1
|
Akkari I, Kaci MM, Pazos M. Revolutionizing waste: Harnessing agro-food hydrochar for potent adsorption of organic and inorganic contaminants in water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1035. [PMID: 39379759 DOI: 10.1007/s10661-024-13171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Constant pollution from a wide range of human activities has a negative impact on the quantity and quality of the planet's water resources. On the other hand, agro-food waste can impact climate change and other forms of life, in addition to having social, economic, and environmental consequences. However, as a result of their inherent physicochemical properties and lignocellulosic composition, these residues are becoming increasingly recognized as valuable products in line with government policies advocating zero waste and circular economies. An advantageous way to convert these wastes into energy and chemicals is hydrothermal carbonization (HTC). This review highlights the valorization of agro-food waste into hydrochar-based adsorbents for the elimination of organic and inorganic contaminants from aqueous environments. An overview of the toxicity of pollutants in aqueous environments, food waste management, as well as HTC technology was initially proposed. Then, a discussion on the conversion of major agro-food wastes into contaminant adsorbents was given in detail. Adsorption mechanisms as well as the possibility of reuse of adsorbents were also discussed. Enhanced properties of the produced materials enable them to provide competent solutions to various ecological contexts, including removing pollutants from wastewater with cost-effectiveness and satisfactory results. Besides addressing environmental concerns, this sustainable approach opens the door for more environmentally-friendly and resource-efficient applications in the future, making it an exciting prospect.
Collapse
Affiliation(s)
- Imane Akkari
- Materials Technology and Process Engineering Laboratory (LTMGP), University of Bejaia, 06000, Bejaia, Algeria.
| | - Mohamed Mehdi Kaci
- Laboratory of Reaction Engineering, Faculty of Mechanical and Process Engineering (USTHB), BP 32, 16111, Algiers, Algeria.
| | - Marta Pazos
- CINTECX-Universidade de Vigo, Department of Chemical Engineering Campus As Lagoas-Marcosende, University of Vigo, 36310, Vigo, Spain.
| |
Collapse
|
2
|
Kovačević A, Radoičić M, Marković D, Šaponjić Z, Radetić M. Recycled Jute Non-Woven Material Coated with Polyaniline/TiO 2 Nanocomposite for Removal of Heavy Metal Ions from Water. Molecules 2024; 29:4366. [PMID: 39339361 PMCID: PMC11434075 DOI: 10.3390/molecules29184366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Growing volumes of textile waste and heavy metal pollution of water are emerging environmental challenges. In an attempt to tackle these issues, a non-woven sorbent based on jute fibers was fabricated by recycling the textile waste from the carpet industry. The influence of contact time, concentration, pH and temperature on the sorption of lead and copper ions from aqueous solutions was studied. In order to enhance the sorption capacity of the non-woven material, in situ synthesis of polyaniline (PANI) in the presence of TiO2 nanostructures was performed. The contribution of TiO2 nanoparticles and TiO2 nanotubes to the uniformity of PANI coating and overall sorption behavior was compared. Electrokinetic measurements indicated increased swelling of modified fibers. FTIR and Raman spectroscopy revealed the formation of the emeraldine base form of PANI. FESEM confirmed the creation of the uniform nanocomposite coating over jute fibers. The modification with PANI/TiO2 nanocomposite resulted in a more than 3-fold greater sorption capacity of the material for lead ions, and a 2-fold greater absorption capacity for copper ions independently of applied TiO2 nanostructure. The participation of both TiO2 nanostructures in PANI synthesis resulted in excellent cover of jute fibers, but the form of TiO2 had a negligible effect on metal ion uptake.
Collapse
Affiliation(s)
- Aleksandar Kovačević
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Radoičić
- "Vinča" Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia
| | - Darka Marković
- Innovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| | - Zoran Šaponjić
- Institute of General and Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Maja Radetić
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Sivaranjanee R, Senthil Kumar P, Chitra B, Rangasamy G. A critical review on biochar for the removal of toxic pollutants from water environment. CHEMOSPHERE 2024; 360:142382. [PMID: 38768788 DOI: 10.1016/j.chemosphere.2024.142382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
As an effort to tackle some of the most pressing ecological issues we are currently experiencing, there has been an increasing interest in employing biomass-derived char products in various disciplines. Thermal combustion of biomass results in biochar production, which is a remarkably rich source of carbon. Not only does the biochar obtained by the thermochemical breakdown of biomass lower the quantity of carbon released into the environment, but it also serves as an eco-friendly substitute for activated carbon (AC) and further carbon-containing products. An overview of using biochar to remove toxic pollutants is the main subject of this article. Several techniques for producing biochar have been explored. The most popular processes for producing biochar are hydrothermal carbonization, gasification and pyrolysis. Carbonaceous materials, alkali, acid and steam are all capable of altering biochar. Depending on the environmental domains of applications, several modification techniques are chosen. The current findings on characterization and potential applications of biochar are compiled in this survey. Comprehensive discussion is given on the fundamentals regarding the formation of biochar. Process variables influencing the yield of biochar have been summarized. Several biochars' adsorption capabilities for expulsion pollutants under various operating circumstances are compiled. In the domain of developing biochar, a few suggestions for future study have been given.
Collapse
Affiliation(s)
- R Sivaranjanee
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - B Chitra
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Gayathri Rangasamy
- Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, 641021, Tamil Nadu, India; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
4
|
Tan YY, Abdul Raman AA, Zainal Abidin MII, Buthiyappan A. A review on sustainable management of biomass: physicochemical modification and its application for the removal of recalcitrant pollutants-challenges, opportunities, and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36492-36531. [PMID: 38748350 DOI: 10.1007/s11356-024-33375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/13/2024] [Indexed: 06/20/2024]
Abstract
Adsorption is one of the most efficient methods for remediating industrial recalcitrant wastewater due to its simple design and low investment cost. However, the conventional adsorbents used in adsorption have several limitations, including high cost, low removal rates, secondary waste generation, and low regeneration ability. Hence, the focus of the research has shifted to developing alternative low-cost green adsorbents from renewable resources such as biomass. In this regard, the recent progress in the modification of biomass-derived adsorbents, which are rich in cellulosic content, through a variety of techniques, including chemical, physical, and thermal processes, has been critically reviewed in this paper. In addition, the practical applications of raw and modified biomass-based adsorbents for the treatment of industrial wastewater are discussed extensively. In a nutshell, the adsorption mechanism, particularly for real wastewater, and the effects of various modifications on biomass-based adsorbents have yet to be thoroughly studied, despite the extensive research efforts devoted to their innovation. Therefore, this review provides insight into future research needed in wastewater treatment utilizing biomass-based adsorbents, as well as the possibility of commercializing biomass-based adsorbents into viable products.
Collapse
Affiliation(s)
- Yan Ying Tan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abdul Aziz Abdul Raman
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohd Izzudin Izzat Zainal Abidin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Archina Buthiyappan
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Ahmed MJ, Hameed BH. Recent progress on tobacco wastes-derived adsorbents for the remediation of aquatic pollutants: A review. ENVIRONMENTAL RESEARCH 2024; 247:118203. [PMID: 38237752 DOI: 10.1016/j.envres.2024.118203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/25/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Tobacco (Nicotiana tabacum L.) is a significant crop widely planted worldwide. Its leaves have a special economical value as raw materials for the cigarette industry. During tobacco harvesting and cigarette production, a large amount of wastes that could not be used in the cigarette industry are generated such as tobacco stems, stalks, and low-grade leaves. The utilization of such agro-industrial wastes in raw or carbonaceous form as adsorbents for wastewater treatment is an economic and eco-friendly step for elimination of such waste. Tobacco waste can be directly applied as adsorbents for aquatic pollutants owing to its favorable lignocellulosic composition and functional groups enriched structure. Moreover, this waste has high volatile matters and thus can be an efficient precursor for high surface area carbonaceous adsorbents including biochar and activated carbon with high removal performance. This article is a recent and comprehensive review about the preparation of adsorbents (raw, biochar and activated carbon) from different tobacco wastes (stems, stalks, leaves, etc.) along with its characterization and regeneration. The adsorption behavior of different aquatic adsorbates on these adsorbents under specific conditions along with the isotherm, kinetic, thermodynamic, and mechanism studies is also considered. The highest uptakes for most tested pollutants were 399.0, 195.2, and 173.0 mg/g for lead, chromium, and cadmium, 517.5 mg/g for methylene blue, and 210.66 and 1.602 mg/g for phosphate and chlorpyrifos. Significant findings and future ideas for the studied adsorbate/adsorbent systems are finally given.
Collapse
Affiliation(s)
- Muthanna J Ahmed
- Department of Chemical Engineering, College of Engineering, University of Baghdad, 10071 Baghdad, Iraq.
| | - Bassim H Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
6
|
Khan RJ, Guan J, Lau CY, Zhuang H, Rehman S, Leu SY. Monolignol Potential and Insights into Direct Depolymerization of Fruit and Nutshell Remains for High Value Sustainable Aromatics. CHEMSUSCHEM 2024; 17:e202301306. [PMID: 38078500 DOI: 10.1002/cssc.202301306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
The inedible parts of nuts and stone fruits are low-cost and lignin-rich feedstock for more sustainable production of aromatic chemicals in comparison with the agricultural and forestry residues. However, the depolymerization performances on food-related biomass remains unclear, owing to the broad physicochemical variations from the edible parts of the fruits and plant species. In this study, the monomer production potentials of ten major fruit and nutshell biomass were investigated with comprehensive numerical information derived from instrumental analysis, such as plant cell wall chemical compositions, syringyl/guaiacyl (S/G ratios, and contents of lignin substructure linkages (β-O-4, β-β, β-5). A standardized one-pot reductive catalytic fractionation (RCF) process was applied to benchmark the monomer yields, and the results were statistically analyzed. Among all the tested biomass, mango endocarp provided the highest monolignol yields of 37.1 % per dry substrates. Positive S-lignin (70-84 %) resulted in higher monomer yield mainly due to more cleavable β-O-4 linkages and less condensed C-C linkages. Strong positive relationships were identified between β-O-4 and S-lignin and between β-5 and G-lignin. The analytical, numerical, and experimental results of this study shed lights to process design of lignin-first biorefinery in food-processing industries and waste management works.
Collapse
Affiliation(s)
- Rabia J Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Jianyu Guan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Chun Y Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shazia Rehman
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hong Kong
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong, 3400-8322
| |
Collapse
|
7
|
Kováčová M, Bodnár Yankovych H, Augustyniak A, Casas-Luna M, Remešová M, Findoráková L, Stahorský M, Čelko L, Baláž M. Triggering antibacterial activity of a common plant by biosorption of selected heavy metals. J Biol Inorg Chem 2024; 29:201-216. [PMID: 38587623 PMCID: PMC11098919 DOI: 10.1007/s00775-024-02045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/22/2024] [Indexed: 04/09/2024]
Abstract
The presented study proposes an efficient utilization of a common Thymus serpyllum L. (wild thyme) plant as a highly potent biosorbent of Cu(II) and Pb(II) ions and the efficient interaction of the copper-laden plant with two opportunistic bacteria. Apart from biochars that are commonly used for adsorption, here we report the direct use of native plant, which is potentially interesting also for soil remediation. The highest adsorption capacity for Cu(II) and Pb(II) ions (qe = 12.66 and 53.13 mg g-1, respectively) was achieved after 10 and 30 min of adsorption, respectively. Moreover, the Cu-laden plant was shown to be an efficient antibacterial agent against the bacteria Escherichia coli and Staphylococcus aureus, the results being slightly better in the former case. Such an activity is enabled only via the interaction of the adsorbed ions effectively distributed within the biological matrix of the plant with bacterial cells. Thus, the sustainable resource can be used both for the treatment of wastewater and, after an effective embedment of metal ions, for the fight against microbes.
Collapse
Affiliation(s)
- Mária Kováčová
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia
| | - Halyna Bodnár Yankovych
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia
| | - Adrian Augustyniak
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
- Faculty of Chemical Technology and Engineering, The West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71 065, Szczecin, Poland
- Institute of Biology, University of Szczecin, ul. Wąska 13, 71-415, Szczecin, Poland
| | - Mariano Casas-Luna
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - Michaela Remešová
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Lenka Findoráková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia
| | - Martin Stahorský
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Matej Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia.
| |
Collapse
|
8
|
Molina-Balmaceda A, Rojas-Candia V, Arismendi D, Richter P. Activated carbon from avocado seed as sorbent phase for microextraction technologies: activation, characterization, and analytical performance. Anal Bioanal Chem 2024:10.1007/s00216-024-05203-1. [PMID: 38393340 DOI: 10.1007/s00216-024-05203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
According to green analytical chemistry principles, the use of agricultural byproducts as sorbent phases is an interesting topic due to their lignocellulosic origin, as they are biodegradable and inexpensive. To the best of our knowledge, this is the first study in which avocado seed and avocado seed activated carbon are proposed as sustainable sorbents for solid-phase microextraction technologies, which were used to assess the proof of concept. Rotating disk sorptive extraction (RDSE) was used as a model technology and ibuprofen (Ibu) and 1-hydroxy-ibuprofen (1-OH-Ibu) as representative analytes. It was found that activated carbon (AC) prepared at 600 °C with an impregnation ratio (raw material/activating agent (ZnCl2), w/w) of 1:1.2 had better extraction efficiency than other ACs obtained at different temperatures, impregnation ratios, and activating agents (K2CO3). Characterization revealed several differences between natural avocado seed, biochar prepared at 600 °C, and selected AC since the typical functional groups of the natural starting material begin to disappear with pyrolysis and increasing the surface area and pore volume, suggesting that the main interactions between analytes and the sorbent material are pore filling and π-π stacking. By using this AC as the sorbent phase, the optimal extraction conditions in RDSE were as follows: the use of 50 mg of sorbent in the disk, 30 mL of sample volume, pH 4, 90 min of extraction time at a rotation velocity of the disk of 2000 rpm, and methanol as the elution solvent. The extracts were analyzed via gas chromatography coupled to mass spectrometry (GC-MS). The method provided limits of detection of 0.23 and 0.07 µg L-1 and recoveries of 81% and 91% for Ibu and 1-OH-Ibu, respectively. When comparing the extraction efficiency of the selected activated carbon with those provided by Oasis® HLB and C18 in RDSE, nonsignificant differences were observed, indicating that avocado seed activated carbon is a suitable alternative to these commercial materials.
Collapse
Affiliation(s)
- Alejandra Molina-Balmaceda
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Valentina Rojas-Candia
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Daniel Arismendi
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Pablo Richter
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile.
| |
Collapse
|
9
|
Pires JB, Santos FND, Cruz EPD, Fonseca LM, Siebeneichler TJ, Lemos GS, Gandra EA, Zavareze EDR, Dias ARG. Starch extraction from avocado by-product and its use for encapsulation of ginger essential oil by electrospinning. Int J Biol Macromol 2024; 254:127617. [PMID: 37879583 DOI: 10.1016/j.ijbiomac.2023.127617] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Starches from alternative sources, such as avocado seed, have potential for application in the encapsulation of essential oils. This study aimed to extract starch from avocado seeds and its use as wall material to encapsulate ginger essential oil (GEO), at different concentrations. The fibers were produced by electrospinning and evaluated by morphology, size, infrared spectra, thermogravimetric properties, contact angle, loading capacity, and antibacterial activity. The major compounds in GEO were α-zingiberene, β-sesquiphellandrene, α-farnesene, and α-curcumene. The starch-GEO fibers presented a higher diameter (∼553 nm) than those without GEO (345 nm). Encapsulation of GEO in starch fibers increased their thermal degradation temperatures from 165.8 °C (free GEO) to 257.6 °C (40 % GEO fibers). The starch-GEO fibers presented characteristic bands of their constituents by infrared spectra. Loading capacity ranged from 44 to 54 %. The fibers showed hydrophilic character, with a contact angle of <90°. Free GEO and the fibers with 50 % of GEO displayed antibacterial activity against Escherichia coli, proving the bioactivity of the starch-GEO fibers and its possible applicability for food packaging. Avocado seed starch showed to be a great wall material for GEO encapsulation.
Collapse
Affiliation(s)
- Juliani Buchveitz Pires
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil.
| | - Felipe Nardo Dos Santos
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Elder Pacheco da Cruz
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Tatiane Jéssica Siebeneichler
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Graciele Saraiva Lemos
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Eliezer Avila Gandra
- Laboratory of Food Science and Molecular Biology (LACABIM), Center for Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Alvaro Renato Guerra Dias
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
10
|
Bahadir T, Şimşek İ, Tulun Ş, Çelebi H. Use of different food wastes as green biosorbent: isotherm, kinetic, and thermodynamic studies of Pb 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103324-103338. [PMID: 37688702 DOI: 10.1007/s11356-023-29745-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Lead (Pb2+) can contaminate waters from many sources, especially industrial activities. This heavy metal is an amphoteric, toxic, endocrine-disrupting, bioaccumulative, and carcinogenic pollutant. One of the effective and economical processes used to remove lead from water is adsorption. The fact that the adsorbents used in this method are easily available and will contribute to waste minimization is the primary reason for preference. In this study, the adsorption abilities and surface properties of tea waste (TW), banana peels (BP), almond shells (AS), and eggshells (ES) which are easily available do not need modification and have very high (> 90%) removal efficiencies presented with isotherm, kinetic, and thermodynamic perspectives as detail. The surface structures and elemental distribution of raw adsorbents were revealed with SEM/EDX. Using FTIR analysis, carboxylic (-COOH) and hydroxyl groups (-OH) in the structure of TW, AS, BP, and ES were determined. It was determined that the Pb2+ adsorption kinetics conformed to the pseudo-quadratic model and its isotherm conformed to the Langmuir. The optimum adsorption of Pb2+ was ranked as BP > ES > AS > TW with 100, 68.6, 51.7, and 47.8 mg/g qm, respectively. The fact that the process has negative ΔG° and positive ΔH° values from a thermodynamic point of view indicates that it occurs spontaneously and endothermically. According to the experimental data, the possible adsorption mechanism for Pb2+ has occurred in the form of physisorption (van der Waals, electrostatic attraction) and cooperative adsorption including chemisorption (complexation, ion exchange) processes.
Collapse
Affiliation(s)
- Tolga Bahadir
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, Aksaray, 68100, Türkiye
| | - İsmail Şimşek
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, Aksaray, 68100, Türkiye.
| | - Şevket Tulun
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, Aksaray, 68100, Türkiye
| | - Hakan Çelebi
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, Aksaray, 68100, Türkiye
| |
Collapse
|
11
|
Sen TK. Agricultural Solid Wastes Based Adsorbent Materials in the Remediation of Heavy Metal Ions from Water and Wastewater by Adsorption: A Review. Molecules 2023; 28:5575. [PMID: 37513447 PMCID: PMC10386015 DOI: 10.3390/molecules28145575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Adsorption has become the most popular and effective separation technique that is used across the water and wastewater treatment industries. However, the present research direction is focused on the development of various solid waste-based adsorbents as an alternative to costly commercial activated carbon adsorbents, which make the adsorptive separation process more effective, and on popularising the sustainable options for the remediation of pollutants. Therefore, there are a large number of reported results available on the application of raw or treated agricultural biomass-based alternatives as effective adsorbents for aqueous-phase heavy metal ion removal in batch adsorption studies. The goal of this review article was to provide a comprehensive compilation of scattered literature information and an up-to-date overview of the development of the current state of knowledge, based on various batch adsorption research papers that utilised a wide range of raw, modified, and treated agricultural solid waste biomass-based adsorbents for the adsorptive removal of aqueous-phase heavy metal ions. Metal ion pollution and its source, toxicity effects, and treatment technologies, mainly via adsorption, have been reviewed here in detail. Emphasis has been placed on the removal of heavy metal ions using a wide range of agricultural by-product-based adsorbents under various physicochemical process conditions. Information available in the literature on various important influential physicochemical process parameters, such as the metal concentration, agricultural solid waste adsorbent dose, solution pH, and solution temperature, and importantly, the adsorbent characteristics of metal ion removal, have been reviewed and critically analysed here. Finally, from the literature reviewed, future perspectives and conclusions were presented, and a few future research directions have been proposed.
Collapse
Affiliation(s)
- Tushar Kanti Sen
- Chemical Engineering Department, College of Engineering, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
12
|
Belinska S, Nesterenko N, Moroz O, Bilokon T, Kepko V, Ivaniuta A, Shynkaruk O, Rudyk Y, Gruntovskyi M, Kharsika I. The effect of storage temperature on the quality of avocado fruits from different climatic zones. POTRAVINARSTVO 2023. [DOI: 10.5219/1850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Avocado is one of the most valuable products, as it is characterized by a high content of biologically active substances, including vitamins, mineral elements, fats, and dietary fibers. According to a complex of organoleptic and physicochemical indicators, the consumption properties of avocado fruits from different countries of origin, which are sold in Ukraine, have been investigated. Among the organoleptic indicators, the state of peel and pulp, taste, and smell has been determined according to the developed scoring scale. It has been established that the Haas type (Colombia) fruits have a light green pulp and a deep green peel that does not lag well behind the flesh, they are quite firm, the taste is watery, and there are no significant defects, the stem is not damaged. Haas (Israel) avocados had light green pulp and a brownish-black peel that separated from the flesh very well, with little evidence of pollination, a nice buttery flavour, and a nice texture. There is a slight peel defect (pollination mark) with an area of less than 4 cm2, which does not affect the fruit's flesh, and the stem is not damaged. The fruit of the Fuerte type (Israel) had a light green pulp and a deep-green peel that did not lag well behind the flesh, a somewhat grassy taste, and a loose flesh texture. The fruit had a defect in the peel (lens) with an area of less than 6 cm2, which does not affect the fruit's flesh, and the stem is not damaged. It has been found that the researched types of avocado fruits from different countries of origin differ in shape, size, and the ratio of peel, pulp, and stone. From the physicochemical parameters, the mass fraction of moisture, the content of dry soluble substances, active acidity, the content of ascorbic acid, and the fatty acid composition of lipids of avocado fruits have been determined.
Collapse
|
13
|
Carbonaceous material from agricultural waste for treating colored wastewater: characterization and adsorption performance evaluations. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Yang H, Ding Z, Zou Y, Liu Y, Zhang Y, Xia S. Enhanced adsorption of tetracycline using modified second pyrolysis oil-based drill cutting ash. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81760-81776. [PMID: 35737264 DOI: 10.1007/s11356-022-21504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
In this work, second pyrolysis oil-based drill cutting ash (OBDCA-sp) was modified using NaOH and cetyltrimethylammonium bromide (CTAB), respectively. The modified OBDCA-sp was used as the novel adsorbent for adsorption of tetracycline (TC) in aqueous solutions. The original and modified OBDCA-sp were characterized by SEM, XRD, FTIR, zeta potential analysis, contact angle, and BET. The maximum theoretical adsorption quantity (45 ℃) for TC was calculated as 1.7 mg/g using CTAB-OBDCA-sp as the adsorbent. The adsorption isotherm of TC on OBDCA-sp was fitted well with Freundlich model and the adsorption kinetic was illustrated by pseudo-second-order model. Neutral condition was favorable for the adsorption of TC. The result of regeneration experiment indicated the reusability of OBDCA-sp. The hydrogen bonding was the possible mechanism for TC adsorption. This paper developed the novel surface modification methods of OBDCA-sp and provided an approach for the resource utilization of OBDCA-sp as an environmental functional material.
Collapse
Affiliation(s)
- Hang Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Zimao Ding
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yilingyun Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yangxiya Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
15
|
Rodríguez-Martínez B, Romaní A, Eibes G, Garrote G, Gullón B, Del Río PG. Potential and prospects for utilization of avocado by-products in integrated biorefineries. BIORESOURCE TECHNOLOGY 2022; 364:128034. [PMID: 36174891 DOI: 10.1016/j.biortech.2022.128034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The industrial processing of avocado to extract oil, and produce guacamole or sauces generates enormous quantities of peels and seeds (around 2 million tons worldwide in 2019) without commercially valuable applications. However, various studies have suggested the presence of a wide range of interesting compounds in the composition of these by-products. This review depicts a thorough outline of the capacity of avocado residues to be converted into a portfolio of commodities that can be employed in sectors such as the food, cosmetics, pharmaceuticals, environment, and energy industries. Therefore, a novel biorefinery strategy to valorize avocado-processing residues to obtain a polyphenolic extract, pectooligosaccharides, and succinic acid was presented. Additionally, the prospects and challenges facing a biorefinery based on the valorization of avocado residues are presented, particularly its techno-economic feasibility on an industrial scale, aiming for a resource-efficient circular bio-economy.
Collapse
Affiliation(s)
| | - Aloia Romaní
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Gemma Eibes
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, 15706 A Coruña, Spain
| | - Gil Garrote
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain.
| | - Pablo G Del Río
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
16
|
Dobe N, Abia D, Tcheka C, Tejeogue JPN, Harouna M. Removal of amaranth dye by modified Ngassa clay: Linear and non-linear equilibrium, kinetics and statistical study. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|