowledge of microbial community during the AD and the connection between microbial diversity during the AD of FW.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, Singapore, 138602 Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602 Singapore
| | - Ambreen Bano
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, Uttar Pradesh India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001 India
| | - Sudhir Kumar Srivastava
- Chemical Research Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001 India
| | - Surendra Pratap Singh
- Pandit Prithi Nath College, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh 208001 India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, NL Mexico
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010 India
| |
Collapse
|
6
|
Elgarahy AM, Eloffy MG, Alengebawy A, El-Sherif DM, Gaballah MS, Elwakeel KZ, El-Qelish M. Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilizations: A systematic review. ENVIRONMENTAL RESEARCH 2023; 225:115558. [PMID: 36842700 DOI: 10.1016/j.envres.2023.115558] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Food waste (FW) contains many nutritional components such as proteins, lipids, fats, polysaccharides, carbohydrates, and metal ions, which can be reused in some processes to produce value-added products. Furthermore, FW can be converted into biogas, biohydrogen, and biodiesel, and this type of green energy can be used as an alternative to nonrenewable fuel and reduce reliance on fossil fuel sources. It has been demonstrated in many reports that at the laboratory scale production of biochemicals using FW is as good as pure carbon sources. The goal of this paper is to review approaches used globally to promote turning FW into useable products and green energy. In this context, the present review article highlights deeply in a transdisciplinary manner the sources, types, impacts, characteristics, pre-treatment strategies, and potential management of FW into value-added products. We find that FW could be upcycled into different valuable products such as eco-friendly green fuels, organic acids, bioplastics, enzymes, fertilizers, char, and single-cell protein, after the suitable pre-treatment method. The results confirmed the technical feasibility of all the reviewed transformation processes of FW. Furthermore, life cycle and techno-economic assessment studies regarding the socio-economic, environmental, and engineering aspects of FW management are discussed. The reviewed articles showed that energy recovery from FW in various forms is economically feasible.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt.
| | - M G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Mohamed S Gaballah
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt; College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China.
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
| | - Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt.
| |
Collapse
|
7
|
Schneider G, Pásztor D, Szabó P, Kőrösi L, Kishan NS, Raju PARK, Calay RK. Isolation and Characterisation of Electrogenic Bacteria from Mud Samples. Microorganisms 2023; 11:781. [PMID: 36985354 PMCID: PMC10058994 DOI: 10.3390/microorganisms11030781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
To develop efficient microbial fuel cell systems for green energy production using different waste products, establishing characterised bacterial consortia is necessary. In this study, bacteria with electrogenic potentials were isolated from mud samples and examined to determine biofilm-formation capacities and macromolecule degradation. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identifications have revealed that isolates represented 18 known and 4 unknown genuses. They all had the capacities to reduce the Reactive Black 5 stain in the agar medium, and 48 of them were positive in the wolfram nanorod reduction assay. The isolates formed biofilm to different extents on the surfaces of both adhesive and non-adhesive 96-well polystyrene plates and glass. Scanning electron microscopy images revealed the different adhesion potentials of isolates to the surface of carbon tissue fibres. Eight of them (15%) were able to form massive amounts of biofilm in three days at 23 °C. A total of 70% of the isolates produced proteases, while lipase and amylase production was lower, at 38% and 27% respectively. All of the macromolecule-degrading enzymes were produced by 11 isolates, and two isolates of them had the capacity to form a strong biofilm on the carbon tissue one of the most used anodic materials in MFC systems. This study discusses the potential of the isolates for future MFC development applications.
Collapse
Affiliation(s)
- György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - Dorina Pásztor
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - Péter Szabó
- Department of Geology and Meteorology, Faculty of Sciences, University of Pécs, Ifjúság Str. 6, H-7624 Pécs, Hungary
| | - László Kőrösi
- Research Institute for Viticulture and Oenology, University of Pécs, Pázmány P. u. 4, H-7634 Pécs, Hungary
| | - Nandyala Siva Kishan
- Centre for Research and Development, SRKR Engineering College, SRKR Marg, China Amiram, Bhimavaram 534204, India
| | | | - Rajnish Kaur Calay
- Institute for Building Energy and Materials Technology, Narvik Campus, UiT Norway’s Arctic University, 8514 Narvik, Norway
| |
Collapse
|
8
|
Bhatia L, Jha H, Sarkar T, Sarangi PK. Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032318. [PMID: 36767685 PMCID: PMC9916134 DOI: 10.3390/ijerph20032318] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 05/13/2023]
Abstract
There is world-wide generation of food waste daily in significant amounts, leading to depletion of natural resources and deteriorating air quality. One-third of global food produced is wasted laterally with the food value chain. Carbon footprint is an efficient way of communicating the issues related to climate change and the necessity of changing behavior. Valorization or utilization of food wastes helps in resolving issues related to environment pollution. Reduction in the carbon footprint throughout the chain of food supply makes the whole process eco-friendly. Prevailing food waste disposal systems focus on their economic and environmental viability and are putting efforts into using food waste as a resource input to agriculture. Effective and advanced waste management systems are adopted to deal with massive waste production so as to fill the gap between the production and management of waste disposal. Food waste biorefineries are a sustainable, eco-friendly, and cost-effective approach for the production of platform chemicals, biofuels, and other bio-based materials. These materials not only provide sustainable resources for producing various chemicals and materials but have the potential to reduce this huge environmental burden significantly. In this regard, technological advancement has occurred in past few years that has proven suitable for tackling this problem.
Collapse
Affiliation(s)
- Latika Bhatia
- Department of Microbiology & Bioinformatics, Atal Bihari Vajpayee University, Bilaspur 495001, India
| | - Harit Jha
- Department of Biotechnology, Guru Ghasidas University, Bilaspur 495009, India
| | - Tanushree Sarkar
- Department of Biotechnology, Guru Ghasidas University, Bilaspur 495009, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, India
- Correspondence:
| |
Collapse
|
9
|
Ramaswamy J, Solaiappan V, Albasher G, Alamri O, Alsultan N, Sathiasivan K. Process optimization of struvite recovered from slaughterhouse wastewater and its fertilizing efficacy in amendment of biofertilizer. ENVIRONMENTAL RESEARCH 2022; 211:113011. [PMID: 35288154 DOI: 10.1016/j.envres.2022.113011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The intensive discharge of slaughterhouse waste into water bodies increases Nitrogen (N), Phosphorus (P) in the wastewater and leads to various environmental problems. On the other hand, the increasing treatment effort after the extraction of these valuable nutrients in the commercial fertilizer reduces the dependence on scarce phosphate resources. The viable solution is to recover N, P as struvite (magnesium ammonium phosphate) from nutrient rich waste water as a small scale treatment unit application. The main parameters that have a significant impact on the process, including pH, Mg: P ratio, and precipitation time, were investigated from slaughterhouse wastewater using a central composite design and the experimental data's were statistically analysed. The results indicated that pH and Mg/P ratio level had a significant impact and thus 85% struvite precipitation efficiency was achieved at 9.6 pH and 1.5 dose mol ratio (mol Mg per mol P), in an inexpensive, stirred tank batch reactor with a retention time of 70 min. The fertilization efficiency was tested on the growth of Solanum melongena L with the obtained struvite and the integration of struvite with the Azospirullum rhizobium and Bacillus megaterium. Treatment of struvite, struvite with Azospirillum rhizobium and Bacillus megaterium increased growth parameters by 10%, 20%, and 25%, respectively, over control. The assessment of growth factors showed the most amazing number of fruits, shoots, and root length in a standard ratio of 60:40 of struvite to bio-inoculants compared to sole struvite fertilizer. Findings of this study would be beneficial to determine the feasibility of slaughterhouse waste as a phosphorus source for struvite recovery.
Collapse
Affiliation(s)
- Jeyalakshmi Ramaswamy
- Department of Chemistry, College of Engineering and Technology, Faculty of E & T, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - Vishali Solaiappan
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of E & T, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ohoud Alamri
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Alsultan
- Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, UK
| | - Kiruthika Sathiasivan
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of E & T, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India.
| |
Collapse
|
10
|
Thirukumaran R, Anu Priya VK, Krishnamoorthy S, Ramakrishnan P, Moses JA, Anandharamakrishnan C. Resource recovery from fish waste: Prospects and the usage of intensified extraction technologies. CHEMOSPHERE 2022; 299:134361. [PMID: 35331747 DOI: 10.1016/j.chemosphere.2022.134361] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Globally, the valorization of fish biowaste as a feedstock to recover valuable components is an emerging research and commercial interest area to achieve the SDG goals by 2030. Fish waste-derived biomolecules are increasingly finding diverse applications in food and other biotechnological fields due to their excellent chemical, structural and functional properties. The focus of this review is to highlight the conventional valorization routes and recent advancements in extraction technologies for resource recovery applications, primarily focusing on green processes. Biointensified processes involving ultrasound, microwave, sub- and supercritical fluids, pulsed electric field, high-pressure processing, and cold plasma are extensively explored as sustainable technologies for valorizing fish discards and found numerous applications in the production of functional and commercially important biomaterials. With challenges in recovering intracellular bioactive compounds, selectivity, and energy requirement concerns, conventional approaches are being relooked continuously in the quest for process intensification and sustainable production practices. Nonetheless, in the context of 'zero waste' and 'biorefinery for high-value compounds', there is immense scope for technological upgradation in these emerging alternative approaches. This work details such attempts, providing insights into the immense untapped potential in this sector.
Collapse
Affiliation(s)
- R Thirukumaran
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, 613005, Tamil Nadu, India
| | - Vijay Kumar Anu Priya
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, 613005, Tamil Nadu, India
| | - Srinivasan Krishnamoorthy
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, 613005, Tamil Nadu, India
| | - Paranthaman Ramakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, 613005, Tamil Nadu, India.
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, 613005, Tamil Nadu, India.
| |
Collapse
|
11
|
Gao T, Shi W, Zhao M, Huang Z, Liu X, Ruan W. Preparation of spiramycin fermentation residue derived biochar for effective adsorption of spiramycin from wastewater. CHEMOSPHERE 2022; 296:133902. [PMID: 35143862 DOI: 10.1016/j.chemosphere.2022.133902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Spiramycin (SPI) fermentation residue (SFR) is classified as hazardous waste in China because of the residual antibiotics in it. SFR disposal in the traditional way is costly and wasteful of resources. In this study, pyrolysis method was adopted to covert SFR to biochar for SPI removal from wastewater, and the SPI adsorption performance was investigated. The results showed that the optimal pyrolysis temperature was 700 °C as the prepared biochar BC700 exhibited the highest SPI removal efficiency. The specific surface area of BC700 was 451.68 m2/g, and the maximum adsorption capacity was 147.28 mg/g. The adsorption mechanism involved electrostatic interaction, pore filling, π-π interaction, hydrogen bonding, and the participation of C-C and O-CO functional groups in the adsorption. No residual SPI was detected in BC700 indicating the detoxification of SFR was achieved. Moreover, after recycling for 5 times, the SPI removal efficiency was still higher than 80.0%. Therefore, this study could provide a promising method for SFR disposal.
Collapse
Affiliation(s)
- Tong Gao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoling Liu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
12
|
Roets-Dlamini Y, Moonsamy G, Lalloo R, Ramchuran S. Use of Bacillus spp in the bioremediation of fats, oils and greases (FOG's), and other waste substrates in food processing effluents. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|