1
|
Kong X, Barone GD, Jin D, Mao Y, Nan F, Xu L, Wang Z, Deng Y, Cernava T. Pollution Status, Ecological Effects, and Bioremediation Strategies of Phthalic Acid Esters in Agricultural Ecosystems: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27668-27678. [PMID: 39620367 DOI: 10.1021/acs.jafc.4c07884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Phthalic acid esters (PAEs) are common organic contaminants in farmland soil throughout agricultural systems, posing significant threats to human health and thus closely associated with food safety concerns. Here, we consolidate the latest findings regarding the distribution, ecological effects, bioremediation methods, and microbial degradation pathways of PAEs in agricultural ecosystems. Generally, di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), and di-isobutyl phthalate (DiBP) exhibit the highest detection frequencies and concentrations in soil, air and agricultural products. The presence of these PAEs in agricultural ecosystems can significantly affect soil and plant-associated microbial communities, leading to decreased yield and quality of agricultural products. Bioremediation techniques, such as microbial degradation and phytoremediation, are frequently explored to address these issues. Overall, this review provides a comprehensive overview of current research on PAEs in China's agricultural systems and offers insights into potential problems and future research directions.
Collapse
Affiliation(s)
- Xiao Kong
- School of Public Health, Qingdao University, Qingdao 266021, China
| | | | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yiting Mao
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Fengting Nan
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhigang Wang
- Department of Biotechnology, Institute of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
2
|
Liu L, Liu C, Fu R, Nie F, Zuo W, Tian Y, Zhang J. Full-chain analysis on emerging contaminants in soil: Source, migration and remediation. CHEMOSPHERE 2024; 363:142854. [PMID: 39019170 DOI: 10.1016/j.chemosphere.2024.142854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Emerging contaminants (ECs) are gaining attention due to their prevalence and potential negative impacts on the environment and human health. This paper provides a comprehensive review of the status and trends of soil pollution caused by ECs, focusing on their sources, migration pathways, and environmental implications. Significant ECs, including plastics, synthetic polymers, pharmaceuticals, personal care products, plasticizers, and flame retardants, are identified due to their widespread use and toxicity. Their presence in soil is attributed to agricultural activities, urban waste, and wastewater irrigation. The review explores both horizontal and vertical migration pathways, with factors such as soil type, organic matter content, and moisture levels influencing their distribution. Understanding the behavior of ECs in soil is critical to mitigating their long-term risks and developing effective soil remediation strategies. The paper also examines the advantages and disadvantages of in situ and ex situ treatment approaches for ECs, highlighting optimal physical, chemical, and biological treatment conditions. These findings provide a fundamental basis for addressing the challenges and governance of soil pollution induced by ECs.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chunrui Liu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - RunZe Fu
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Lingshui Le'an International Education Innovation Pilot Zone, Hainan Province, 016000, China
| | - Fandi Nie
- Liaozhong District No. 1 Senior High School, No.139, Zhengfu Road, Liaozhong District, Shenyang, 110000, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
3
|
Li X, Jiang N, Zhang J, Yao X, Liu W, Wang Q, Ding J, Hu Z, Zhu L, Wang J, Wang J. Soil health hazards of di(2-ethylhexyl) phthalate: New perspectives on earthworms from different ecological niches DNA damage, gut microbial disruption and soil enzyme changes. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133700. [PMID: 38325098 DOI: 10.1016/j.jhazmat.2024.133700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is perceived an emerging threat to terrestrial ecosystem, however, clear and accurate studies to fully understander ecotoxicity and underlying mechanisms of DEHP on the soil fauna remain poorly understood. Therefore, this study conducted a microcosm experiment of two earthworm ecotypes to investigate the ecological hazards of DHEP from multiple perspectives. The results showed that DEHP significantly increased the 8-hydroxy-deoxyguanosine (8-OHdG) content both in Eisenia foetida (13.76-133.0%) and Metaphire guillelmi (11.01-49.12%), leading to intracellular DNA damage. Meanwhile, DEHP negatively affected the expression of functional genes (ATP-6, NADH1, COX), which may be detrimental to mitochondrial respiration and oxidative stress at the gene level. The two earthworm guts shared analogous dominant bacteria however, the incorporation of DEHP drastically suppressed the homogeneity and diversity of the gut microbes, which further disrupted the homeostasis of the gut microbial ecological network. The keystone species in the gut of E. foetida decreased under DEHP stress but increased in the gut of M. guillelmi. Moreover, DEHP presented detrimental effects on soil enzyme activity, which is mainly associated with pollutant levels and earthworm activity. Collectively, the findings expand the understanding of soil ecological health and reveal the underlying mechanisms of the potential exposure risk to DEHP.
Collapse
Affiliation(s)
- Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China; College of Natural Resources and Environment, Northwest A& F University, Yangling 712000, PR China
| | - Juan Zhang
- Shandong Institute for Product Quality Inspection, Jin'an 250100, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Wenrong Liu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Jia Ding
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Zhuran Hu
- Shandong Green and Blue Bio-technology Co. Ltd, Tai'an 271000, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
4
|
Estoppey N, Castro G, Slinde GA, Hansen CB, Løseth ME, Krahn KM, Demmer V, Svenni J, Tran TVAT, Asimakopoulos AG, Arp HPH, Cornelissen G. Exposure assessment of plastics, phthalate plasticizers and their transformation products in diverse bio-based fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170501. [PMID: 38307289 DOI: 10.1016/j.scitotenv.2024.170501] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Bio-based fertilizers (BBFs) produced from organic waste have the potential to reduce societal dependence on limited and energy-intensive mineral fertilizers. BBFs, thereby, contribute to a circular economy for fertilizers. However, BBFs can contain plastic fragments and hazardous additives such as phthalate plasticizers, which could constitute a risk for agricultural soils and the environment. This study assessed the exposure associated with plastic and phthalates in BBFs from three types of organic wastes: agricultural and food industry waste (AgriFoodInduWaste), sewage sludge (SewSludge), and biowaste (i.e., garden, park, food and kitchen waste). The wastes were associated with various treatments like drying, anaerobic digestion, and vermicomposting. The number of microplastics (0.045-5 mm) increased from AgriFoodInduWaste-BBFs (15-258 particles g-1), to SewSludge-BBFs (59-1456 particles g-1) and then to Biowaste-BBFs (828-2912 particles g-1). Biowaste-BBFs mostly contained packaging plastics (e.g., polyethylene terephthalate), with the mass of plastic (>10 g kg-1) exceeding the EU threshold (3 g kg-1, plastics >2 mm). Other BBFs mostly contained small (< 1 mm) non-packaging plastics in amounts below the EU limit. The calculated numbers of microplastics entering agricultural soils via BBF application was high (107-1010 microplastics ha-1y-1), but the mass of plastic released from AgriFoodInduWaste-BBFs and SewSludge-BBFs was limited (< 1 and <7 kg ha-1y-1) compared to Biowaste-BBFs (95-156 kg ha-1y-1). The concentrations of di(2-ethylhexyl)phthalate (DEHP; < 2.5 mg kg-1) and phthalate transformation products (< 8 mg kg-1) were low (< benchmark of 50 mg kg-1 for DEHP), attributable to both the current phase-out of DEHP as well as phthalate degradation during waste treatment. The Biowaste-BBF exposed to vermicomposting indicated that worms accumulated phthalate transformation products (4 mg kg-1). These results are overall positive for the implementation of the studied AgriFoodInduWaste-BBFs and SewSludge-BBFs. However, the safe use of the studied Biowaste-BBFs requires reducing plastic use and improving sorting methods to minimize plastic contamination, in order to protect agricultural soils and reduce the environmental impact of Biowaste-BBFs.
Collapse
Affiliation(s)
- Nicolas Estoppey
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway.
| | - Gabriela Castro
- Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway; Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research in Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gøril Aasen Slinde
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Caroline Berge Hansen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Mari Engvig Løseth
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | | | - Viona Demmer
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Jørgen Svenni
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Mechanical, Electrical and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, 0176 Oslo, Norway
| | - Teresa-Van-Anh Thi Tran
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Mechanical, Electrical and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, 0176 Oslo, Norway
| | | | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
5
|
Wang L, Dou Z, Ma C, Jia X, Wang H, Bao W, Wang L, Qu J, Zhang Y. Remediation of di(2-ethylhexyl) phthalate (DEHP) contaminated black soil by freeze-thaw aging biochar. J Environ Sci (China) 2024; 135:681-692. [PMID: 37778838 DOI: 10.1016/j.jes.2023.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 10/03/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a complex structure with high toxicity, is a common organic pollutant. This study investigated the effects of fresh biochar (FBC), and freeze-thaw cycled aged biochar (FTC-BC) on DEHP-contaminated soils using a pot experiment. The specific surface area of FBC increased from 145.20 to 303.50 m2/g, and oxygen-containing functional groups increased from 1.26 to 1.48 mol/g after freeze-thaw cycles, greatly enhancing the adsorption of DEHP by biochar in the soil. The comprehensive radar chart evaluation showed that FBC and FTC-BC reduced DEHP growth stress and improved the soil properties. Compared with FBC, FTC-BC performed better in protecting the normal growth of pakchoi and improving soil properties. In addition, the application of biochar increased the diversity and abundance of bacteria in the DEHP-contaminated soil and changed the composition of the soil bacterial community. The partial least squares path model (PLS-PM) showed that adding biochar as a soil remediation agent significantly positively impacted soil nutrients and indirectly reduced the DEHP levels in soil and plants by increasing soil microbial diversity. Compared with FBC, FTC-BC creates a more satisfactory living environment for microorganisms and has a better effect on the degradation of DEHP in the soil. This study provides a theoretical basis for future biochar remediation of DEHP-contaminated soils in cold high-latitude regions.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zeyu Dou
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chaoran Ma
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaochen Jia
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hongye Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wenjing Bao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Hung CM, Chen CW, Huang CP, Dong CD. Pretreatment of marine sediment for the removal of di-(2-ethylhexyl) phthalate by sulfite in the presence of sorghum distillery residue-derived biochar and its effect on microbiota response. CHEMOSPHERE 2024; 346:140571. [PMID: 38303388 DOI: 10.1016/j.chemosphere.2023.140571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
This study investigates the mechanism behind the oxidation di-(2-ethylhexyl) phthalate (DEHP) in marine sediment by coupling sulfite using biochar prepared from sorghum distillery residue (SDRBC). The rationale for this investigation stems from the need to seek effective methods for DEHP-laden marine sediment remediation. The aim is to assess the feasibility of sulfite-based advanced oxidation processes for treating hazardous materials such as DEHP containing sediment. To this end, the sediment in question was treated with 2.5 × 10-5 M of sulfite and 1.7 g L-1 of SDRBC700 at acidic pH. Additionally, the study demonstrated that the combination of SDRBC/sulfite with a bacterial system enhances DEHP removal. Thermostilla bacteria were enriched, highlighting their role in sediment treatment. This study concludes that sulfite-associated sulfate radicals-driven carbon advanced oxidation process (SR-CAOP) offers sustainable sediment pretreatment through the SDRBC/sulfite-mediated microbial consortium, in which the SO3•- and 1O2 were responsible for DEHP degradation. SDRBC/sulfite offers an effective and environmentally friendly method for removing DEHP. Further, these results can be targeted at addressing industry problems related to sediment treatment.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
7
|
Li J, Yang L, Yu S, Ding A, Zuo R, Yang J, Li X, Wang J. Environmental stressors altered the groundwater microbiome and nitrogen cycling: A focus on influencing mechanisms and pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167004. [PMID: 37704146 DOI: 10.1016/j.scitotenv.2023.167004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Nitrogen cycling, as an important biogeochemical process in groundwater, strongly impacts the energy and matter flow of groundwater ecology. Phthalate esters (PAEs) were screened as key environmental stressors in the groundwater of Beijing, contributing to the alteration of microbial community structure and functions; thus, it could be deduced that these stressors might influence nitrogen cycling that is almost exclusively mediated by microorganisms. Identification of the influences of PAEs on groundwater nitrogen cycling and exploration of the potential influence mechanisms and pathways are vital but still challenging. This study explored the influence mechanisms and pathways of the environmental stressor PAE on nitrogen cycling in groundwater collected from a typical monitoring station in Beijing based on high-throughput sequencing and bioinformatics analysis combined with mediation analysis methods. The results suggested that among the 5 detected PAEs, dimethyl phthalate and diethyl phthalate significantly negatively impacted nitrogen cycling processes, especially nitrogen fixation and denitrification processes (p < 0.05), in groundwater. Their influences were fully or partially mediated by functional microorganisms, particularly assigned keystone genera (such as Dechloromonas, Aeromonas and Noviherbaspirillum), whose abundance was significantly inhibited by these PAEs via dysregulation of carbohydrate metabolism and activation of defense mechanisms. These findings confirmed that the influences of environmental stressors PAEs on nitrogen cycling in groundwater might be mediated by the "PAE stress-groundwater microbiome-nitrogen cycling alteration" pathway. This study may advance the understanding of the consequences of environmental stressors on groundwater ecology and support the ecological hazard assessment of groundwater stressors.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Lei Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shihang Yu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Aizhong Ding
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jie Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaofei Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jinsheng Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China; Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.
| |
Collapse
|
8
|
Zou ZB, Wu TZ, Yang LH, He XW, Liu WY, Zhang K, Xie CL, Xie MM, Zhang Y, Yang XW, Wang JS. Hepialiamides A-C: Aminated Fusaric Acid Derivatives and Related Metabolites with Anti-Inflammatory Activity from the Deep-Sea-Derived Fungus Samsoniella hepiali W7. Mar Drugs 2023; 21:596. [PMID: 37999419 PMCID: PMC10672582 DOI: 10.3390/md21110596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
A systematic investigation combined with a Global Natural Products Social (GNPS) molecular networking approach, was conducted on the metabolites of the deep-sea-derived fungus Samsoniella hepiali W7, leading to the isolation of three new fusaric acid derivatives, hepialiamides A-C (1-3) and one novel hybrid polyketide hepialide (4), together with 18 known miscellaneous compounds (5-22). The structures of the new compounds were elucidated through detailed spectroscopic analysis. as well as TD-DFT-based ECD calculation. All isolates were tested for anti-inflammatory activity in vitro. Under a concentration of 1 µM, compounds 8, 11, 13, 21, and 22 showed potent inhibitory activity against nitric oxide production in lipopolysaccharide (LPS)-activated BV-2 microglia cells, with inhibition rates of 34.2%, 30.7%, 32.9%, 38.6%, and 58.2%, respectively. Of particularly note is compound 22, which exhibited the most remarkable inhibitory activity, with an IC50 value of 426.2 nM.
Collapse
Affiliation(s)
- Zheng-Biao Zou
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China; (Z.-B.Z.); (W.-Y.L.)
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (T.-Z.W.); (K.Z.); (C.-L.X.); (M.-M.X.); (Y.Z.)
| | - Tai-Zong Wu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (T.-Z.W.); (K.Z.); (C.-L.X.); (M.-M.X.); (Y.Z.)
| | - Long-He Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (L.-H.Y.); (X.-W.H.)
| | - Xi-Wen He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (L.-H.Y.); (X.-W.H.)
| | - Wen-Ya Liu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China; (Z.-B.Z.); (W.-Y.L.)
| | - Kai Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (T.-Z.W.); (K.Z.); (C.-L.X.); (M.-M.X.); (Y.Z.)
| | - Chun-Lan Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (T.-Z.W.); (K.Z.); (C.-L.X.); (M.-M.X.); (Y.Z.)
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (T.-Z.W.); (K.Z.); (C.-L.X.); (M.-M.X.); (Y.Z.)
| | - Yong Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (T.-Z.W.); (K.Z.); (C.-L.X.); (M.-M.X.); (Y.Z.)
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (T.-Z.W.); (K.Z.); (C.-L.X.); (M.-M.X.); (Y.Z.)
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China; (Z.-B.Z.); (W.-Y.L.)
| |
Collapse
|
9
|
Chen X, Wu W, Zeng J, Ibañez E, Cifuentes A, Mao J, Yu L, Wu H, Li P, Zhang Z. A smartphone-powered photoelectrochemical POCT via Z-scheme Cu 2O/Cu 3SnS 4 for dibutyl phthalate in the environmental and food. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132281. [PMID: 37639792 DOI: 10.1016/j.jhazmat.2023.132281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
As a major hazardous additive released from microplastics and nanoplastics, identifying dibutyl phthalate (DBP) in complex matrices attracts a growing concern in environmental monitoring and food safety. For the first time, Cu2O/Cu3SnS4 nanoflower is prepared and serves as the photoactive material which can be constructed as a smartphone-based photoelectrochemical (PEC) point-of-care test (POCT). Effectively matching energy levels between Cu2O and Cu3SnS4 accelerated the transfer of photogenerated electron-hole pairs, significantly improving the intelligent PEC POCT performance. The novel Cu2O/Cu3SnS4 has proven to be the Z-scheme heterojunction by density functional theory calculation. A competitive immunoassay has been realized on a Cu2O/Cu3SnS4 modified electrode, dramatically decreasing the photocurrent signal and enhancing POCT sensitivity. The smartphone has been used to record and transfer PEC results. Under optimal conditions, the PEC POCT exhibited a satisfying linear range (0.04-400 ng/mL) and a low detection limit of 7.94 pg/mL in real samples, together with excellent stability, repeatability, reproducibility and selectivity. The PEC POCT system provides good performance and practicability in determining DBP in water and edible oil samples. This proposal provides a practical strategy for the intelligent POCT for environment monitoring and food safety.
Collapse
Affiliation(s)
- Xiao Chen
- School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laborator, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China; College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wenqin Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laborator, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Jing Zeng
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Elena Ibañez
- Foodomics Laboratory, CIAL, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Alejandro Cifuentes
- Foodomics Laboratory, CIAL, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Jin Mao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laborator, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laborator, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Huimin Wu
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laborator, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Zhaowei Zhang
- School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laborator, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China.
| |
Collapse
|
10
|
Li Y, Cheng S, Fang H, Yang Y, Guo Y, Zhou Y, Shi F. Composition, distribution, health risks, and drivers of phthalates in typical red paddy soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94814-94826. [PMID: 37537413 DOI: 10.1007/s11356-023-28815-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
The accelerated accumulation of phthalate esters (PAEs) in paddy soils poses a serious threat to human health. However, related studies mainly focus on facility vegetable fields, drylands, and orchards, and little is known about paddy soils. In this study, 125 samples were collected from typical red paddy fields to investigate the pollution characteristics, sources, health risks, and main drivers of PAEs. Soil physicochemical properties, enzyme activity, and bacterial community composition were also measured simultaneously. The results showed that eight PAE congeners were detected ranging from 0.17 to 1.97 mg kg-1. Di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and di-isobutyl phthalate (DIBP) were the most abundant PAE congeners, accounting for 81% of the total PAEs. DEHP exhibited a potential carcinogenic risk to humans through the intake route. The main PAEs were positively correlated with soil organic matter (SOM) and soil water content (SWC) contents. Low levels of PAEs increased bacterial abundance. Furthermore, most PAE congeners were positively correlated with hydrolase activity. Soil acidity and nutrient dynamics played a dominant role in the bacterial community composition, with PAE congeners playing a secondary role. These findings suggest that there may be a threshold response between PAEs and organic matter and nutrient transformation in red paddy soils, and that microbial community should be the key driver. Overall, this study deepens the understanding of ecological risks and microbial mechanisms of PAEs in red paddy soils.
Collapse
Affiliation(s)
- Yuna Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulan Cheng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huajun Fang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China.
- The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China.
| | - Yan Yang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yifan Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Zhou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangying Shi
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
11
|
Fan Y, Li T, Zhang Z, Song X, Cun D, Cui B, Wang Y. Uptake, accumulation, and degradation of dibutyl phthalate by three wetland plants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1508-1517. [PMID: 37768752 PMCID: wst_2023_291 DOI: 10.2166/wst.2023.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The uptake and degradation mechanisms of dibutyl phthalate (DBP) by three wetland plants, namely Lythrum salicaria, Thalia dealbata, and Canna indica, were studied using hydroponics. The results revealed that exposure to DBP at 0.5 mg/L had no significant effect on the growth of L. salicaria and C. indica but inhibited the growth of T. dealbata. After 28 days, DBP concentrations in the roots of L. salicaria, T. dealbata, and C. indica were 8.74, 5.67, and 5.46 mg/kg, respectively, compared to 2.03-3.95 mg/kg in stems and leaves. Mono-n-butyl phthalate concentrations in L. salicaria tissues were significantly higher than those in the other two plants at 23.1, 15.0, and 13.6 mg/kg in roots, stems, and leaves, respectively. The roots of L. salicaria also had the highest concentration of phthalic acid, reaching 2.45 mg/kg. Carboxylesterase, polyphenol oxidase, and superoxide dismutase may be the primary enzymes involved in DBP degradation in wetland plants. The activities of these three enzymes exhibited significant changes in plant tissues. The findings suggest L. salicaria as a potent plant for phytoremediation and use in constructed wetlands for the treatment of DBP-contaminated wastewater.
Collapse
Affiliation(s)
- Yaocheng Fan
- China Communications Construction Company Second Harbor Consultants Co., Ltd, Wuhan 430060, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China E-mail:
| | - Tiancui Li
- Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan 430010, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Zihan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Xiaoyong Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Deshou Cun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Baihui Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Yuewei Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
| |
Collapse
|
12
|
Wang P, Ma J, Wang L, Li L, Yan X, Zhang R, Cernava T, Jin D. Di-n-butyl phthalate stress induces changes in the core bacterial community associated with nitrogen conversion during agricultural waste composting. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130695. [PMID: 36587593 DOI: 10.1016/j.jhazmat.2022.130695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) loss during composting reduces the quality of compost products and causes secondary environmental pollution. Phthalate esters (PAEs) are common pollutants in agricultural wastes. However, little information is currently available on how PAEs affect N conversion during agricultural waste composting. This research systematically analyzed the impact of di-n-butyl phthalate (DBP) pollution on the N conversion and its related microbial community during composting. Our results indicated that DBP stress results in a shorter thermophilic phase, and then slower compost maturation during composting. Notably, DBP stress inhibited the conversion of ammonia to nitrate, but increased the release of NH3 and N2O leading to an increased N loss and an elevated greenhouse effect. Furthermore, DBP exposure led to a reduction of bacteria related to NH4+ and NO3- conversion and altered the network complexity of the bacterial community involved in N conversion. It also reduced the abundance of a major nitrification gene (amoA) (P < 0.01) and increased the abundance of denitrification genes (nirK and norB) (P < 0.05). Moreover, DBP affected the overall microbial community composition at all tested concentrations. These findings provide theoretical and methodological basis for improving the quality of PAE-contaminated agricultural waste compost products and reducing secondary environmental pollution.
Collapse
Affiliation(s)
- Ping Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Jing Ma
- Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China; Key Laboratory of Yellow River Sediment Research, MWR, Zhengzhou 450003, China
| | - Lixin Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Linfan Li
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Xinyu Yan
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Ruyi Zhang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
Jiang L, Zhu X, Luo C, Song D, Song M. The synergistic toxicity effect of di(2-ethylhexyl)phthalate and plant growth disturbs the structure and function of soil microbes in the rhizosphere. ENVIRONMENT INTERNATIONAL 2022; 170:107629. [PMID: 36395556 DOI: 10.1016/j.envint.2022.107629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a dominant phthalic acid ester in the environment and commonly occurs at high concentration in agricultural soils. Its influence on the soil microbial community has been widely reported, while research related to its effects on microbial structure, function, and interactions in the rhizosphere, a microbial hotspot region in the terrestrial ecosystem, is still limited. This study investigated the response of microbes in the rhizosphere to DEHP contamination. DEHP reduced microbial quantity, shifted the microbial community structure, and enriched the soil bacteria with potential DEHP degraders. Although the rhizosphere can alleviate DEHP toxicity, DEHP still played an important role in microbial community construction in the rhizosphere. Interestingly, some microbes were influenced by the synergistic toxicity effect of DEHP addition and plant growth, and there were significant differences in their relative abundance and alpha diversity in soil treated with both DEHP and planting compared to soils with just DEHP spiking or planting. The genes related to cell motility, metabolism of terpenoids and polyketides, protein families, genetic information processing, and replication and repair pathways changed only in soil treated with both DEHP and planting further proved the existence of synergistic toxicity. Anyway, the impact of DEHP on microbial function in the rhizosphere was important with 52.42‰ of the genes being changed. The change in cell motility, biofilm formation, and genes related to the quorum sensing pathway might affect the relationship between microbes, which play a crucial role in ecosystem function. This was further proven by changes in the microbial co-occurrence pattern. Our results can benefit risk evaluation of DEHP to microbial community in the rhizosphere, which is important for the effective function of terrestrial ecosystems and soil health.
Collapse
Affiliation(s)
- Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xiaoping Zhu
- The Pearl River Hydraulic Research Institute, Guangzhou 510000, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Dandan Song
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Mengke Song
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, China.
| |
Collapse
|
14
|
Manzi HP, Zhang P, Zhang L, Xing X, Yue J, Song Z, Nan L, Yujun S, Khan A, Yoon Y, Salama ES. Effect of dibutyl phthalate on microalgal growth kinetics, nutrients removal, and stress enzyme activities. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105741. [PMID: 36122470 DOI: 10.1016/j.marenvres.2022.105741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The dibutyl phthalate (DPB) is an emerging plasticizer contaminant that disrupts the biological processes of primary producers, especially phytoplankton. In this study, two microalgal species (Chlorella sp. GEEL-08 and Tetradesmus dimorphus GEEL-04) were exposed to various concentrations of DBP extending from 0 to 100 mg/L. The growth kinetics, N-nitrate, and P-phosphate removal efficiency were assessed. The response enzymes such as malonaldehyde (MDA) and superoxide dismutase (SOD) were also investigated. The results revealed that the Chlorella sp. GEEL-08 at 10 mg/L concentration of DBP exhibited higher growth (0.88 OD680nm) compared to T. dimorphus GEEL-04 (0.80 OD680nm). More than 94% of N and P were removed from culture media by both microalgal species. The DBP (>50 mg/L) significantly exacerbates the growth of both microalgae species and the growth inhibition ratio was in the range of 3.6%-25.9%. The SOD activity and MDA were higher in T. dimorphus culture media than in the culture media of Chlorella sp. The results reflect the hazard and the risk of plasticizers on primary producers in the ecosystem.
Collapse
Affiliation(s)
- Habasi Patrick Manzi
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Lihong Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Xiaohong Xing
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Jianwei Yue
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Zhongzhong Song
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Lan Nan
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Su Yujun
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Aman Khan
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou City, Gansu Province, 730000, PR China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China.
| |
Collapse
|
15
|
Wang P, Ma J, Wang Z, Jin D, Pan Y, Su Y, Sun Y, Cernava T, Wang Q. Di-n-butyl phthalate negatively affects humic acid conversion and microbial enzymatic dynamics during composting. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129306. [PMID: 35739802 DOI: 10.1016/j.jhazmat.2022.129306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
To understand the effects of phthalic acid esters (PAEs) on humic acid (HA) conversion, enzymatic and specific metabolic dynamics during composting under di-n-butyl phthalate (DBP) stress were evaluated for the first time. The results indicated that HA conversion was mainly related to bacteria rather than fungi, with positive associations with Actinobacteria, Chloroflexi, and Gemmatimonadota (all P < 0.05), and negative associations with Proteobacteria and Bacteroidota (all P < 0.05), while DBP stress retarded HA formation by altering the core microbes related to HA formation and their metabolic functions. Moreover, typical hydrolase and oxidoreductase activities were altered under DBP stress, proteases and cellulases were hindered, and peroxidases as well as polyphenol oxidases were promoted during composting. Overall, our data shows that DBP stress can retard HA formation and compost maturation by interfering with microbial activity. This study provides potentially useful information for the degradation and reuse of PAE-contaminated waste.
Collapse
Affiliation(s)
- Ping Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Jing Ma
- Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China; Key Laboratory of Yellow River Sediment Research, MWR, Zhengzhou 450003, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Decai Jin
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yuting Pan
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Yazi Su
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Yu Sun
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
| | - Qian Wang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| |
Collapse
|