1
|
Sharma L, Kudłak B, Stoń-Egiert J, Siedlewicz G, Pazdro K. Impact of emerging pollutants mixtures on marine and brackish phytoplankton: diatom Phaeodactylum tricornutum and cyanobacterium Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177080. [PMID: 39461521 DOI: 10.1016/j.scitotenv.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Pharmaceuticals and ionic liquids (ILs) are emerging as significant micropollutants with environmental presence and potential ecological impacts. The possible simultaneous occurrence of these two groups of pollutants in aquatic environments raises complex challenges due to their diverse chemical properties and potential for interactive effects. Given the documented widespread presence of pharmaceuticals and the emerging concerns about ILs, the study aims to evaluate the adverse effects of binary mixtures of imidazolium ionic liquid IM1-8C(CN)3 and two representatives of pharmaceuticals: antibiotic oxytetracycline (OXTC) and metabolite carbamazepine 10,11 epoxide (CBZ-E) on the brackish cyanobacterium Microcystis aeruginosa and the marine diatom Phaeodactylum tricornutum during chronic exposure experiments. A comprehensive approach was employed, incorporating various endpoints including oxidative stress, chlorophyll a fluorescence, detailed photoprotective and photosynthetic pigment profiles of target microorganisms to assess modes of action and identify the mixture effects of the selected substances. The observed alterations in pigment production affecting carotenoids synthesis in both selected species may be attributed to the differential impacts of these substances on the photosynthetic pathways and metabolic processes in the cyanobacterial and diatom cells. Changes in chlorophyll a fluorescence-specific parameters suggest impairment of the photosynthetic activity, particularly affecting the efficiency of photosystem II. The application of Concentration Addition (CA) and Independent Action (IA) mathematical models, complemented by the evaluation of Model Deviation Ratios (MDR), revealed predominantly antagonistic interactions within the studied mixtures. The findings of this study provide important insights into the effects of mixtures of organic micropollutants and their potential impact on environment including brackish and marine waters.
Collapse
Affiliation(s)
- Lilianna Sharma
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| | - Joanna Stoń-Egiert
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Grzegorz Siedlewicz
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Ksenia Pazdro
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
2
|
Ren H, Shen S, Tan L, Wu J, Wang D, Liu W. Nitric oxide mitigates the phytotoxicity of imidazolium-based ionic liquids in Arabidopsis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116845. [PMID: 39116690 DOI: 10.1016/j.ecoenv.2024.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Ionic liquids (ILs) have many beneficial properties that are extensively used in various fields. Despite their utility, the phytotoxic aspects of ILs are poorly known. This is especially true at the transcriptomic level and the role of nitric oxide (NO) in this process. Herein, we studied the mechanism by which endogenous NO reduces the toxicity of ILs in Arabidopsis. We examined the effects of two imidazolium-based ILs (IILs) on three Arabidopsis lines, each characterized by distinct endogenous NO levels, using a combination of physiological and transcriptomics methods. IILs impaired seed germination, seedling development, chlorophyll content, and redox homeostasis in Arabidopsis. Notably, 1,3-dibutyl imidazole bromide had greater toxicity than 1-butyl-3-methylimidazolium chloride. Nox1, a mutant with an elevated NO level, had enhanced resistance, while nia1nia2, a mutant with a diminished NO level, had increased susceptibility compared to the wild type. RNA sequencing results suggested that NO mitigates IILs-induced phytotoxicity by modulating the metabolism of chlorophyll and secondary metabolites, and by bolstering the antioxidant defense system. These findings illustrate the complex molecular networks that respond to IIL stress and reveal the potential of endogenous NO as a mitigating factor in plant stress physiology.
Collapse
Affiliation(s)
- Haike Ren
- Shanxi Normal University, Taiyuan, Shanxi 030006, China
| | - Shoujie Shen
- Shanxi Normal University, Taiyuan, Shanxi 030006, China
| | - Liru Tan
- Shanxi Normal University, Taiyuan, Shanxi 030006, China
| | - Jinwen Wu
- Shanxi Normal University, Taiyuan, Shanxi 030006, China
| | - Dongsheng Wang
- Shanxi Normal University, Taiyuan, Shanxi 030006, China.
| | - Weizhong Liu
- Shanxi Normal University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
3
|
Gao M, Ling N, Tian H, Guo C, Wang Q. Toxicity, physiological response, and biosorption mechanism of Dunaliella salina to copper, lead, and cadmium. Front Microbiol 2024; 15:1374275. [PMID: 38605709 PMCID: PMC11007151 DOI: 10.3389/fmicb.2024.1374275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background Heavy metal pollution has become a global problem, which urgently needed to be solved owing to its severe threat to water ecosystems and human health. Thus, the exploration and development of a simple, cost-effective and environmental-friendly technique to remove metal elements from contaminated water is of great importance. Algae are a kind of photosynthetic autotroph and exhibit excellent bioadsorption capacities, making them suitable for wastewater treatment. Methods The effects of heavy metals (copper, lead and cadmium) on the growth, biomolecules accumulation, metabolic responses and antioxidant response of Dunaliella salina were investigated. Moreover, the Box-Behnken design (BBD) in response surface methodology (RSM) was used to optimize the biosorption capacity, and FT-IR was performed to explore the biosorption mechanism of D. salina on multiple heavy metals. Results The growth of D. salina cells was significantly inhibited and the contents of intracellular photosynthetic pigments, polysaccharides and proteins were obviously reduced under different concentrations of Cu2+, Pb2+ and Cd2+, and the EC50 values were 18.14 mg/L, 160.37 mg/L and 3.32 mg/L at 72 h, respectively. Besides, the activities of antioxidant enzyme SOD and CAT in D. salina first increased, and then descended with increasing concentration of three metal ions, while MDA contents elevated continuously. Moreover, D. salina exhibited an excellent removal efficacy on three heavy metals. BBD assay revealed that the maximal removal rates for Cu2+, Pb2+, and Cd2+ were 88.9%, 87.2% and 72.9%, respectively under optimal adsorption conditions of pH 5-6, temperature 20-30°C, and adsorption time 6 h. Both surface biosorption and intracellular bioaccumulation mechanisms are involved in metal ions removal of D. salina. FT-IR spectrum exhibited the main functional groups including carboxyl (-COOH), hydroxyl (-OH), amino (-NH2), phosphate (-P=O) and sulfate (-S=O) are closely associated with the biosorption or removal of heavy metalsions. Discussion Attributing to the brilliant biosorption capacity, Dunaliella salina may be developed to be an excellent adsorbent for heavy metals.
Collapse
Affiliation(s)
- Mingze Gao
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Haiyan Tian
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Chunqiu Guo
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Qiyao Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
4
|
Akl FMA, Ahmed SI, El-Sheekh MM, Makhlof MEM. Bioremediation of n-alkanes, polycyclic aromatic hydrocarbons, and heavy metals from wastewater using seaweeds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104814-104832. [PMID: 37713082 PMCID: PMC10567841 DOI: 10.1007/s11356-023-29549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
The removal of n-alkanes, polycyclic aromatic hydrocarbons, and heavy metals from wastewater using three dried seaweeds Ulva intestinalis Linnaeus (green alga), Sargassum latifolium (Turner) C.Agardh (brown alga), and Corallina officinalis Kützing (red alga) has been shown to evaluate their potential usage as inexpensive adsorbents. Under natural environmental conditions, numerous analytical methods, including zeta potential, energy dispersive X-ray spectroscopy (EDX), SEM, and FT-IR, are used in this study. The results showed that n-alkanes and polycyclic aromatic hydrocarbons adsorption increased with increasing contact time for all three selected algae, with a large removal observed after 15 days, while the optimal contact time for heavy metal removal was 3 h. S. latifolium dry biomass had more potential as bioadsorbent, followed by C. officinalis and then U. intestinalis. S. latifolium attained removal percentages of 65.14%, 72.50%, and 78.92% for light n-alkanes, heavy n-alkanes, and polycyclic aromatic hydrocarbons (PAHs), respectively, after 15 days. Furthermore, it achieved removal percentages of 94.14, 92.62, 89.54, 87.54, 82.76, 80.95, 77.78, 73.02, and 71.62% for Mg, Zn, Cu, Fe, Cr, Pb, Cd, Mn, and Ni, respectively, after 3 h. Carboxyl and hydroxyl from FTIR analysis took part in wastewater treatment. The zeta potentials revealed that algal cells have a negatively charged surface, and the cell surface of S. latifolium has a more negative surface charge than U. intestinalis and C. officinalis. Our study suggests that seaweeds could play an important role in wastewater treatment and thus help as an economical, effective, and ecofriendly bioremediation system for ecological health and life protection.
Collapse
Affiliation(s)
- Faiza M A Akl
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Suzan I Ahmed
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mofida E M Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
5
|
Pawłowska B, Wojtala D, Biczak R. Ionic Liquids as Environmental Pollutants-Analysis of the Effect of Tetrabutylammonium Chloride on the Growth and Development of Wheat and Cucumber. TOXICS 2023; 11:522. [PMID: 37368622 DOI: 10.3390/toxics11060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Ionic liquids are a huge group of chemical compounds that have found, or may, in the future, find, applications in various industries. These compounds are characterized by excellent physical, chemical, and biological properties, but a big problem is their environmental impact. One of the representatives of this group of compounds is tetrabutylammonium chloride ([TBA][Cl]). In this present study, the effects of [TBA][Cl] were evaluated on two popular plant species-a monocotyledonous plant-wheat (Triticum aestivum L.) and a dicotyledonous plant-cucumber (Cucumis sativus L.). The results showed that the compound caused a pronounced inhibition of plant growth and roots, as well as plant fresh weight yield. An increase in plant dry weight was observed at the same time. Despite the decrease in the content of photosynthetic pigments, no major changes were observed in chlorophyll fluorescence. All observed changes were strongly related to the applied concentration of the compound.
Collapse
Affiliation(s)
- Barbara Pawłowska
- The Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Częstochowa, Poland
| | - Dagmara Wojtala
- The Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Częstochowa, Poland
| | - Robert Biczak
- The Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Częstochowa, Poland
| |
Collapse
|
6
|
Chu L, Hou X, Song X, Zhao X, Hu S, Shen G. Toxicity of ionic liquids against earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162411. [PMID: 36870498 DOI: 10.1016/j.scitotenv.2023.162411] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Ionic liquids (ILs) are widely used in frontier fields because of their highly tunable properties. Although ILs may have adverse effects on organisms, few studies have focused on their effect on earthworm gene expression. Herein we investigated the toxicity mechanism of different ILs towards Eisenia fetida using transcriptomics. Earthworms were exposed to soil containing different concentrations and types of ILs, and behavior, weight, enzymatic activity and transcriptome were analyzed. Earthworms exhibited avoidance behavior towards ILs and growth was inhibited. ILs also affected antioxidant and detoxifying enzymatic activity. These effects were concentration and alkyl chain length-dependent. Analysis of intrasample expression levels and differences in transcriptome expression levels showed good parallelism within groups and large differences between groups. Based on functional classification analysis, we speculate that toxicity mainly occurs through translation and modification of proteins and intracellular transport functions, which affect protein-related binding functions and catalytic activity. KEGG pathway analysis revealed that ILs may damage the digestive system of earthworms, among other possible pathological effects. Transcriptome analysis reveals mechanisms that cannot be observed by conventional toxicity endpoints. This is useful to evaluate the potential environmental adverse effects of the industrial use of ILs.
Collapse
Affiliation(s)
- Linglong Chu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxiao Hou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxiang Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Shuangqing Hu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Genxiang Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
7
|
Wei P, Xiao Y, Liu C, Yan B. Thyroid endocrine disruption induced by [C 8mim]Br: An integrated in vivo, in vitro, and in silico study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106535. [PMID: 37086652 DOI: 10.1016/j.aquatox.2023.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Conventional thyroid-disrupting chemicals (TDCs) such as polybrominated diphenyl ethers, polychlorinated biphenyls, and bisphenols perturb animal's thyroid endocrine system by mimicking the action of endogenous thyroid hormones (THs), since they share a similar backbone structure of coupled benzene rings with THs. 1-methyl-3-octylimidazolium bromide ([C8mim]Br), a commonly used ionic liquid (IL), has no structural similarity to THs. Whether it interferes with thyroid function and how its mode of action differs from conventional TDCs is largely unknown. Herein, zebrafish embryo-larvae experiments (in vivo), GH3 cell line studies (in vitro), and molecular simulation analyses (in silico) were carried out to explore the effect of [C8mim]Br on thyroid homeostasis and its underlying mechanism. Molecular docking results suggested that [C8mim]+ likely bound to retinoid X receptors (RXRs), which may compromise the formation of TH receptor/RXR heterodimers. This then perturbed the negative regulation of thyroid-stimulating hormone β (tshβ) transcription by T3 in GH3 cell line. The resulting enhancement of tshβ expression further caused hyperthyroidism and developmental toxicity in larval zebrafish. These findings provided a crucial aspect of the ecological risks of ILs, and presented a new insight into the thyroid-disrupting mechanisms for emerging pollutants that do not have structural similarity to THs.
Collapse
Affiliation(s)
- Penghao Wei
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Kumar M, Seth K, Choudhary S, Kumawat G, Nigam S, Joshi G, Saharan V, Meena M, Gupta AK, Harish. Toxicity evaluation of iron oxide nanoparticles to freshwater cyanobacteria Nostoc ellipsosporum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55742-55755. [DOI: 10.1007/s11356-023-26353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
|
9
|
Khan AS, Sakina, Nasrullah A, Ullah S, Ullah Z, Khan Z, Khan NA, Khan SZ, Din IU. An Overview on Phytotoxic Perspective of Ionic Liquids and Deep Eutectic Solvents: The Role of Chemical Structure in the Phytotoxicity. CHEMBIOENG REVIEWS 2023. [DOI: 10.1002/cben.202200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Amir Sada Khan
- University of Science and Technology Department of Chemistry 28100 Bannu Khyber Pakhtunkhwa Pakistan
| | - Sakina
- University of Science and Technology Department of Chemistry 28100 Bannu Khyber Pakhtunkhwa Pakistan
| | - Asma Nasrullah
- University of Science and Technology Department of Chemistry 28100 Bannu Khyber Pakhtunkhwa Pakistan
- Shaheed Benazir Bhutto Women University Department of Chemistry 25000 Peshawar Khyber Pakhtunkhwa Pakistan
| | - Saadat Ullah
- Hazara University Department of Chemistry Mansehra Khyber Pakhtunkhwa Pakistan
| | - Zahoor Ullah
- Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS) Department of Chemistry Takatu Campus 87100 Quetta Pakistan
| | - Zahid Khan
- American University of Sharjah Department of Civil Engineering, College of Engineering P.O. Box 26666 Sharjah United Arab Emirates
| | - Naveed Ahmed Khan
- University of Sharjah Department of Clinical Sciences, College of Medicine University City 27272 Sharjah Unites Arab Emirates
- Istinye University Istinye Faculty of Medicine 34396 Istanbul Turkey
| | - Shahan Zeb Khan
- University of Science and Technology Department of Chemistry 28100 Bannu Khyber Pakhtunkhwa Pakistan
| | - Israf Ud Din
- Prince Sattam Bin Abdulaziz University Department of Chemistry, College of Science and Humanities P.O. Box 173 Al-Kharj Saudi Arabia
| |
Collapse
|
10
|
Yu B, Li X, He M, Li Y, Ding J, Zhong Y, Zhang H. Selective production of singlet oxygen for harmful cyanobacteria inactivation and cyanotoxins degradation: Efficiency and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129940. [PMID: 36108496 DOI: 10.1016/j.jhazmat.2022.129940] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Knowledge about the impact of singlet oxygen (1O2) on the characteristics and inactivation of harmful cyanobacterial organic matter is limited. In this study, the feasibility of using an improved single-iron doped graphite-like phase carbon nitride catalyst (FeCN) to activate peroxymonosulfate (PMS) catalytic production of 1O2 to inactivate four harmful cyanobacteria was investigated. The inactivation efficiencies at 30 min were 92.77%, 66.84%, 91.06%, and 93.45% for Microcystis aeruginosa (M. aeruginosa), Nodularia harveyana, Oscillatoria sp., and Nostoc sp., respectively. This was associated with adjusting experimental parameters, such as the FeCN and PMS doses and initial pH, to obtain the maximum 1O2 yield. The quenching experiment results and electron paramagnetic resonance spectra showed that 1O2 generated via the non-radical pathway might play a dominant role in inactivating harmful cyanobacteria and degrading harmful algal toxins (Microcystin-LR and Nodularin). In addition, the FeCN-PMS system not only effectively destroyed the integrity of harmful cyanobacterial cells but also effectively degraded cyanobacterial toxins, thereby preventing severe secondary contamination by cell rupture. A possible removal mechanism was proposed. This reveals the potential of 1O2 to simultaneously inactivate harmful cyanobacteria and degrade harmful cyanobacterial toxins.
Collapse
Affiliation(s)
- Bingzhi Yu
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Xizi Li
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Mengfan He
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Yan Li
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Jiafeng Ding
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China.
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Heavy Metals Exacerbate the Effect of Temperature on the Growth of Chlorella sp.: Implications on Algal Blooms and Management. Processes (Basel) 2022. [DOI: 10.3390/pr10122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With the accelerated urbanization and rapid development of the industrial and agricultural sectors, concern about the pollution of water environments is becoming more widespread. Algal blooms of varying sizes are becoming increasingly frequent in lakes and reservoirs; temperatures, nutrients, heavy metals, and dissolved oxygen are the factors that influence algal bloom occurrence. However, knowledge of the combined effect of heavy metals and temperature on algal growth remains limited. Thus, this study investigated how specific concentrations of heavy metals affect algal growth at different temperatures; to this end, two heavy metals were used (0.01 mg/L Pb2+ and 0.05 mg/L Cr6+) at three incubation temperatures (15, 25, and 30 °C) with the alga Chlorella sp. A higher incubation temperature contributed to a rise in soluble proteins, which promoted algal growth. The density of algal cells increased with temperature, and catalase (CAT) decreased with increasing temperature. Chlorella sp. growth and catalase activity were optimal at 30 °C (algal cell density: 1.46 × 107 cell/L; CAT activity: 29.98 gprot/L). Pb2+ and Cr6+ significantly promoted Chlorella sp. growth during incubation at 25 and 30 °C, respectively. At specific temperatures, 0.01 mg/L Pb2+ and 0.05 mg/L Cr6+ promoted the production of soluble proteins and, hence, the growth of Chlorella sp. The results provide a useful background for the mitigation and prevention of algal blooms.
Collapse
|
12
|
Liu Q, Gao K, Li L, Yang M, Gao Z, Deng X. Salinity fluctuation influences the toxicity of 1-octyl-3-methylimidazolium chloride ([C 8mim]Cl) to a marine diatom Phaeodactylum tricornutum. MARINE POLLUTION BULLETIN 2022; 185:114379. [PMID: 36435022 DOI: 10.1016/j.marpolbul.2022.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/29/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
In this work, a marine diatom (Phaeodactylum tricornutum) was exposed to 1-octyl-3-methylimidazolium chloride ([C8mim]Cl) for 96 h at three different salinities (25, 35, and 45 ‰) for investigating their interactive effects. Results showed that values of EC10 and EC50 at 96 h of exposure were 0.29, 1.06, 2.01 μg L-1 and 7.21, 7.71, 7.25 mg L-1 when the salinities were 25, 35, and 45 ‰, respectively, meaning that salinity fluctuation affected the toxicity of [C8mim]Cl to this diatom. Changes in chlorophyll a contents and chlorophyll fluorescence parameters suggested that [C8mim]Cl and salinity fluctuation had a significant interactive effect on the algal photosynthesis. In addition, soluble protein content and activities of antioxidant enzymes in algal cells changed significantly. Increased malondialdehyde contents indicated that the combined stresses could induce excessive production of reactive oxygen species leading to oxidative damage to the algal cells.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Kun Gao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Linqing Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Mengting Yang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Zheng Gao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Xiangyuan Deng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| |
Collapse
|
13
|
Zeng G, He Y, Liang D, Wang F, Luo Y, Yang H, Wang Q, Wang J, Gao P, Wen X, Yu C, Sun D. Adsorption of Heavy Metal Ions Copper, Cadmium and Nickel by Microcystis aeruginosa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13867. [PMID: 36360745 PMCID: PMC9656734 DOI: 10.3390/ijerph192113867] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
To investigate the treatment effect of algae biosorbent on heavy metal wastewater, in this paper, the adsorption effect of M. aeruginosa powder on heavy metal ions copper, cadmium and nickel was investigated using the uniform experimental method, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and TG-DSC comprehensive thermal analysis. The experimental results showed that the initial concentration of copper ion solution was 25 mg/L, the temperature was 30 °C, the pH value was 8 and the adsorption time was 5 h, which was the best condition for the removal of copper ions by algae powder adsorption, and the removal rate was 83.24%. The initial concentration of cadmium ion solution was 5 mg/L, the temperature was 35 °C, the pH value was 8 and the adsorption time was 4 h, which was the best condition for the adsorption of cadmium ion by algae powder, and the removal rate was 92.00%. The initial nickel ion solution concentration of 15 mg/L, temperature of 35 °C, pH value of 7 and adsorption time of 1 h were the best conditions for the adsorption of nickel ions by algae powder, and the removal rate was 88.67%. The spatial structure of algae powder changed obviously before and after adsorbing heavy metals. The functional groups such as amino and phosphate groups on the cell wall of M. aeruginosa enhanced the adsorption effect of heavy metal ions copper, cadmium and nickel. Additionally, M. aeruginosa adsorption of heavy metal ions copper, cadmium, nickel is an exothermic process. The above experiments show that M. aeruginosa can be used as a biological adsorbent to remove heavy metals, which lays a theoretical foundation for the subsequent treatment of heavy metal pollution by algae.
Collapse
Affiliation(s)
- Guoming Zeng
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
- Intelligent Building Technology Application Service Center, Chongqing City Vocational College, Chongqing 402160, China
| | - Yu He
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Dong Liang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Fei Wang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yang Luo
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Haodong Yang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Quanfeng Wang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jiale Wang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Pei Gao
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xin Wen
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chunyi Yu
- Department of Construction Management and Real Estate, Chongqing Jianzhu College, Chongqing 400072, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|