1
|
Liu X, Wang X, Hong S, Zhou H, Cao X, Li K, Zhang Q, Yao C, Chen W, Li W, Song W, Rao Q. A novel approach based on supramolecular solvents microextraction for quick detection of perfluoroalkyl acids and their precursors in aquatic food. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136169. [PMID: 39418903 DOI: 10.1016/j.jhazmat.2024.136169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Per-and polyfluoroalkyl substances (PFASs) have garnered significant attention owing to their prevalence and adverse effects on humans. The direct dietary intake of perfluoroalkyl acids (PFAAs) and PFAAs precursors (pre-PFAAs) biotransformation are considered major contributors to human exposure to PFASs. However, little information is available on analytical methods for the simultaneous detection of PFAAs and pre-PFAAs. In the present study, a single-step sample-treatment-based supramolecular solvents-dispersed liquid-liquid microextraction (SUPRASs-DLLME) technique was established for the analysis of 16 PFAAs and 7 pre-PFAAs in aquatic food. SUPRASs were synthesized using 1-heptanol (3 mL) and tetrahydrofuran (4 mL), which were self-assembled in water. The parameters for microextraction, such as extraction method and enrichment capacity, were optimized. Under the optimum conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.03-0.15 ng·g-1 and 0.1-0.5 ng·g-1, respectively. Good linearities (R2 > 0.996) were obtained for all the target compounds, and the recoveries ranged 81.1-120 % with relative standard deviations (RSDs) lower than 20 %. This method was applied to the analysis of 16 PFAAs and 7 pre-PFAAs in aquatic food samples (crabs, prawns, and fish). This study provides a new idea for analyzing other pollutants in biological samples.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Food Sciences, Shanghai Ocean University, Shanghai 201306, China; Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xianli Wang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai 201106, China.
| | - Shuang Hong
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai 201106, China
| | - Huatian Zhou
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai 201106, China
| | - Xiaolong Cao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai 201106, China
| | - Kepiao Li
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai 201106, China
| | - Qicai Zhang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai 201106, China
| | - Chunxia Yao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai 201106, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences; Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences; Shanghai 201403, China
| | - Weiguo Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai 201106, China.
| | - Qinxiong Rao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai 201106, China.
| |
Collapse
|
2
|
Park J, Cho YS, Seo DW, Choi JY. An update on the sample preparation and analytical methods for synthetic food colorants in food products. Food Chem 2024; 459:140333. [PMID: 38996638 DOI: 10.1016/j.foodchem.2024.140333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Colorants, especially synthetic colorants, play a crucial role in enhancing the aesthetic qualities of food owing to their cost-effectiveness and stability against environmental factors. Ensuring the safe and regulated use of colorants is essential for maintaining consumer trust in food safety. Various preparation and analytical technologies, which are continuously undergoing improvement, are currently used to quantify of synthetic colorants in food products. This paper reviews recent developments in analytical techniques for synthetic food colorants, detection and compares the operational principles, advantages, and disadvantages of each technology. Additionally, it also explores advancements in these technologies, discussing several invaluable tools of analysis, such as high-performance liquid chromatography, liquid chromatography-tandem mass spectrometry, electrochemical sensors, digital image analysis, near-infrared spectroscopy, and surface-enhanced Raman spectroscopy. This comprehensive overview aims to provide valuable insights into current progress and research in the field of food colorant analysis.
Collapse
Affiliation(s)
- Juhee Park
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Yong Sun Cho
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Dong Won Seo
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Ji Yeon Choi
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
3
|
Ares AM, Alcaide L, Bernal J, Valverde S. Development and validation of a green analytical method for determining fourteen bisphenols in bee pollen by ultra-high-performance liquid chromatography-tandem mass spectrometry. Food Res Int 2024; 195:114955. [PMID: 39277263 DOI: 10.1016/j.foodres.2024.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
A new analytical method was developed and validated to determine fourteen bisphenols (A, B, C, E, F, M, P, S, Z, AF, AP, BP, FL, PH) in bee pollen using ultra-high-performance liquid chromatography-tandem mass spectrometry. Two different sample treatments were proposed and evaluated: one based on the QuEChERS (quick, easy, cheap, effective, rugged & safe) approach and the other utilizing microextraction with a supramolecular solvent (SUPRAS). In both cases, average analyte recovery ranged between 71 % and 114 %, and the matrix effect was between -45 % and +5 %, although it was not significant when using the QuEChERS-based method (<±20 %). The environmental impact of both sample treatments was assessed using different analytical metrics, with both procedures classified as environmentally friendly, though slightly better results were obtained for SUPRAS. The method was fully validated, showing that the QuEChERS approach had better overall performance, particularly regarding sensitivity and matrix effect. Consequently, the QuEChERS methodology was applied to determine bisphenols in thirty bee pollen samples from different Spanish regions. Residues of three bisphenols (M, P, and S) were detected, although only bisphenol S was quantified in several samples at low concentration levels (<7 μg kg-1), which is below the established specific migration limit (SML; 50 μg kg-1). However, regarding human health, the estimated daily intake, target hazard quotient, and hazard index assessed were higher than acceptable limits, suggesting a potential risk for human consumers.
Collapse
Affiliation(s)
- Ana M Ares
- I.U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47001 Valladolid, Spain
| | - Lucía Alcaide
- I.U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47001 Valladolid, Spain
| | - José Bernal
- I.U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47001 Valladolid, Spain
| | - Silvia Valverde
- I.U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47001 Valladolid, Spain.
| |
Collapse
|
4
|
Franko N, Kodila A, Sollner Dolenc M. Adverse outcomes of the newly emerging bisphenol A substitutes. CHEMOSPHERE 2024; 364:143147. [PMID: 39168390 DOI: 10.1016/j.chemosphere.2024.143147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
BPA and its analogues are facing increasingly stringent regulations restricting their use due to the increasing knowledge of their harmful effects. It is therefore expected that novel BPA analogues and alternatives will replace them in plastic products, cans and thermal paper to circumvent restrictions imposed by legislation. This raises concerns about the safety of "BPA-free" products, as they contain BPA substitutes whose safety has not been sufficiently assessed prior to their market introduction. The regulatory agencies have recognised BPAP, BPBP, BPC2, BPE, BPFL, BPG, BPP, BPPH, BPS-MAE, BPS-MPE, BP-TMC, BPZ and the alternatives BTUM, D-90, UU and PF201 as compound with insufficient data regarding their safety. We demonstrate that the mentioned compounds are present in consumer products, food and the environment, thus exhibiting toxicological risk not only to humans, but also to other species where their toxic effects have already been described. Results of in silico, in vitro and in vivo studies examining the endocrine disruption and other effects of BPA analogues show that they disrupt the endocrine system by targeting various nuclear receptors, impairing reproductive function and causing toxic effects such as hepatotoxicity, altered behaviour and impaired reproductive function. In vitro and in vivo data on BPA alternatives are literally non-existent, although these compounds are already present in commonly used thermal papers. However, in silico studies predicted that they might cause adverse effects as well. The aim of this article is to comprehensively collate the information on selected BPA substitutes to illustrate their potential toxicity and identify safety gaps.
Collapse
Affiliation(s)
- Nina Franko
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Anja Kodila
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Marija Sollner Dolenc
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Marcinekova P, Melymuk L, Bohlin-Nizzetto P, Martinelli E, Jílková SR, Martiník J, Šenk P, Kukučka P, Audy O, Kohoutek J, Ghebremeskel M, Håland A, Borgen AR, Eikenes H, Hanssen L, Harju M, Cebula Z, Rostkowski P. Development of a supramolecular solvent-based extraction method for application to quantitative analyses of a wide range of organic contaminants in indoor dust. Anal Bioanal Chem 2024; 416:4973-4985. [PMID: 38995406 PMCID: PMC11330406 DOI: 10.1007/s00216-024-05433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
This study investigates the efficacy of supramolecular solvent (SUPRAS) in extracting a diverse spectrum of organic contaminants from indoor dust. Initially, seven distinct SUPRAS were assessed across nine categories of contaminants to identify the most effective one. A SUPRAS comprising Milli-Q water, tetrahydrofuran, and hexanol in a 70:20:10 ratio, respectively, demonstrated the best extraction performance and was employed for testing a wider array of organic contaminants. Furthermore, we applied the selected SUPRAS for the extraction of organic compounds from the NIST Standard Reference Material (SRM) 2585. In parallel, we performed the extraction of NIST SRM 2585 with conventional extraction methods using hexane:acetone (1:1) for non-polar contaminants and methanol (100%) extraction for polar contaminants. Analysis from two independent laboratories (in Norway and the Czech Republic) demonstrated the viability of SUPRAS for the simultaneous extraction of twelve groups of organic contaminants with a broad range of physico-chemical properties including plastic additives, pesticides, and combustion by-products. However, caution is advised when employing SUPRAS for highly polar contaminants like current-use pesticides or volatile substances like naphthalene.
Collapse
Affiliation(s)
- Paula Marcinekova
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia.
| | | | | | | | - Jakub Martiník
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Petr Kukučka
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Ondřej Audy
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | | | | | | | - Heidi Eikenes
- NILU, Instituttveien 18, Kjeller, 2007, Lillestrøm, Norway
| | - Linda Hanssen
- Fram Center, NILU, Hjalmar Johansens Gate 14, 9007, Tromsø, Norway
| | - Mikael Harju
- Fram Center, NILU, Hjalmar Johansens Gate 14, 9007, Tromsø, Norway
| | - Zofia Cebula
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | | |
Collapse
|
6
|
López-Juan A, Millán-Santiago J, Benedé JL, Chisvert A, Lucena R, Cárdenas S. Coupling Miniaturized Stir Bar Sorptive Dispersive Microextraction to Needle-Based Electrospray Ionization Emitters for Mass Spectrometry: Determination of Tetrahydrocannabinol in Human Saliva as a Proof of Concept. Anal Chem 2024; 96:9629-9635. [PMID: 38743697 PMCID: PMC11170552 DOI: 10.1021/acs.analchem.4c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Direct coupling of sample preparation with mass spectrometry (MS) can speed up analysis, enabling faster decision-making. In such combinations, where the analysis time is mainly defined by the extraction procedure, magnetic dispersive solid-phase extraction emerges as a relevant technique because of its rapid workflow. The dispersion and retrieval of the magnetic sorbent are typically uncoupled stages, thus reducing the potential simplicity. Stir bar sorptive dispersive microextraction (SBSDME) is a novel technique that integrates both stages into a single device. Its miniaturization (mSBSDME) makes it more portable and compatible with low-availability samples. This article reports the direct combination of mSBSDME and MS using a needle-based electrospray ionization (NESI) emitter as the interface. This combination is applied to determine tetrahydrocannabinol in saliva samples, a relevant societal problem if the global consumption rates of cannabis are considered. The coupling requires only the transference of the magnet (containing the sorbent and the isolated analyte) from the mSBSDME to the hub of a hypodermic needle, where the online elution occurs. The application of 5 kV on the needle forms an electrospray on its tip, transferring the ionized analyte to the MS inlet. The excellent performance of mSBSDME-NESI-MS/MS relies on the sensitivity (limits of detection as low as 2.25 ng mL-1), the precision (relative standard deviation lower than 15%), and the accuracy (relative recoveries ranged from 87 to 127%) obtained. According to the results, the mSBSDME-NESI-MS/MS technique promises faster and more efficient chemical analysis in MS-based applications.
Collapse
Affiliation(s)
- Andreu
L. López-Juan
- GICAPC
Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot E-46100, Valencia, Spain
- Affordable
and Sustainable Sample Preparation (AS2P) Research Group, Analytical
Chemistry Department, Instituto Químico para la Energía
y el Medioambiente (IQUEMA), University
of Córdoba, Campus of Rabanales, Marie Curie Building, Córdoba E-14071, Spain
| | - Jaime Millán-Santiago
- Affordable
and Sustainable Sample Preparation (AS2P) Research Group, Analytical
Chemistry Department, Instituto Químico para la Energía
y el Medioambiente (IQUEMA), University
of Córdoba, Campus of Rabanales, Marie Curie Building, Córdoba E-14071, Spain
| | - Juan L. Benedé
- GICAPC
Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot E-46100, Valencia, Spain
| | - Alberto Chisvert
- GICAPC
Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot E-46100, Valencia, Spain
| | - Rafael Lucena
- Affordable
and Sustainable Sample Preparation (AS2P) Research Group, Analytical
Chemistry Department, Instituto Químico para la Energía
y el Medioambiente (IQUEMA), University
of Córdoba, Campus of Rabanales, Marie Curie Building, Córdoba E-14071, Spain
| | - Soledad Cárdenas
- Affordable
and Sustainable Sample Preparation (AS2P) Research Group, Analytical
Chemistry Department, Instituto Químico para la Energía
y el Medioambiente (IQUEMA), University
of Córdoba, Campus of Rabanales, Marie Curie Building, Córdoba E-14071, Spain
| |
Collapse
|
7
|
Dueñas Mas MJ, de Dios-Pérez C, Ballesteros-Gómez A, Rubio S. Supramolecular solvent extraction and ambient mass spectrometry for the determination of organic contaminants in food packaging material. CHEMOSPHERE 2023; 324:138359. [PMID: 36907494 DOI: 10.1016/j.chemosphere.2023.138359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
A rapid method based on a fast sample treatment with supramolecular solvents (SUPRASs) and ambient mass spectrometry (AMS) analysis was developed for the screening and quantification of organic contaminants in food packaging materials (FCMs). The suitability of SUPRASs made up of medium chain alcohols in ethanol:water mixtures was investigated, given their low toxicity, proven capacity for multi-residue analysis (since they provide a wide variety of interactions and multiple binding sites) and restricted access properties for simultaneous sample extraction and clean-up. Two families of emerging organic pollutants, bisphenols and organophosphate flame retardants, were targeted as representative compounds. The methodology was applied to 40 FCMs. Target compounds were quantitated using ASAP (atmospheric solids analysis probe)-low resolution MS and a broad-spectrum screening of contaminants was performed through spectral library search using direct injection probe (DIP) and high resolution MS (HRMS). The results showed the ubiquity of bisphenols and of some flame retardants, as well as the presence of other additives and unknown compounds in about half of the analyzed samples, which highlight the complex composition of FCMs and the possible associated health risks.
Collapse
Affiliation(s)
- María Jesús Dueñas Mas
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| | - Cristina de Dios-Pérez
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| | - Anad Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain.
| | - Soledad Rubio
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
8
|
Vejar-Vivar C, Millán-Santiago J, Mardones C, Lucena R, Cárdenas S. Polydopamine inner wall-coated hypodermic needle as microextraction device and electrospray emitter for the direct analysis of illicit drugs in oral fluid by ambient mass spectrometry. Talanta 2022; 249:123693. [PMID: 35751921 DOI: 10.1016/j.talanta.2022.123693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 10/31/2022]
Abstract
In this article, polydopamine inner wall-coated hypodermic needles (PDA-HNs) are evaluated as both microextraction devices and electrospray ionization (ESI) emitters for determining selected illicit drugs (methamphetamine, cocaine, and methadone) in oral fluid samples. The PDA film, located in the inner wall of the needle, allows the extraction of the analytes at alkaline pH, where their hydrophobic character is promoted. The extracted analytes are finally eluted in a methanol/formic acid mixture that also acts as ESI solution. For this purpose, a dedicated interface based on the connection of a PEEK tube with the needle hub is proposed. This assembly allows delivering the ESI solution by the infusion syringe pump of the mass spectrometer, providing an efficient ESI on the tip of the needle. The double use of the PDA-HNs as microextraction devices and ESI emitters permits the determination of the target analytes with limits of detection and precision (expressed as relative standard deviation) values better than 2.4 μg/L and 17.6%, respectively. The accuracy was evaluated by analyzing independent spiked oral fluid samples, obtaining good results.
Collapse
Affiliation(s)
- Carmina Vejar-Vivar
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain; Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Casilla 237, Correo 3, Concepción, Chile
| | - Jaime Millán-Santiago
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Casilla 237, Correo 3, Concepción, Chile
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| |
Collapse
|