1
|
Haq IU, Cai X, Ali H, Akhtar MR, Ghafar MA, Hyder M, Hou Y. Interactions Between Nanoparticles and Tomato Plants: Influencing Host Physiology and the Tomato Leafminer's Molecular Response. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1788. [PMID: 39591030 PMCID: PMC11597545 DOI: 10.3390/nano14221788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Tomatoes are a crucial global crop, impacting economies and livelihoods worldwide. However, pests like the tomato leafminer (Tuta absoluta) significantly reduce their yield potential. Nanoparticles come as a solution to this context, promising innovative strategies for the protection of plants from pest infestation and management. Nanoparticles have shown great potential to improve tomato plant resistance against pests and diseases because of their unique properties. They enhance plant physiological processes like photosynthesis and nutrient uptake while activating defense-related molecular pathways. Nanoparticles also directly impact the life cycle and behavioral patterns of pests such as the tomato leafminer, reducing their destructive nature. The dual benefits of nanoparticles for enhancing plants' health and managing pests effectively provide a two-way innovative approach in agriculture. Gains made with such technology not only include increasing crop productivity and reducing crop losses but also reducing the heavy dependence on chemical pesticides, many of which have been attributed to environmental hazards. The current study illustrates the broader implications of nanoparticle use in agriculture, which is a sustainable pathway to increase crop resilience and productivity while reducing the impact of pests. Such novel approaches underline the need for continued interdisciplinary research to exploit the potential of nanotechnology in sustainable agricultural practices fully.
Collapse
Affiliation(s)
- Inzamam Ul Haq
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Xiangyun Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan;
| | - Muhammad Rehan Akhtar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Muhammad Adeel Ghafar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Moazam Hyder
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| |
Collapse
|
2
|
Ma Y, Wu M, Jin J, Qin S, Liu Q, Sun Y, Yang Z. Photoperiod-dependent effects of zinc oxide nanoparticles on the growth and reproduction of Daphnia pulex. CHEMOSPHERE 2024; 365:143394. [PMID: 39307469 DOI: 10.1016/j.chemosphere.2024.143394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
The discharge of metal nanoparticles into the water inevitably poses a threat to aquatic organisms and the balance of the aquatic ecosystem. Photoperiod is one of the most important ecological factors for the development of cladocerans. In addition, different light conditions can also affect the toxicity of metal nanoparticles. In this study, we studied the effects of four photoperiods (8L/16D, 10L/14D, 14L/10D, and 16L/8D) combined with three concentrations of ZnO NPs (0 mg L-1, 0.05 mg L-1, and 0.10 mg L-1) on the growth and reproduction of Daphnia pulex. With the increase of photoperiod, the maternal body size and growth rate increased first and then decreased; the first time to reproduction was advanced, and broods and the total offspring also increased. Under the influence of ZnO NPs, growth rate and reproductive capacity were inhibited. The photoperiod 8L/16D and 16L/8D interacted with ZnO NPs on the growth of D. pulex, which significantly decreased the growth rate. Besides, the interaction between photoperiod 8L/16D and ZnO NPs decreased the reproduction ability of D. pulex. These results suggest that the effects of zinc oxide nanoparticles on the growth and reproduction of D. pulex is photoperiod dependent, which is useful for assessing the risk of pollutants to cladoceras under different light conditions.
Collapse
Affiliation(s)
- Yiqing Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Mengfan Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jin Jin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shanshan Qin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
3
|
Paylar B, Bezabhe YH, Jass J, Olsson PE. Exploring the Sublethal Impacts of Cu and Zn on Daphnia magna: a transcriptomic perspective. BMC Genomics 2024; 25:790. [PMID: 39160502 PMCID: PMC11331620 DOI: 10.1186/s12864-024-10701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
Metal contamination of aquatic environments remains a major concern due to their persistence. The water flea Daphnia magna is an important model species for metal toxicity studies and water quality assessment. However, most research has focused on physiological endpoints such as mortality, growth, and reproduction in laboratory settings, as well as neglected toxicogenomic responses. Copper (Cu) and zinc (Zn) are essential trace elements that play crucial roles in many biological processes, including iron metabolism, connective tissue formation, neurotransmitter synthesis, DNA synthesis, and immune function. Excess amounts of these metals result in deviations from homeostasis and may induce toxic responses. In this study, we analyzed Daphnia magna transcriptomic responses to IC5 levels of Cu (120 µg/L) and Zn (300 µg/L) in environmental water obtained from a pristine lake with adjusted water hardness (150 mg/L CaCO3). The study was carried out to gain insights into the Cu and Zn regulated stress response mechanisms in Daphnia magna at transcriptome level. A total of 2,688 and 3,080 genes were found to be differentially expressed (DEG) between the control and Cu and the control and Zn, respectively. There were 1,793 differentially expressed genes in common for both Cu and Zn, whereas the number of unique DEGs for Cu and Zn were 895 and 1,287, respectively. Gene ontology and KEGG pathways enrichment were carried out to identify the molecular functions and biological processes affected by metal exposures. In addition to well-known biomarkers, novel targets for metal toxicity screening at the genomic level were identified.
Collapse
Affiliation(s)
- Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
- , Örebro, Sweden
| | - Yared H Bezabhe
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
- , Örebro, Sweden
| | - Jana Jass
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
- , Örebro, Sweden
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
- , Örebro, Sweden.
| |
Collapse
|
4
|
Sanpradit P, Byeon E, Lee JS, Peerakietkhajorn S. Ecotoxicological, ecophysiological, and mechanistic studies on zinc oxide (ZnO) toxicity in freshwater environment. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109720. [PMID: 37586582 DOI: 10.1016/j.cbpc.2023.109720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
The world has faced climate change that affects hydrology and thermal systems in the aquatic environment resulting in temperature changes, which directly affect the aquatic ecosystem. Elevated water temperature influences the physico-chemical properties of chemicals in freshwater ecosystems leading to disturbing living organisms. Owing to the industrial revolution, the mass production of zinc oxide (ZnO) has been led to contaminated environments, and therefore, the toxicological effects of ZnO become more concerning under climate change scenarios. A comprehensive understanding of its toxicity influenced by main factors driven by climate change is indispensable. This review summarized the detrimental effects of ZnO with a single ZnO exposure and combined it with key climate change-associated factors in many aspects (i.e., oxidative stress, energy reserves, behavior and life history traits). Moreover, this review tried to point out ZnO kinetic behavior and corresponding mechanisms which pose a problem of observed detrimental effects correlated with the alteration of elevated temperature.
Collapse
Affiliation(s)
- Paweena Sanpradit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
5
|
Qu R, Chen M, Liu J, Xie Q, Liu N, Ge F. Blockage of ATPase-mediated energy supply inducing metabolic disturbances in algal cells under silver nanoparticles stress. J Environ Sci (China) 2023; 131:141-150. [PMID: 37225375 DOI: 10.1016/j.jes.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 05/26/2023]
Abstract
Adenosine triphosphate (ATP) generation of aquatic organisms is often subject to nanoparticles (NPs) stress, involving extensive reprogramming of gene expression and changes in enzyme activity accompanied by metabolic disturbances. However, little is known about the mechanism of energy supply by ATP to regulate the metabolism of aquatic organisms under NPs stress. Here, we selected extensively existing silver nanoparticles (AgNPs) to investigate their implications on ATP generation and relevant metabolic pathways in alga (Chlorella vulgaris). Results showed that ATP content significantly decreased by 94.2% of the control (without AgNPs) in the algal cells at 0.20 mg/L AgNPs, which was mainly attributed to the reduction of chloroplast ATPase activity (81.4%) and the downregulation of ATPase-coding genes atpB and atpH (74.5%-82.8%) in chloroplast. Molecular dynamics simulations demonstrated that AgNPs competed with the binding sites of substrates adenosine diphosphate and inorganic phosphate by forming a stable complex with ATPase subunit beta, potentially resulting in the reduced binding efficiency of substrates. Furthermore, metabolomics analysis proved that the ATP content positively correlated with the content of most differential metabolites such as D-talose, myo-inositol, and L-allothreonine. AgNPs remarkably inhibited ATP-involving metabolic pathways, including inositol phosphate metabolism, phosphatidylinositol signaling system, glycerophospholipid metabolism, aminoacyl-tRNA biosynthesis, and glutathione metabolism. These results could provide a deep understanding of energy supply in regulating metabolic disturbances under NPs stress.
Collapse
Affiliation(s)
- Ruohua Qu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mi Chen
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiting Xie
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China..
| |
Collapse
|
6
|
Zhuo MQ, Chen X, Gao L, Zhang HT, Zhu QL, Zheng JL, Liu Y. Early life stage exposure to cadmium and zinc within hour affected GH/IGF axis, Nrf2 signaling and HPI axis in unexposed offspring of marine medaka Oryzias melastigma. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106628. [PMID: 37451186 DOI: 10.1016/j.aquatox.2023.106628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/11/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Information on transgenerational effects of cadmium (Cd) and zinc (Zn) within hour of exposure is scarce. To the end, larvae of marine medaka Oryzias melastigma at 0 day-post-hatching (dph) were subjected to LC50 for 96-h of Cd or Zn for 0.5 and 6 h, and then transferred into clear water for 95 days until the generation of offspring larvae at 25 dph. Growth, antioxidant capacity and stress response in offspring larvae were examined. Exposure to Zn for 0.5 h or Cd for 0.5 h and 6 h promoted growth performance and reduced total antioxidant capacity (TAC) and activities of superoxide dismutase (SOD) and catalase (CAT). Malondialdehyde (MDA) and cortisol levels declined in larvae following Zn exposure for 0.5 h, whereas Cd exposure increased MDA content and did not affect cortisol levels. These physiological changes could be partially explained by transcription of genes in the hormone/insulin-like growth factor-I (GH/IGF) axis, NF-E2-related factor 2 (Nrf2) signaling, and hypothalamus-pituitary-interrenal (HPI) axis. For example, Zn exposure for 0.5 h up-regulated genes encoding growth hormone (gh) and insulin-like growth factor binding protein (igfbp1) and down-regulated mRNA levels of nrf2, Kelch-like-ECH-associated protein 1 gene (keap1a), keap1b, sod1, mineralocorticoid receptor (mr), corticotropin-releasing hormone receptor (crhr1), corticotropin-releasing hormone binding protein (crhbp), cytochrome P450 (cyp11a1, cyp17a1) and hydroxysteroid dehydrogenase (hsd3b1). Cd exposure for 0.5 and 6 h up-regulated growth hormone release hormone (ghrh) and igfbp1, down-regulated nrf2 and keap1a, and did not affect mRNA levels of HPI axis genes. Taken together, this study demonstrated that short-term metal exposure during larvae phase had positive and negative effects on offspring even after a long recovery.
Collapse
Affiliation(s)
- Mei-Qin Zhuo
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiao Chen
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Lu Gao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Hai-Ting Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qing-Ling Zhu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Yifan Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
7
|
Zhang H, Ren X, Liu T, Zhao Y, Gan Y, Zheng L. The stereoselective toxicity of dinotefuran to Daphnia magna: A systematic assessment from reproduction, behavior, oxidative stress and digestive function. CHEMOSPHERE 2023; 327:138489. [PMID: 36996914 DOI: 10.1016/j.chemosphere.2023.138489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Dinotefuran is a promising neonicotinoid insecticide with chiral structure. In the present study, the stereoselective toxicity of dinotefuran to Daphnia magna (D. magna) was studied. The present result showed that S-dinotefuran inhibited the reproduction of D. magna at 5.0 mg/L. However, both R-dinotefuran and S-dinotefuran had no genotoxicity to D. magna. Additionally, neither R-dinotefuran nor S-dinotefuran had negative influences on the motor behavior of D. magna. However, S-dinotefuran inhibited the feeding behavior of D. magna at 5.0 mg/L. Both R-dinotefuran and S-dinotefuran induced oxidative stress effect in D. magna after exposure. R-dinotefuran significantly activated the activities of superoxide dismutase (SOD) and glutathione S-transferase (GST), while S-dinotefuran showed the opposite effect. S-dinotefuran had more obvious activation effect on the acetylcholinesterase (AchE) activity and trypsin activity compared to R-dinotefuran. The transcriptome sequencing results showed that S-dinotefuran induced more DEGs in D. magna, and affected the normal function of ribosome. The DEGs were mainly related to the synthesis and metabolism of biomacromolecules, indicating the binding mode between dinotefuran enantiomer and biomacromolecules were different. Additionally, the present result indicated that the digestive enzyme activity and digestive gene expression levels in D. magna were greatly enhanced to cope with the inhibition of S-dinotefuran on the feeding.
Collapse
Affiliation(s)
- Hongyuan Zhang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiangyu Ren
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China.
| | - Ying Zhao
- College of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, 264025, China
| | - Yantai Gan
- College of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, 264025, China
| | - Lei Zheng
- State Environmental Protection Key Laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China.
| |
Collapse
|
8
|
Reilly K, Ellis LJA, Davoudi HH, Supian S, Maia MT, Silva GH, Guo Z, Martinez DST, Lynch I. Daphnia as a model organism to probe biological responses to nanomaterials-from individual to population effects via adverse outcome pathways. FRONTIERS IN TOXICOLOGY 2023; 5:1178482. [PMID: 37124970 PMCID: PMC10140508 DOI: 10.3389/ftox.2023.1178482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The importance of the cladoceran Daphnia as a model organism for ecotoxicity testing has been well-established since the 1980s. Daphnia have been increasingly used in standardised testing of chemicals as they are well characterised and show sensitivity to pollutants, making them an essential indicator species for environmental stress. The mapping of the genomes of D. pulex in 2012 and D. magna in 2017 further consolidated their utility for ecotoxicity testing, including demonstrating the responsiveness of the Daphnia genome to environmental stressors. The short lifecycle and parthenogenetic reproduction make Daphnia useful for assessment of developmental toxicity and adaption to stress. The emergence of nanomaterials (NMs) and their safety assessment has introduced some challenges to the use of standard toxicity tests which were developed for soluble chemicals. NMs have enormous reactive surface areas resulting in dynamic interactions with dissolved organic carbon, proteins and other biomolecules in their surroundings leading to a myriad of physical, chemical, biological, and macromolecular transformations of the NMs and thus changes in their bioavailability to, and impacts on, daphnids. However, NM safety assessments are also driving innovations in our approaches to toxicity testing, for both chemicals and other emerging contaminants such as microplastics (MPs). These advances include establishing more realistic environmental exposures via medium composition tuning including pre-conditioning by the organisms to provide relevant biomolecules as background, development of microfluidics approaches to mimic environmental flow conditions typical in streams, utilisation of field daphnids cultured in the lab to assess adaption and impacts of pre-exposure to pollution gradients, and of course development of mechanistic insights to connect the first encounter with NMs or MPs to an adverse outcome, via the key events in an adverse outcome pathway. Insights into these developments are presented below to inspire further advances and utilisation of these important organisms as part of an overall environmental risk assessment of NMs and MPs impacts, including in mixture exposure scenarios.
Collapse
Affiliation(s)
- Katie Reilly
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hossein Hayat Davoudi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Suffeiya Supian
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marcella T. Maia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela H. Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Guo J, Ren J, Chang C, Duan Q, Li J, Kanerva M, Yang F, Mo J. Freshwater crustacean exposed to active pharmaceutical ingredients: ecotoxicological effects and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48868-48902. [PMID: 36884171 DOI: 10.1007/s11356-023-26169-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/23/2023] [Indexed: 04/16/2023]
Abstract
Concerns over the ecotoxicological effects of active pharmaceutical ingredients (APIs) on aquatic invertebrates have been raised in the last decade. While numerous studies have reported the toxicity of APIs in invertebrates, no attempt has been made to synthesize and interpret this dataset in terms of different exposure scenarios (acute, chronic, multigenerational), multiple crustacean species, and the toxic mechanisms. In this study, a thorough literature review was performed to summarize the ecotoxicological data of APIs tested on a range of invertebrates. Therapeutic classes including antidepressants, anti-infectives, antineoplastic agents, hormonal contraceptives, immunosuppressants, and neuro-active drugs exhibited higher toxicity to crustaceans than other API groups. The species sensitivity towards APIs exposure is compared in D. magna and other crustacean species. In the case of acute and chronic bioassays, ecotoxicological studies mainly focus on the apical endpoints including growth and reproduction, whereas sex ratio and molting frequency are commonly used for evaluating the substances with endocrine-disrupting properties. The multigenerational and "Omics" studies, primarily transcriptomics and metabolomics, were confined to a few API groups including beta-blocking agents, blood lipid-lowing agents, neuroactive agents, anticancer drugs, and synthetic hormones. We emphasize that in-depth studies on the multigenerational effects and the toxic mechanisms of APIs on the endocrine systems of freshwater crustacean are warranted.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jingya Ren
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Chao Chang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jun Li
- Department of Environment and Geography, University of York, Heslington, York, YO10 5NG, UK
| | - Mirella Kanerva
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 7908577, Japan
| | - Fangshe Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
10
|
Tang R, Zhu D, Luo Y, He D, Zhang H, El-Naggar A, Palansooriya KN, Chen K, Yan Y, Lu X, Ying M, Sun T, Cao Y, Diao Z, Zhang Y, Lian Y, Chang SX, Cai Y. Nanoplastics induce molecular toxicity in earthworm: Integrated multi-omics, morphological, and intestinal microorganism analyses. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130034. [PMID: 36206716 DOI: 10.1016/j.jhazmat.2022.130034] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/02/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
The toxicity of nanoplastics (NPs) at relatively low concentrations to soil fauna at different organismal levels is poorly understood. We investigated the responses of earthworm (Eisenia fetida) to polystyrene NPs (90-110 nm) contaminated soil at a relatively low concentration (0.02 % w:w) based on multi-omics, morphological, and intestinal microorganism analyses. Results showed that NPs accumulated in earthworms' intestinal tissues. The NPs damaged earthworms' digestive and immune systems based on injuries of the intestinal epithelium and chloragogenous tissues (tissue level) and increased the number of changed genes in the digestive and immune systems (transcriptome level). The NPs reduced gut microorganisms' diversity (Shannon index) and species richness (Chao 1 index). Proteomic, transcriptome, and histopathological analyses showed that earthworms suffered from oxidative and inflammatory stresses. Moreover, NPs influenced the osmoregulatory metabolism of earthworms as NPs damaged intestinal epithelium (tissue level), increased aldosterone-regulated sodium reabsorption (transcriptome level), inositol phosphate metabolism (proteomic level) and 2-hexyl-5-ethyl-furan-3-sulfonic acid, and decreased betaine and myo-inositol concentrations (metabolic level). Transcriptional-metabolic and transcriptional-proteomic analyses revealed that NPs disrupted earthworm carbohydrate and arachidonic acid metabolisms. Our multi-level investigation indicates that NPs at a relatively low concentration induced toxicity to earthworms and suggests that NPs pollution has significant environmental toxicity risks for soil fauna.
Collapse
Affiliation(s)
- Ronggui Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Defu He
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Haibo Zhang
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Kumuduni Niroshika Palansooriya
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Keyi Chen
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan Yan
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinghang Lu
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Minshen Ying
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tao Sun
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuntao Cao
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhihan Diao
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxin Zhang
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yichen Lian
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, Edmonton T6G2E3, Canada.
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
11
|
Wang D, Yang G, Ru S, Zhang Z, Li Y, Wang J. Herbicide prometryn adversely affects the development and reproduction of Tigriopus japonicus by disturbing the ecdysone signal pathway and chitin metabolic pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106378. [PMID: 36571890 DOI: 10.1016/j.aquatox.2022.106378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/26/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Prometryn, a widely used triazine herbicide in agriculture and aquaculture, has been commonly detected in marine environments, but its effects on the marine copepod are unknown. In this study, marine copepod Tigriopus japonicus was chronically exposed to environmentally relevant concentrations of prometryn to investigate its impacts and potential mechanism of action. The results showed that 0.5, 5, and 50 μg/L prometryn delayed the first spawning time and hatching time, reduced the fecundity, and inhibited the population growth rate. Moreover, exposure to 0.5, 5 and 50 μg/L prometryn decreased food ingestion, the content of C and N elements, nutrient accumulation and body size, but increased the content of 20-hydroxyecdysone (20E). Transcriptome analysis showed that 50 μg/L prometryn down-regulated 1431 genes, which were mainly enriched in lysosome pathway and chitin binding and cuticle construction process. The results of qRT-PCR showed that the expression of key genes involved in juvenile hormone synthesis and chitin metabolic pathways were also inhibited after prometryn exposure. Molecular docking revealed that prometryn could bind to ecdysone receptor (EcR) and UDP-N-acetylglucosamine pyrophosphorylase (UAP), components of the ecdysteroid nuclear receptor complex. Therefore, environmental relevant prometryn delayed the molting and development of T. japonicus by disrupting the ecdysone signal pathway and chitin metabolic pathway through binding to EcR and UAP. This study provides new insights into toxic effects and molecular mechanisms of prometryn on marine copepods.
Collapse
Affiliation(s)
- Dong Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Guangxin Yang
- Laboratory of Quality Safety and Processing for Aquatic Product, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
12
|
Sun Y, Qian Y, Geng S, Wang P, Zhang L, Yang Z. Joint effects of microplastics and ZnO nanoparticles on the life history parameters of rotifers and the ability of rotifers to eliminate harmful phaeocystis. CHEMOSPHERE 2023; 310:136939. [PMID: 36273615 DOI: 10.1016/j.chemosphere.2022.136939] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The rising concentration of microplastics and nanoparticles coexisting simultaneously in marine may bring joint harm to zooplankton. Rotifer is an important functional group of marine zooplankton, which plays an important role in the energy flow of marine ecosystem. To evaluate the comprehensive effects of nano-sized microplastics and metal oxide nanoparticles on life history parameters of rotifers and population dynamics of rotifers during eliminating harmful algae Phaeocystis, we exposed rotifers Brachionus plicatilis to the multiple combinations of different concentrations of nanoplastics and ZnO nanoparticles. Results showed that rotifer maturation time was prolonged and the total offspring was decreased significantly with rising ZnO nanoparticles and microplastics concentrations, and microplastics and ZnO nanoparticles had significant interaction, which brought more serious joint deleterious effects on survival, development, and reproduction. At the population level, ZnO nanoparticles exacerbated the delayed effect of microplastics on the elimination of Phaeocystis by rotifers, although eventually rotifers also completely eliminated Phaeocystis in the closed system. This study provided new insights into revealing the comprehensive impact of microplastics and ZnO nanoparticles on zooplankton not only from the perspective of life history parameters of rotifers but also from the perspective of population dynamics of rotifers controlling harmful algae, which is of great significance to understand the impact of mixed pollutants on marine ecosystem.
Collapse
Affiliation(s)
- Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yiqing Qian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shenhui Geng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Pengcheng Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
13
|
Wang M, Feng Y, Cao Z, Yu N, Wang J, Wang X, Kang D, Su M, Hu J, Du H. Multiple generation exposure to ZnO nanoparticles induces loss of genomic integrity in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114383. [PMID: 36508841 DOI: 10.1016/j.ecoenv.2022.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are commonly used in industrial and household applications, prompting the assessment of their associated health risks. Previous studies indicated that ZnO NPs can induce somatic cell mutations, while the aging process appears to increase the mutagenicity of ZnO NPs. However, little is known about the influence of ZnO NPs on genome stability of germ cells, and non-exposed progeny. Here we show that 20 nm ZnO NPs exposure disrupts germ cell development, and elevates the overall mutation frequency of germ cells in Caenorhabditis elegans (C. elegans). We observed that pristine ZnO NPs elicit germ cell apoptosis to a greater extent than the 60-day aged ZnO NPs. By treating parental worms with ZnO NPs for seven successive generations, whole-genome sequencing data revealed that, although the frequency of point mutations is kept unchanged, large deletions are significantly increased in F8 worms. Furthermore, we found that the mutagenicity of ZnO NPs might be partially attributed to the release of Zn2+ ions. Together, our results demonstrate the genotoxic effects of ZnO NPs on germ cells, and the possible underlying mechanism. These findings suggest that germ cell mutagenicity is worthy of consideration for the health risk assessment of engineered NPs.
Collapse
Affiliation(s)
- Meimei Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China.
| | - Yu Feng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Zhenxiao Cao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China
| | - Na Yu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Juan Wang
- Department of Public Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xiaowei Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Dixiang Kang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Mingqin Su
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Jian Hu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Hua Du
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China.
| |
Collapse
|
14
|
Sun Y, Liu Q, Huang J, Li D, Huang Y, Lyu K, Yang Z. Food abundance mediates the harmful effects of ZnO nanoparticles on development and early reproductive performance of Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113475. [PMID: 35364508 DOI: 10.1016/j.ecoenv.2022.113475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Most aquatic ecosystems are at risk of being polluted by new environmental pollutant nanoparticles. As the main food source of zooplankton, the biomass of algae always fluctuates. Cladocerans, an important part of zooplankton, are usually be simultaneously exposed to different abundance of algae and nanoparticles in aquatic environment. To evaluate the combined effects of food abundance and ZnO nanoparticles concentration on the development and early reproductive performance of cladocerans, we exposed Daphnia magna, a common and representative model organism in cladocerans, to the combinations of different abundances of Chlorella pyrenoidosa and different concentrations of ZnO nanoparticles, recorded the key life-history traits, and used multiple models to fit the data. Results showed that high level of ZnO nanoparticles and low abundance Chlorella had an interactively negative effect on the life history of D. magna. When D. magna was exposed to ZnO nanoparticles, some life history traits, such as survival time, body length at maturation, and offspring per female, increased exponentially with the increase of food abundance, and then reached a theoretical maximum value, whereas some other life history traits, such as time to maturation and time to first brood, showed an opposite trend. However, higher Chlorella abundance reduced the negative effect of ZnO nanoparticles on D. magna, but the negative effect could not be eliminated with the increase of food abundance. Below Chlorella 0.30 mg C L-1, food plays a decisive role, while at or above this threshold, ZnO nanoparticles play a decisive role. Therefore, the effect of different ZnO nanoparticles concentrations can be fully reflected only when food is sufficient, and the negative effects of food shortages may mask the toxic effects of ZnO nanoparticles on D. magna. The findings indicated that the effects of food abundance should be considered in evaluating the realistic impact of pollutants on zooplankton.
Collapse
Affiliation(s)
- Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jing Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Da Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|