1
|
Sun M, Wang Z, Cao Z, Dong Z. Infants exposure to chemicals in diapers: A review and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176072. [PMID: 39255936 DOI: 10.1016/j.scitotenv.2024.176072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Diapers are a staple care product for infants, yet concerns persist regarding the potential risks posed by dermal exposure to chemicals through their usage. This review provides a comprehensive summary of reported chemicals, highlighting the frequent detection of polychlorodibenzo-p-dioxins (PCDDs), phthalates (PAEs), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), bisphenols (BPs), organotins, and heavy metals. Disposable diapers commonly exhibit higher concentrations of VOCs, PAEs, BPs, and heavy metals than other chemicals. Our estimation reveals formaldehyde as posing the highest dermal exposure dose, reaching up to 0.018 mg/kg bw/day. Conversely, perfluorooctanoic acid (PFOA) exhibits lower exposure, but its non-cancer hazard quotient (0.062) is the highest. In most scenarios, the risk of chemical exposure through diapers for infants is deemed acceptable, while the risk is higher under some extreme exposure scenarios. Using the cancer slope factor recently suggested by U.S. EPA, the cancer risk in diapers raised by PFOA is 5.5 × 10-5. It should be noted that our estimation is approximately 1000-10,000 folds lower than some previous estimations. The high uncertainties associated with exposure and risk estimations are primarily raised by unclear parameters related to chemical migration coefficients, absorption factors, concentrations, and toxicity data for skin exposure, which requires research attention in future. Besides that, future research endeavors should prioritize the identification of potential toxic chemicals and the development of hygiene guidelines and standards.
Collapse
Affiliation(s)
- Mengxin Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Zhexi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Zhaomin Dong
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; School of Materials Science and Engineering, Beihang University, Beijing, China; School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Dang H, Zhang P, Zheng J, Chen S, Wei W, Wang X. Long-term inhalation exposure: A model for phthalate accumulation in the respiratory tract. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117207. [PMID: 39426105 DOI: 10.1016/j.ecoenv.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Inhalation is a major pathway for phthalates (PAEs), an endocrine disruptor, to enter the human body. The actual internal exposure amount that participates in metabolism cannot be estimated by calculating total inhalation intake. OBJECTIVE To estimate the accumulation in each region of the respiratory tract after long-term exposure to PAEs in different populations. METHODS A mass transfer model was developed to simulate the long-term accumulation of PAEs in respiratory tract through inhalation. The model considered (1) mass transfer of PAEs in three phases across seven regions, (2) the effect of temperature differences on the mass transfer process. Based on this model, we simulated adult exposure to PAEs in a laboratory, identified key model parameters, and further simulated various scenarios for children, adults, and elders. RESULTS PAEs are not completely cleared from the respiratory tract after 16 hours, following 8 hours of daily exposure. Under regular laboratory environment, accumulation after 30 days is 3.8 times higher than that after the first day. The distribution of PAEs between the gas and mucus phases has a greater impact on the results than between the gas and particle phases. Children are at the highest risk to Diethyl phthalate (DEP) exposure compared with adults and elders. Nearly 80 % of DEP is exhaled, with 14 % accumulating in the alveolar region after an hour. CONCLUSION This model links indoor air PAEs to human internal exposure, showing that most PAEs are exhaled, while the remainder accumulates in the respiratory tract and may participate in human metabolism.
Collapse
Affiliation(s)
- Haoyu Dang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Pengfei Zhang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Jiachen Zheng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Shengwen Chen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Wenjuan Wei
- Scientific and Technical Center for Building (CSTB), Health and Comfort Department, 84 Avenue Jean Jaurès, Marne la Vallée Cedex 2, Champs sur Marne 77447, France.
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
3
|
Hopf NB, De Luca HP, Borgatta M, Koch HM, Pälmke C, Benedetti M, Berthet A, Reale E. Human skin absorption of three phthalates. Toxicol Lett 2024; 398:38-48. [PMID: 38880306 DOI: 10.1016/j.toxlet.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Population studies reveal widespread exposure to phthalates. Understanding their absorption, distribution, metabolism, and excretion is vital to reduce exposure. However, data on skin absorption remain limited. We thus aim to characterize the skin permeation of three phthalates in a mixture, neat or in emulsion; di(2-ethylhexyl) phthalate (d4-DEHP), dibutyl phthalate (d4-DBP), and diethyl phthalate (d4-DEP), by comparing in vitro human skin (800 µm) permeation (24 hours) results using flow-through diffusion cells with urine results obtained from volunteers exposed to the same mixture applied to a forearm (40 cm2). Metabolites were analyzed in receptor fluids and urine. Phthalates crossed the skin barrier and metabolized into monoesters before elimination. Increased permeation was observed for phthalates in emulsion compared to neat substances, with polyethylene glycol (PEG) in the receptor fluid enhancing emulsion permeation, but not affecting neat substances. In vitro results mirrored in vivo findings: DEP showed rapid permeation (J: ∼2 ug/cm2/h) and urinary excretion peaking at six hours post-application, whereas DBP exhibited slower kinetics (J: ∼0.1 ug/cm2/h), with a urinary peak at 15-17 hours post-application. DEHP had minimal permeation (J: ∼0.0002 ug/cm2/h) with no observable urinary peak. These findings underscore the importance of comprehending phthalate skin absorption for effective exposure mitigation strategies.
Collapse
Affiliation(s)
- Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, Epalinges, Lausanne 1066, Switzerland; Swiss Center for Applied Human Toxicology (SCAHT), Basel.
| | - Hélène P De Luca
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, Epalinges, Lausanne 1066, Switzerland; Swiss Center for Applied Human Toxicology (SCAHT), Basel
| | - Myriam Borgatta
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, Epalinges, Lausanne 1066, Switzerland; Swiss Center for Applied Human Toxicology (SCAHT), Basel
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Manon Benedetti
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, Epalinges, Lausanne 1066, Switzerland
| | - Aurélie Berthet
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, Epalinges, Lausanne 1066, Switzerland; Swiss Center for Applied Human Toxicology (SCAHT), Basel
| | - Elena Reale
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, Epalinges, Lausanne 1066, Switzerland; Swiss Center for Applied Human Toxicology (SCAHT), Basel
| |
Collapse
|
4
|
Tian X, Qin B, Yang L, Li H, Zhou W. Association of phthalate exposure with reproductive outcomes among infertile couples undergoing in vitro fertilization: A systematic review. ENVIRONMENTAL RESEARCH 2024; 252:118825. [PMID: 38609072 DOI: 10.1016/j.envres.2024.118825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Human fertility is impacted by changes in lifestyle and environmental deterioration. To increase human fertility, assisted reproductive technology (ART) has been extensively used around the globe. As early as 2009, the Endocrine Society released its first scientific statement on the potential adverse effects of environmental endocrine-disrupting chemicals (EDCs) on human health and disease development. Chemicals known as phthalates, frequently employed as plasticizers and additives, are common EDCs. Numerous studies have shown that phthalate metabolites in vivo exert estrogen-like or anti-androgenic effects in both humans and animals. They are associated with the progression of a range of diseases, most notably interference with the reproductive process, damage to the placenta, and the initiation of chronic diseases in adulthood. Phthalates are ingested by infertile couples in a variety of ways, including household products, diet, medical treatment, etc. Exposure to phthalates may exacerbate their infertility or poor ART outcomes, however, the available data on phthalate exposure and ART pregnancy outcomes are sparse and contradictory. Therefore, this review conducted a systematic evaluation of 16 papers related to phthalate exposure and ART pregnancy outcomes, to provide more aggregated results, and deepen our understanding of reproductive outcomes in infertile populations with phthalate exposure.
Collapse
Affiliation(s)
- Xiangming Tian
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Boyi Qin
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Li Yang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Huanhuan Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wenhui Zhou
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Peer Muhamed Noorani KR, Flora G, Surendarnath S, Mary Stephy G, Amesho KTT, Chinglenthoiba C, Thajuddin N. Recent advances in remediation strategies for mitigating the impacts of emerging pollutants in water and ensuring environmental sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119674. [PMID: 38061098 DOI: 10.1016/j.jenvman.2023.119674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 01/14/2024]
Abstract
The proliferation of emerging pollutants (EPs), encompassing a range of substances such as phthalates, phenolics, pharmaceuticals, pesticides, personal care products, surfactants, and disinfection agents, has become a significant global concern due to their potential risks to the environment and human well-being. Over the past two decades, numerous research studies have investigated the presence of EPs in wastewater and aquatic ecosystems, with the United States Environmental Protection Agency (USEPA) categorizing these newly introduced chemical compounds as emerging contaminants due to their poorly understood impact. EPs have been linked to adverse health effects in humans, including genotoxic and cytotoxic effects, as well as conditions such as obesity, diabetes, cardiovascular disease, and reproductive abnormalities, often associated with their estrogenic action. Microalgae have shown promise in the detoxification of both inorganic and organic contaminants, and several large-scale microalgal systems for wastewater treatment have been developed. However, the progress of algal bioremediation can be influenced by accidental contaminations and operational challenges encountered in pilot-scale research. Microalgae employ various processes, such as bioadsorption, biouptake, and biodegradation, to effectively remediate EPs. During microalgal biodegradation, complex chemical compounds are transformed into simpler substances through catalytic metabolic degradation. Integrating algal bioremediation with existing treatment methodologies offers a viable approach for efficiently eliminating EPs from wastewater. This review focuses on the use of algal-based biological remediation processes for wastewater treatment, the environmental impacts of EPs, and the challenges associated with implementing algal bioremediation systems to effectively remove emerging pollutants.
Collapse
Affiliation(s)
- Kalilur Rahman Peer Muhamed Noorani
- National Repository for Microalgae and Cyanobacteria - Freshwater (NRMC-F), (Sponsored by DBT, Govt. of India), Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - G Flora
- PG and Research Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - S Surendarnath
- Department of Mechanical Engineering, DVR & Dr. HS MIC College of Technology (A), Vijayawada, 521 180, Andhra Pradesh, India
| | - G Mary Stephy
- PG and Research Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia; Destinies Biomass Energy and Farming Pty Ltd, P.O.Box 7387, Swakomund, Namibia
| | | | - Nooruddin Thajuddin
- National Repository for Microalgae and Cyanobacteria - Freshwater (NRMC-F), (Sponsored by DBT, Govt. of India), Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, India; School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
6
|
Wang Z, Geng S, Zhang J, Yang H, Shi S, Zhao L, Luo X, Cao Z. Methods for the characterisation of dermal uptake: Progress and perspectives for organophosphate esters. ENVIRONMENT INTERNATIONAL 2024; 183:108400. [PMID: 38142534 DOI: 10.1016/j.envint.2023.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Organophosphate esters (OPEs) are a group of pollutants that are widely detected in the environment at high concentrations. They can adversely affect human health through multiple routes of exposure, including dermal uptake. Although attention has been paid to achieving an accurate and complete quantification of the dermal uptake of OPEs, existing evaluation methods and parameters have obvious weaknesses. This study reviewed two main categories of methodologies, namely the relative absorption (RA) model and the permeability coefficient (PC) model, which are widely used to assess the dermal uptake of OPEs. Although the PC model is more accurate and is increasingly used, the most important parameter in this model, the permeability coefficient (Kp), has been poorly characterised for OPEs, resulting in considerable errors in the estimation of the dermal uptake of OPEs. Thus, the detailed in vitro methods for the determination of Kp are summarised and sorted. Furthermore, the commonly used skin membranes are identified and the factors affecting Kp and corresponding mechanisms are discussed. In addition, the experimental conditions, conclusions, and available data on Kp values of the OPEs are thoroughly summarised. Finally, the corresponding knowledge gaps are proposed, and a more accurate and sophisticated experimental system and unknown Kp values for OPEs are suggested.
Collapse
Affiliation(s)
- Zhexi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shuxiang Geng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiayi Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Hengkang Yang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
7
|
Li X, Zheng N, Zhang W, Sun S, An Q, Li Z, Ji Y, Wang S. Estimate of the maximum amount of dust adhering to skin and the upper limit of dust-skin adherence factor for young adults: An example from Changchun, China. CHEMOSPHERE 2023; 339:139754. [PMID: 37553043 DOI: 10.1016/j.chemosphere.2023.139754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/12/2023] [Accepted: 08/05/2023] [Indexed: 08/10/2023]
Abstract
Contaminants present in dust adhering to the skin can pose a significant risk to human health through dermal absorption and hand-to-mouth contact. The adhesion capacity of dust differs significantly from that of soil due to its physicochemical properties. Therefore, applying the raw soil exposure parameters to estimate the health risks associated with dermal exposure to dust may lead to erroneous conclusions. In this study, we quantified the maximum amount of dust that adhered to the skin (MADmax) and the upper limit of dust-skin adherence factor (DSAFmax) in 26 adults using element markers as a proxy for dust. The volunteers were exposed to dust and rinse water samples were collected from their hands, forearms, lower legs, and feet. We analyzed both the raw dust samples and the rinse water samples for 11 element markers, including Be, V, Cr, Mn, Co, Ni, Cu, Zn, Se, Ba, and Pb. The results showed that the MADmax of indoor dust and outdoor dust increased by 0.08-0.62 mg and 0.33-0.56 mg following a 1 cm2 increase in skin surface area, respectively. Based on best dust element markers, the body part-weighted dust-skin adherences (WDSAFmaxs) of indoor dust and outdoor dust were 0.35 and 0.64 mg/cm2, respectively. A smaller particle size and higher moisture content resulted in a larger DSAFmax. Only when indoor dust concentrations exceed 24.2 mg/m3 or outdoor dust concentrations exceed 44.3 mg/m3, can the WDSAFmax be applied directly in the health risk assessment of dermal exposure to dust. The method from this study can be re-applied in different regions, and the adherence data can help to improve future studies on the health effects of dermal exposure to dust.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China; Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
| | - Wenhui Zhang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Zimeng Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| |
Collapse
|
8
|
Ling J, Du Y, Sheng Y, Wang W, Wu H, Chen G, Lv H. Influence of cryopreservation methods of ex vivo rat and pig skin on the results of in vitro permeation test. Eur J Pharm Biopharm 2023:S0939-6411(23)00157-1. [PMID: 37327914 DOI: 10.1016/j.ejpb.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
In vitro permeation test (IVPT) is a frequently used method for in vitro assessment of topical preparations and transdermal drug delivery systems. However, the storage of ex vivo skin for IVPT remains a challenge. Here, two cryopreservation media were chosen to preserve rat and pig skin at -20 °C and -80 °C for further IVPT, namely, 10% DMSO and 10% GLY. The skin viability test confirmed that the skin protective capacity of 10% DMSO and 10% GLY was almost equal. The results of skin viability and IVPT showed that the skin viability and permeability of rat skin in 10%DMSO or 10% GLY were maintained for at least 7 and 30 days at -20 °C and -80 °C compared to fresh skin, respectively; in contrast, those of porcine skin were just maintained for less than 7 days at -20 °C and -80 °C. These results indicated that ex vivo skin for IVPT preserved at -80 °C in 10% DMSO or 10% GLY was optimal. Furthermore, skin permeability was independent of skin barrier integrity. Our study provides reference conditions for preserving IVPT skin, and skin viability can be a potential indicator of IVPT skin.
Collapse
Affiliation(s)
- Jiawei Ling
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Yanan Du
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Yuze Sheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Weiqin Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Hangyi Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Guorong Chen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Huixia Lv
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
9
|
Bajagain R, Panthi G, Park JH, Moon JK, Kwon J, Kim DY, Kwon JH, Hong Y. Enhanced migration of plasticizers from polyvinyl chloride consumer products through artificial sebum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162412. [PMID: 36858231 DOI: 10.1016/j.scitotenv.2023.162412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
In the present study, the migration of plasticizers from modeled and commercial polyvinyl chloride (mPVC and cPVC, respectively) to poly(dimethylsiloxane) via artificial sebum was assessed to mimic the dermal migration of plasticizers. In addition, the various factors affecting migration of phthalic acid esters (PAEs) from diverse PVC products were investigated. The migrated mass and migration ratio of PAEs increased but the migration rate decreased over time. The migration rate increased with sebum mass, contact time, and temperature but decreased under higher pressure. Low-molecular-weight PAEs (dimethyl phthalate and diethyl phthalate) migrated in higher amounts than high-molecular-weight PAEs (dicyclohexyl phthalate [DCHP] and diisononyl phthalate [DINP]). Diffusion of all PAEs in mPVC increased with temperature, with diffusion coefficients ranging from 10-13 to 10-15, 10-12 to 10-14, and 10-10 to 10-12 cm2·s-1 at 25 °C, 40 °C, and 60 °C, respectively; the enthalpy of activation ranged between 127 and 194 kJ·mol-1. Moreover, migration depended on total PAE content of the product, as the diffusion coefficient for DINP in cPVC (softer PVC) was approximately three orders of magnitude higher than that for DINP in mPVC (harder PVC); this may be due to the increase in free volume with increasing plasticizer content. Finally, the daily exposure doses of the plasticizers were estimated. These findings will be helpful for estimating dermal exposure risk.
Collapse
Affiliation(s)
- Rishikesh Bajagain
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Gayatri Panthi
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Joung-Ho Park
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Jae-Kyoung Moon
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Jihye Kwon
- Department of Environmental Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Du Yung Kim
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea.
| |
Collapse
|
10
|
Ma S, Hu X, Tang J, Cui J, Lin M, Wang F, Yang Y, Yu Y. Urinary metabolites and handwipe phthalate levels among adults and children in southern China: Implication for dermal exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129639. [PMID: 35908399 DOI: 10.1016/j.jhazmat.2022.129639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/04/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Paired handwipe and urine samples were collected from adult (n = 130) and child (n = 82) residents of a typical urban community in southern China to examine relationships between external and internal exposure as well as the contribution of dermal absorption to the exposure of phthalates. The concentrations and composition profiles of phthalates were similar in handwipes from both adults and children, and contained mainly di-2-ethylhexyl phthalate (DEHP), di-n-butyl phthalate (DnBP) and di-iso-butyl phthalate (DiBP), consistent with profiles of phthalates in air and dust. The major metabolites of these phthalates, i.e., mono-n-butyl phthalate (mnBP) from DnBP, mono-iso-butyl phthalate (miBP) from DiBP and three metabolites of DEHP (namely mEHP, mEHHP and mEOHP) were widely detected in paired urine samples. Positive correlations were found between contamination levels of DiBP and DnBP in handwipes and their corresponding urinary metabolites, whereas no significant correlation was observed for DEHP. This suggests that dermal absorption might be an important exposure pathway particularly for low molecular weight phthalates. Our study shows that dermal absorption is a non-negligible exposure pathway for phthalates, to which children are particularly sensitive since the contribution of dermal uptake to the internal exposure of phthalates was higher in children than adults.
Collapse
Affiliation(s)
- Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Juntao Cui
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Wang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou 515041, China.
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|