1
|
Li X, Zhang Y, Zhang R, Liu Z. Enhanced adsorption of tetracycline by lanthanum/iron co-modified rice shell biochar: Synthesis, adsorption performance, site energy distribution and regeneration. ENVIRONMENTAL RESEARCH 2025; 266:120489. [PMID: 39622355 DOI: 10.1016/j.envres.2024.120489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025]
Abstract
A novel La/Fe co-modified biochar derived from rice shell (La/Fe@RSBC) was prepared and employed in tetracycline (TC) adsorption from water. The characterizations, kinetics, isotherms, thermodynamics, and site energy distribution (SED) were studied to investigate TC adsorption behaviors. La/Fe@RSBC exhibited the maximum adsorption capacity towards TC of 414.84 mg/g, which was 1.27-2.41 folds than that of RSBC, La@RSBC, and Fe@RSBC. The possible adsorption mechanism of TC dominantly involved H bond, surface complexation, pore filling, electrostatic attraction, and π-π electron donor-acceptor (EDA) interaction. Moreover, TC adsorption behavior was spontaneous and endothermic, significantly related to the compositions and dosage of La/Fe@RSBC, initial pH, and solution temperature. Additionally, SED results promulgated that co-loaded Fe and La synergistically enhanced the affinity of biochar and provided more adsorption sites for TC at a higher temperature. The residual TC after regeneration by ethanol dominantly inhibited the third stage of adsorption, that is, the adsorption of TC on the inner surface of La/Fe@RSBC in next run. Importantly, H2O2 combined with La/Fe@RSBC-mediated advanced oxidation process could effectively clear residual TC after ethanol desorption, which obviously improved the service life of La/Fe@RSBC. In addition, the swine wastewater treatment demonstrated that La/Fe@RSBC had a promising potential application in practical application.
Collapse
Affiliation(s)
- Xiumin Li
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, Shaanxi Province, 710021, China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, China; Key Laboratory of Cultivated Land Quality Monitoring and Conservation, Ministry of Agriculture and Rural Affairs, China.
| | - Yang Zhang
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, Shaanxi Province, 710021, China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, China; Key Laboratory of Cultivated Land Quality Monitoring and Conservation, Ministry of Agriculture and Rural Affairs, China
| | - Ruiqing Zhang
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, Shaanxi Province, 710021, China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, China; Key Laboratory of Cultivated Land Quality Monitoring and Conservation, Ministry of Agriculture and Rural Affairs, China
| | - Zhe Liu
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, Shaanxi Province, 710021, China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, China; Key Laboratory of Cultivated Land Quality Monitoring and Conservation, Ministry of Agriculture and Rural Affairs, China
| |
Collapse
|
2
|
Pei Y, Lei A, Wang M, Sun M, Yang S, Liu X, Liu L, Chen H. Novel tetracycline-degrading enzymes from the gut microbiota of black soldier fly: Discovery, performance, degradation pathways, mechanisms, and application potential. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137286. [PMID: 39854991 DOI: 10.1016/j.jhazmat.2025.137286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The antibiotic tetracycline (TC) is an emerging pollutant frequently detected in various environments. Although enzymatic remediation is a promising strategy for mitigating TC contamination, the availability of effective TC-degrading enzymes remains limited, and their mechanisms and applications are not fully understood. This study developed a comprehensive TC-degrading enzyme library from the gut microbiome of the highly TC-resistant saprophagous insect, black soldier fly larvae (BSFL), using an integrated metagenomic and comparative metatranscriptomic approach, identifying 105 potential novel TC-degradation genes. Bioinformatics analysis of 10 selected genes underscored the novelty of the identified enzymes. Among these, Trg2 demonstrated strong binding affinity and significant degradation capacity for TC. Key functional amino acid residues, including Thr231, Ala64, Ala82, Gly68, Gly79, and Ser81, were identified as essential for the interaction between TC and Trg2. Six TC degradation pathways were proposed, involving the transformation of TC into 19 metabolites through de-grouping, ring opening, oxidation, reduction, and addition reactions, effectively reducing TC toxicity. Furthermore, Trg2 exhibited resilience under harsh conditions, maintaining the capacity to remove about 45 % of the total TC in mariculture wastewater across eight successive batches. This study advances the understanding of TC degradation mechanisms and highlights the potential application of novel enzymes for bioremediation purposes.
Collapse
Affiliation(s)
- Yaxin Pei
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China.
| | - Aojie Lei
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Mengyao Wang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Mengxiao Sun
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Sen Yang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Xinyu Liu
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Liangwei Liu
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Hongge Chen
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| |
Collapse
|
3
|
Lian Y, Zhou M, Li S, Ding Y, Qiu L, Li H, Xue X, Fang C. Treatment performance of different units in the anaerobic-anoxic-aerobic process of landfill leachate under antibiotic exposure. ENVIRONMENTAL TECHNOLOGY 2024:1-14. [PMID: 39607802 DOI: 10.1080/09593330.2024.2433728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024]
Abstract
The effectiveness of three different treatment units (anaerobic, anoxic, and aerobic) in A/A/O reactors when treating landfill leachate that contained varying concentrations of tetracycline (TC) was evaluated. The effluent quality, sludge performance, and removal rates of COD, TN, TP, and NH3-N of the reactors were investigated. The results showed that in the three treatment units (anaerobic, anoxic, and aerobic), when the TC dosage was 10 mg/L, the removal rates of NH3-N continued to decrease to 6.9%, 16.3%, and 32.8%, and the removal rates of COD, TN, and TP in the three treatment units reached their maximum values, which were 37.5%, 57.4%, and 69.6%; 21.1%, 37.1%, and 41.0%; 13.0%, 16.2%, and 27.4%, respectively. During the reactor's operation, the heavy metal content in the treatment units initially increased followed by a decrease, especially for Mn and Zn. This was due to the production of more EPS by microorganisms, resulting in more active sites for heavy metal adsorption. In addition, with the increase of TC concentration, TC removal rate was always positively correlated with PN, COD, TN and heavy metals removal rates, and negatively correlated with NH3-N, TP, pH, and PS. Further analysis revealed that TC was toxic to microorganisms, leading to a decrease in biodiversity and microbial community diversity among the three treatment units in the reactor. This article analyzed the treatment effects of different treatment units in leachate under antibiotic exposure conditions, to explore better external conditions for sewage biological treatment facilities.
Collapse
Affiliation(s)
- Yiting Lian
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Minjie Zhou
- Pingyang County Water Resources Investment and Development Corporation, Wenzhou, People's Republic of China
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, China
| | - Siyi Li
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yamiao Ding
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Libo Qiu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hong Li
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xiangdong Xue
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, China
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Liu K, Ni W, Zhang Q, Huang X, Luo T, Huang J, Zhang H, Zhang Y, Peng F. Based on T.E.S.T toxicity prediction and machine learning to forecast toxicity dynamics in the photocatalytic degradation of tetracycline. Phys Chem Chem Phys 2024; 26:28266-28273. [PMID: 39499539 DOI: 10.1039/d4cp04037f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The integration of photocatalysis and biological treatment provides an effective strategy for controlling antibiotic contamination, which requires precise monitoring of toxicity changes during the photocatalytic process. In this study, nanoscale TiO2 (P25) was employed to degrade tetracycline (TC) under full-spectrum irradiation, with O2 identified as a crucial reactant for the generation reactive oxygen species (ROS). The toxicity simulation results of the degradation intermediates were closely correlated with the predictions of T.E.S.T software. By analyzing the content of intermediates under different experimental conditions, we developed a machine learning model utilizing the random forest algorithm with a correlation coefficient of R2 = 0.878 and a mean absolute error of MAE = 0.02. The model can track the changes of photocatalytic intermediates, in combination with toxicity simulation, which facilitates the prediction of toxicity at different degradation stages, thus allowing selection of the optimal timing of biological treatment interventions.
Collapse
Affiliation(s)
- Kaihang Liu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039, P. R. China.
| | - Wenhui Ni
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039, P. R. China.
| | - Qiaoyu Zhang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039, P. R. China.
| | - Xu Huang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Tao Luo
- Anhui Institute of Ecological Civilization, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Jian Huang
- Anhui Institute of Ecological Civilization, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Hua Zhang
- Anhui Institute of Ecological Civilization, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Yong Zhang
- Anhui Institute of Ecological Civilization, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Fumin Peng
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039, P. R. China.
| |
Collapse
|
5
|
Fučík J, Fučík S, Rexroth S, Sedlář M, Gargošová HZ, Mravcová L. Pharmaceutical metabolite identification in lettuce (Lactuca sativa) and earthworms (Eisenia fetida) using liquid chromatography coupled to high-resolution mass spectrometry and in silico spectral library. Anal Bioanal Chem 2024; 416:6291-6306. [PMID: 39251428 PMCID: PMC11541386 DOI: 10.1007/s00216-024-05515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Pharmaceuticals released into the aquatic and soil environments can be absorbed by plants and soil organisms, potentially leading to the formation of unknown metabolites that may negatively affect these organisms or contaminate the food chain. The aim of this study was to identify pharmaceutical metabolites through a triplet approach for metabolite structure prediction (software-based predictions, literature review, and known common metabolic pathways), followed by generating in silico mass spectral libraries and applying various mass spectrometry modes for untargeted LC-qTOF analysis. Therefore, Eisenia fetida and Lactuca sativa were exposed to a pharmaceutical mixture (atenolol, enrofloxacin, erythromycin, ketoprofen, sulfametoxazole, tetracycline) under hydroponic and soil conditions at environmentally relevant concentrations. Samples collected at different time points were extracted using QuEChERS and analyzed with LC-qTOF in data-dependent (DDA) and data-independent (DIA) acquisition modes, applying both positive and negative electrospray ionization. The triplet approach for metabolite structure prediction yielded a total of 3762 pharmaceutical metabolites, and an in silico mass spectral library was created based on these predicted metabolites. This approach resulted in the identification of 26 statistically significant metabolites (p < 0.05), with DDA + and DDA - outperforming DIA modes by successfully detecting 56/67 sample type:metabolite combinations. Lettuce roots had the highest metabolite count (26), followed by leaves (6) and earthworms (2). Despite the lower metabolite count, earthworms showed the highest peak intensities, closely followed by roots, with leaves displaying the lowest intensities. Common metabolic reactions observed included hydroxylation, decarboxylation, acetylation, and glucosidation, with ketoprofen-related metabolites being the most prevalent, totaling 12 distinct metabolites. In conclusion, we developed a high-throughput workflow combining open-source software with LC-HRMS for identifying unknown metabolites across various sample types.
Collapse
Affiliation(s)
- Jan Fučík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Stanislav Fučík
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00, Brno, Czech Republic
| | - Sascha Rexroth
- Shimadzu Europa GmbH, Albert-Hahn-Straße 6, 472 69, Duisburg, Germany
| | - Marian Sedlář
- CEITEC Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Ludmila Mravcová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
6
|
Xie XJ, Zhang T, Yang J, Wang WF, Zhao ZQ, Barceló D, Zheng HB. Study on the biodegradation characteristics and mechanism of tetracycline by Serratia entomophila TC-1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174414. [PMID: 38960187 DOI: 10.1016/j.scitotenv.2024.174414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Microbial degradation is an important solution for antibiotic pollution in livestock and poultry farming wastes. This study reports the isolation and identification of the novel bacterial strain Serratia entomophila TC-1, which can degrade 87.8 % of 200 mg/L tetracycline (TC) at 35 °C, pH 6.0, and an inoculation amount of 1 % (v/v). Based on the intermediate products, a possible biological transformation pathway was proposed, including dehydration, oxidation ring opening, decarbonylation, and deamination. Using Escherichia coli and Bacillus subtilis as biological indicators, TC degraded metabolites have shown low toxicity. Whole-genome sequencing showed that the TC-1 strain contained tet (d) and tet (34), which resist TC through multiple mechanisms. In addition, upon TC exposure, TC-1 participated in catalytic and energy supply activities by regulating gene expression, thereby playing a role in TC detoxification. We found that TC-1 showed less interference with changes in the bacterial community in swine wastewater. Thus, TC-1 provided new insights into the mechanisms responsible for TC biodegradation and can be used for TC pollution treatment.
Collapse
Affiliation(s)
- Xiao-Jie Xie
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tao Zhang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jian Yang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Wen-Fan Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhuo-Qun Zhao
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120 Almería, Spain
| | - Hua-Bao Zheng
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
7
|
Han W, Zhao Y, Chen Q, Xie Y, Zhang M, Yao H, Wang L, Zhang Y. Laccase surface-display for environmental tetracycline removal: From structure to function. CHEMOSPHERE 2024; 365:143286. [PMID: 39265738 DOI: 10.1016/j.chemosphere.2024.143286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Facing the increasingly prominent tetracycline pollution and the resulting environmental problems, how to find environmental and efficient treatment means is one of the current research hotspots. In this study, the laccase surface-display technology for tetracycline treatment was investigated. Via study, the type of anchoring protein had a minor influence on the laccase ability, while the type of laccase showed a major impact. Bacillus subtilis spore coat protein (CotA) exhibited higher laccase activity, stability, and efficiency in degrading tetracycline than Pleurotus ostreatus laccase 6 (Lacc6). The superiority of bacterial laccase over fungal laccase was elucidated from the perspective of crystal structure. Besides, a variety of technical means were used to verify the success of surface-display. pGSA-CotA surface-displayed bacteria exhibited good tolerance to high temperature, pH, and various heavy metals. Importantly, surface-displayed bacteria showed faster degradation efficiency and better treatment effects than the intracellular expression bacteria in tetracycline degradation. This implies that surface display technology has greater potential for laccase-mediated environmental remediation. Due to the adverse impacts of tetracycline on soil enzyme activity and microorganisms, our study found that pGSA-CotA surface-displayed bacteria can alleviate tetracycline stress in soil and partially activate the soil, thereby increasing soil enzyme activity and certain nitrogen cycling genes.
Collapse
Affiliation(s)
- Wei Han
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Ying Zhao
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Qi Chen
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Yuzhu Xie
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Meng Zhang
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Hongkai Yao
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China.
| |
Collapse
|
8
|
Kong Y, Zhou Q, Wang R, Chen Q, Xu X, Zhu L, Wang Y. Alleviating effects of microplastics together with tetracycline hydrochloride on the physiological stress of Closterium sp. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1588-1600. [PMID: 39099448 DOI: 10.1039/d4em00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Microplastics have significant influence on both freshwater cyanobacteria and marine microalgae, especially under co-exposure with other pollutants such as heavy metals, antibiotics, and pharmaceuticals. In the present study, combined effects of microplastics (polyethylene terephthalate (PET) or polybutylene terephthalate (PBT)) and tetracycline hydrochloride (TCH) on the microalgae Closterium sp. were studied to evaluate their acute toxicity, and the cell density, total chlorophyll concentration, photosynthetic activity, antioxidant system, and subcellular structure of Closterium sp. under different treatments were used to explain the physiological stress mechanism of the combined effects. The results indicate that both the single and combined treatments have inhibition effects on the cell growth and photosynthetic activity, with inhibition efficiencies (in terms of cell density) of 5.0%, 9.2%, 66.7%, 55.1%, and 59.8% for PET (100 mg L-1), PBT (100 mg L-1), TCH (10 mg L-1), PET/TCH (PET 100 mg L-1 and TCH 10 mg L-1), and PBT/TCH (PBT 100 mg L-1 and TCH 10 mg L-1), respectively, and relative electron-transport rates (rETRs) of 7.3%, 12.7%, 66.8%, 54.0%, and 59.9%, respectively, for each treatment compared with the control on the 7th day. Moreover, both PET and PBT have positive effects in alleviating TCH toxicity toward Closterium sp., and at the same time, the malondialdehyde level (MDA), superoxide dismutase (SOD) activity, and catalase (CAT) activity induced by the combined treatments were much higher than those from the single microplastic treatments but lower than those from TCH treatment after 7 days. It was demonstrated that TCH causes a much more serious oxidative stress than PET/TCH and PBT/TCH, and the lower oxidative stress of the PET/TCH and PBT/TCH groups could be attributed to the adsorption of TCH to PET or PBT. This work improves the understanding of the combined toxicity effects of microplastics and TCH on Closterium sp.
Collapse
Affiliation(s)
- Yun Kong
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qingyun Zhou
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| | - Renjuan Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| | - Qi Chen
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| | - Xiangyang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Liang Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yue Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| |
Collapse
|
9
|
Pei Y, Lei A, Yang S, Chen H, Liu X, Liu L, Kang X. Biodegradation and bioaugmentation of tetracycline by Providencia stuartii TX2: Performance, degradation pathway, genetic background, key enzymes, and application risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135231. [PMID: 39032181 DOI: 10.1016/j.jhazmat.2024.135231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
The antibiotic tetracycline (TC) is an emerging pollutant frequently detected in various environments. Biodegradation is a crucial approach for eliminating TC contamination. However, only a few efficient TC-degrading bacteria have been isolated, and the molecular mechanisms of TC degradation, as well as their application potential, remain poorly understood. This study isolated a novel TC-degrading bacterium, Providencia stuartii TX2, from the intestine of black soldier fly larvae. TX2 exhibited remarkable performance, degrading 72.17 % of 400 mg/L TC within 48 h. Genomic analysis of TX2 unveiled the presence of antibiotic resistance genes and TC degradation enzymes. Transcriptomic analysis highlighted the roles of proteins related to efflux pumps, enzymatic transformation, adversity resistance, and unknown functions. Three TC degradation pathways were proposed, with TC being transformed into 27 metabolites through epimerization, hydroxylation, oxygenation, ring opening, and de-grouping, reducing TC toxicity. Additionally, TX2 significantly enhanced TC biodegradation in four TC-contaminated environmental samples and reduced antibiotic resistance genes and mobile genetic elements in chicken manure. This research provides insights into the survival and biodegradation mechanisms of Providencia stuartii TX2 and evaluates its potential for environmental bioremediation.
Collapse
Affiliation(s)
- Yaxin Pei
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, School of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China.
| | - Aojie Lei
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Sen Yang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Hongge Chen
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Xinyu Liu
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Liangwei Liu
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Xiangtao Kang
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, School of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| |
Collapse
|
10
|
Liu L, Ma H, Xing B. Aging and adsorption behavior of PP-MPs for methylene blue and tetracycline in unitary and binary systems. MARINE POLLUTION BULLETIN 2024; 204:116521. [PMID: 38805976 DOI: 10.1016/j.marpolbul.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
The omnipresence of microplastics (MPs) around the world has attracted extensive attention in the past decade with more focuses on the interactions of standard MPs without additives in regular shapes and individual pollutant, whereas the actual MPs containing various additives in irregular shapes and complex pollutants are often co-occurrence in the environments. In this paper, the adsorption performance of disposable polypropylene (PP) cups-based MPs subjected to ultraviolet irradiation was investigated in unitary and binary water matrices. The surface characteristics were analyzed and the experimental data of adsorption were fitted by various kinetic and isotherm models, and the results indicated that more cracks and oxygen-containing functional groups with decreased hydrophobicity were produced with aging, and electrostatic attraction and hydrogen bonding dominated methylene blue (MB) and tetracycline (TC) capture in the individual system. Moreover, pseudo-second order kinetic model better described the adsorption processes. In the binary system, the co-existence of TC promoted MB uptake, while the presence of MB inhibited TC capture. In addition, TC adsorption was enhanced by Ca2+, maybe due to its complexation effect, while the presence of mono- and divalent inorganic salts inhibited MB capture. This research provides useful insights for the fate of PP-MPs and organic pollutants in the complex environments.
Collapse
Affiliation(s)
- Lili Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
11
|
Li S, Li F, Bao Y, Peng A, Lyu B. Polyethylene and sulfa antibiotic remediation in soil using a multifunctional degrading bacterium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172619. [PMID: 38649045 DOI: 10.1016/j.scitotenv.2024.172619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
To obtain a multifunctional bacterium that can effectively degrade polyethylene (PE) and sulfonamide antibiotics (SAs), PE and SAs were selected as the primary research objects. Multifunctional degrading bacteria were isolated and screened from an environment in which plastics and antibiotics have existed for a long time. An efficient degrading strain, Raoultella sp., was screened by measuring the degradation performance of PE and SAs. We analyzed the changes in the microbial community of indigenous bacteria using 16S rRNA. After 60 d of degradation at 28 °C, the Raoultella strain to PE degradation rate was 4.20 %. The SA degradation rates were 96 % (sulfonathiazole, (ST)), 86 % (sulfamerazine, (SM)), 72 % (sulfamethazine, (SM2)) and 64 % (sulfamethoxazole, (SMX)), respectively. This bacterium increases the surface roughness of PE plastic films and produces numerous gullies, pits, and folds. In addition, after 60 d, the contact angle of the plastic film decreased from 92.965° to 70.205°, indicating a decrease in hydrophobicity. High-throughput sequencing analysis of the degrading bacteria revealed that the Raoultella strain encodes enzymes involved in PE and SA degradation. The results of this study not only provide a theoretical basis for further study of the degradation mechanism of multifunctional and efficient degrading bacteria but also provide potential strain resources for the biodegradation of waste plastics and antibiotics in the environment.
Collapse
Affiliation(s)
- Shuo Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| | - Fachao Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Yanwei Bao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Ankai Peng
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Boya Lyu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| |
Collapse
|
12
|
Li Q, Zheng Y, Guo L, Xiao Y, Li H, Yang P, Xia L, Liu X, Chen Z, Li L, Zhang H. Microbial Degradation of Tetracycline Antibiotics: Mechanisms and Environmental Implications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38835142 DOI: 10.1021/acs.jafc.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The escalating global consumption of tetracyclines (TCs) as broad-spectrum antibiotics necessitates innovative approaches to mitigate their pervasive environmental persistence and associated risks. While initiatives such as China's antimicrobial reduction efforts highlight the urgency of responsible TC usage, the need for efficient degradation methods remains paramount. Microbial degradation emerges as a promising solution, offering novel insights into degradation pathways and mechanisms. Despite challenges, including the optimization of microbial activity conditions and the risk of antibiotic resistance development, microbial degradation showcases significant innovation in its cost-effectiveness, environmental friendliness, and simplicity of implementation compared to traditional degradation methods. While the published reviews have summarized some aspects of biodegradation of TCs, a systematic and comprehensive summary of all the TC biodegradation pathways, reactions, intermediates, and final products including ring-opening products involved with enzymes and mechanisms of each bacterium and fungus reported is necessary. This review aims to fill the current gap in the literature by offering a thorough and systematic overview of the structure, bioactivity mechanism, detection methods, microbial degradation pathways, and molecular mechanisms of all tetracycline antibiotics in various microorganisms. It comprehensively collects and analyzes data on the microbial degradation pathways, including bacteria and fungi, intermediate and final products, ring-opening products, product toxicity, and the degradation mechanisms for all tetracyclines. Additionally, it points out future directions for the discovery of degradation-related genes/enzymes and microbial resources that can effectively degrade tetracyclines. This review is expected to contribute to advancing knowledge in this field and promoting the development of sustainable remediation strategies for contaminated environments.
Collapse
Affiliation(s)
- Qin Li
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Yanhong Zheng
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Lijun Guo
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Ying Xiao
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Haiyue Li
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Pingping Yang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Li Xia
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Xiangqing Liu
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Zhangyan Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Li Li
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Huaidong Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| |
Collapse
|
13
|
Wang S, Han J, Ge Z, Su X, Chen Y, Meng J. Biotransformation characteristics of tetracycline by strain Serratia marcescens MSM2304 and its mechanism evaluation based on products analysis and genomics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120684. [PMID: 38531133 DOI: 10.1016/j.jenvman.2024.120684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Microbial biotransformation is a recommended and reliable method in face of formidable tetracycline (TC) with broad-spectrum antibacterial activity. Herein, comprehensive characteristics of a newfound strain and its molecular mechanism in process of TC bioremediation were involved in this study. Specifically, Serratia marcescens MSM2304 isolated from pig manure sludge grew well in presence of TC and achieved optimal removal efficiency of 61% under conditions of initial TC concentration of 10 mg/L, pH of 7.0, cell inoculation amount of 5%, and tryptone of 10 g/L as additional carbon. The pathways of biotransformation include EPS biosorption, cell surface biosorption and biodegradation, which enzymatic processes of biodegradation were occurred through TC adsorbed by biofilms was firstly broken down by extracellular enzymes and part of TC migrated towards biofilm interior and degraded by intracellular enzymes. Wherein extracellular polysaccharides in extracellular polymeric substances (EPS) from biofilm of strain MSM2304 mainly performed extracellular adsorption, and changes in position and intensity of CO, =CH and C-O-C/C-O of EPS possible further implied TC adsorption by it. Biodegradation accounting for 79.07% played a key role in TC biotransformation and could be fitted well by first-order model that manifesting rapid and thorough removal. Potential biodegradation pathway including demethylation, dihydroxylation, oxygenation, and ring opening possibly involved in TC disposal process of MSM2304, TC-degrading metabolites exhibited lower toxicity to indicator bacteria relative to parent TC. Whole genome sequencing as underlying molecular evidence revealed that TC resistance genes, dehydrogenases-encoding genes, monooxygenase-encoding genes, and methyltransferase-encoding genes of strain MSM2304 were positively related to TC biodegradation. Collectively, these results favored a theoretical evaluation for Serratia marcescens MSM2304 as a promising TC-control agent in environmental bioremediation processes.
Collapse
Affiliation(s)
- Siyu Wang
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China
| | - Jie Han
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang,110866, China.
| | - Ziyi Ge
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China
| | - Xu Su
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China
| | - Yixuan Chen
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China
| | - Jun Meng
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China.
| |
Collapse
|
14
|
Luo S, Zhen Z, Teng T, Wu W, Yang G, Yang C, Li H, Huang F, Wei T, Lin Z, Zhang D. New mechanisms of biochar-assisted vermicomposting by recognizing different active di-(2-ethylhexyl) phthalate (DEHP) degraders across pedosphere, charosphere and intestinal sphere. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131990. [PMID: 37418964 DOI: 10.1016/j.jhazmat.2023.131990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Biochar-assisted vermicomposting can significantly accelerate soil DEHP degradation, but little information is known about the underlying mechanisms as different microspheres exist in soil ecosystem. In this study, we identified the active DEHP degraders in biochar-assisted vermicomposting by DNA stable isotope probing (DNA-SIP) and surprisingly found their different compositions in pedosphere, charosphere and intestinal sphere. Thirteen bacterial lineages (Laceyella, Microvirga, Sphingomonas, Ensifer, Skermanella, Lysobacter, Archangium, Intrasporangiaceae, Pseudarthrobacter, Blastococcus, Streptomyces, Nocardioides and Gemmatimonadetes) were responsible for in situ DEHP degradation in pedosphere, whereas their abundance significantly changed in biochar or earthworm treatments. Instead, some other active DEHP degraders were identified in charosphere (Serratia marcescens and Micromonospora) and intestinal sphere (Clostridiaceae, Oceanobacillus, Acidobacteria, Serratia marcescens and Acinetobacter) with high abundance. In biochar-assisted vermicomposting, the majority of active DEHP degraders were found in charosphere, followed by intestinal sphere and pedosphere. Our findings for the first time unraveled the spatial distribution of active DEHP degraders in different microspheres in soil matrices, explained by DEHP dynamic adsorption on biochar and desorption in earthworm gut. Our work highlighted that charosphere and intestinal sphere exhibited more contribution to the accelerated DEHP biodegradation than pedosphere, providing novel insight into the mechanisms of biochar and earthworm in improving contaminant degradation.
Collapse
Affiliation(s)
- Shuwen Luo
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Tingting Teng
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Weilong Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Guiqiong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Changhong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
15
|
Pei Y, Sun M, Zhang J, Lei A, Chen H, Kang X, Ni H, Yang S. Comparative Metagenomic and Metatranscriptomic Analyses Reveal the Response of Black Soldier Fly ( Hermetia illucens) Larvae Intestinal Microbes and Reduction Mechanisms to High Concentrations of Tetracycline. TOXICS 2023; 11:611. [PMID: 37505576 PMCID: PMC10386730 DOI: 10.3390/toxics11070611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Black soldier fly (Hermetia illucens L) larvae (BSFL) possess remarkable antibiotic degradation abilities due to their robust intestinal microbiota. However, the response mechanism of BSFL intestinal microbes to the high concentration of antibiotic stress remains unclear. In this study, we investigated the shift in BSFL gut microbiome and the functional genes that respond to 1250 mg/kg of tetracycline via metagenomic and metatranscriptomic analysis, respectively. The bio-physiological phenotypes showed that the survival rate of BSFL was not affected by tetracycline, while the biomass and substrate consumption of BSFL was slightly reduced. Natural BSFL achieved a 20% higher tetracycline degradation rate than the germ-free BSFL after 8 days of rearing. Metagenomic and metatranscriptomic sequencing results revealed the differences between the entire and active microbiome. Metatranscriptomic analysis indicated that Enterococcus, Vagococcus, Providencia, and Paenalcaligenes were the active genera that responded to tetracycline. Furthermore, based on the active functional genes that responded to tetracycline pressure, the response mechanisms of BSFL intestinal microbes were speculated as follows: the Tet family that mediates the expression of efflux pumps expel tetracycline out of the microbes, while tetM and tetW release it from the ribosome. Eventually, tetracycline was degraded by deacetylases and novel enzymes. Overall, this study provides novel insights about the active intestinal microbes and their functional genes in insects responding to the high concentration of antibiotics.
Collapse
Affiliation(s)
- Yaxin Pei
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengxiao Sun
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiran Zhang
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Aojie Lei
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongge Chen
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sen Yang
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
16
|
Wang L, Chen J, Zhang X, Xu M, Zhang X, Zhao W, Cui J. Effects of microplastics and tetracycline on intestinal injury in mice. CHEMOSPHERE 2023:139364. [PMID: 37391084 DOI: 10.1016/j.chemosphere.2023.139364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Microplastics (MPs) and tetracycline are both emerging environmental pollutants that threaten human health. The toxic impacts of their single and coexposure on the intestine and gut microbiota have not been well studied in mammals. Given the spatial functional characteristics of the intestine, it is important to know whether the toxicities of MPs and tetracycline in different intestinal segments are distinct. This study investigated the pathological and functional injuries of different intestinal segments and the microbial disorder upon exposure to polystyrene microplastics (PS-MPs) and/or tetracycline hydrochloride (TCH). Both PS-MPs and TCH altered the intestinal morphology and induced functional impairment. However, the PS-MPs primarily damaged the colon, while TCH mainly damaged the small intestine, especially the jejunum. Combined treatment evoked ameliorative adverse effects on the intestinal segments except for the ileum. Gut microbiota analysis revealed that PS-MPs and/or TCH decreased gut microbiota diversity, especially PS-MPs. In addition, PS-MPs and TCH affected the microflora metabolic processes, especially protein absorption and digestion. Gut microbiota dysbiosis could partly lead to the physical and functional damage induced by PS-MPs and TCH. These findings enhance our knowledge regarding the hazards of coexisting microplastics and antibiotics for mammalian intestinal health.
Collapse
Affiliation(s)
- Lixin Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China.
| | - Jiamin Chen
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Xuan Zhang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Man Xu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Xuyan Zhang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Wanqing Zhao
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China.
| |
Collapse
|
17
|
Shanmuganathan R, Sibtain Kadri M, Mathimani T, Hoang Le Q, Pugazhendhi A. Recent innovations and challenges in the eradication of emerging contaminants from aquatic systems. CHEMOSPHERE 2023; 332:138812. [PMID: 37127197 DOI: 10.1016/j.chemosphere.2023.138812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Presence of emerging pollutants (EPs), aka Micropollutants (MPs) in the freshwater environments is a severe threat to the environment and human beings. They include pharmaceuticals, insecticides, industrial chemicals, natural hormones, and personal care items and the pollutants are mostly present in wastewater generated from urbanization and increased industrial growth. Even concentrations as low as ngL-1 or mgL-1 have proven ecologically lethal to aquatic biota. For several years, the biodegradation of various Micropollutants (MPs) in aquatic ecosystems has been a significant area of research worldwide, with many chemical compounds being discovered in various water bodies. As aquatic biota spends most of their formative phases in polluted water, the impacts on aquatic biota are obvious, indicating that the environmental danger is substantial. In contrast, the impact of these contaminants on aquatic creatures and freshwater consumption is more subtle and manifests directly when disrupting the endocrine system. Research and development activities are expected to enable the development of ecologically sustainable, cost-effective, and efficient treatments for practical systems in the near future. Therefore, this review aims to understand recent emerging pollutants discovered and the available treatment technologies and suggest an innovative and cost-effective method to treat these EPs, which is sustainable and follows the circular bioeconomy.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, 804201, Taiwan
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
18
|
Huang SJ, Dwivedi KA, Kumar S, Wang CT, Yadav AK. Binder-free NiO/MnO 2 coated carbon based anodes for simultaneous norfloxacin removal, wastewater treatment and power generation in dual-chamber microbial fuel cell. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120578. [PMID: 36395905 DOI: 10.1016/j.envpol.2022.120578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Norfloxacin (NFX) is a commonly consumed synthetic antibiotic drug to cure many adverse infectious diseases of humans worldwide, but their presence in almost all aquatic environments has grown into severe global health concerns. In this study, the power performance of dual-chamber microbial fuel cells (MFCs) with two different types of base anodes (graphite felt and activated carbon cloth) were tested with a coating of NiO/MnO2 for removal of NFX in wastewater. As transition metal oxides have excellent electrochemical stability and a higher specific capacitance, their application in MFC for antibiotic removal and wastewater treatment would be an interesting study. Four different NFX concentrations were studied in two different base material with a coating of NiO/MnO2. Coating was done with 2 step hydro solvothermal method and modified anode surface was characterized by XRD and XPS analyses. Extracellular electron transfer between microorganisms and the modified anode improved significantly as a consequence of reduced internal resistance and a more biocompatible surface as measured by Electroscopy Impedance Spectroscopy (EIS) and polarization curves. NiO/MnO2 coated graphite felt performed 1.2 fold better than the control plain graphite felt. Similar results were found for activated carbon cloth (ACC). Modified ACC performed 1.3 fold better than the control plain ACC.
Collapse
Affiliation(s)
- Song-Jeng Huang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Kavya Arun Dwivedi
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Chin-Tsan Wang
- Department of Mechanical and Electromechanical Engineering, National I Lan University, I Lan, 26047, Taiwan; Department of Chemical Engineering, Indian Institute of Technology Guwahati, 781039, India.
| | - Asheesh Kumar Yadav
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
19
|
Gan J, Bilal M, Li X, Hussain Shah SZ, Mohamed BA, Hadibarata T, Cheng H. Peroxidases-based enticing biotechnological platforms for biodegradation and biotransformation of emerging contaminants. CHEMOSPHERE 2022; 307:136035. [PMID: 35973503 DOI: 10.1016/j.chemosphere.2022.136035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Rampant industrial boom, urbanization, and exponential population growth resulted in widespread environmental pollution, with water being one of the leading affected resources. All kinds of pollutants, including phenols, industrial dyes, antibiotics, pharmaceutically active residues, and persistent/volatile organic compounds, have a paramount effect, either directly or indirectly, on human health and aquatic entities. Strategies for affordable and efficient decontamination of these emerging pollutants have become the prime focus of academic researchers, industry, and government to constitute a sustainable human society. Classical treatment techniques for environmental contaminants are associated with several limitations, such as inefficiency, complex pretreatments, overall high process cost, high sludge generation, and highly toxic side-products formation. Enzymatic remediation is considered a green and ecologically friendlier method that holds considerable potential to mitigate any kinds of contaminating agents. Exploiting the potential of various peroxidases for pollution abatement is an emerging research area and has considerable advantages, such as efficiency and ease of handling, over other methods. This work is designed to provide recent progress in deploying peroxidases as green and versatile biocatalytic tools for the degradation and transformation of a spectrum of potentially hazardous environmental pollutants to broaden their scope for biotechnological and environmental purposes. More studies are required to explicate the degradation mechanisms, assess the toxicology levels of bio-transformed metabolites, and standardize the treatment strategies for economic viability.
Collapse
Affiliation(s)
- JianSong Gan
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221094, China; School of Food and Drug, Jiangsu Vocational College of Finance & Economics, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - XiaoBing Li
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221094, China.
| | | | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza, Egypt
| | - Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, 98009, Malaysia
| | - Hairong Cheng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
20
|
González-González RB, Flores-Contreras EA, Parra-Saldívar R, Iqbal HMN. Bio-removal of emerging pollutants by advanced bioremediation techniques. ENVIRONMENTAL RESEARCH 2022; 214:113936. [PMID: 35932833 DOI: 10.1016/j.envres.2022.113936] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This review highlights the relevance of bioremediation techniques for the removal of emerging pollutants (EPs). The EPs are chemical or biological pollutants that are not currently monitored or regulated by environmental authorities, but which can enter the environment and cause harmful effects to the environment and human health. In recent times, an ample range of EPs have been found in water bodies, where they can unbalance ecosystems and cause negative effects on non-target species. In addition, some EPs have shown high rates of bioaccumulation in aquatic species, thus affecting the safety and quality of seafood. The negative impacts of emerging pollutants, their wide distribution in the environment, their bioaccumulation rates, and their resistance to wastewater treatment plants processes have led to research on sustainable remediation. Remediation techniques have been recently directed to advanced biological remediation technologies. Such technologies have exhibited numerous advantages like in-situ remediation, low costs, eco-friendliness, high public acceptance, and so on. Thus, the present review has compiled the most recent studies on bioremediation techniques for water decontamination from emerging pollutants to extend the current knowledge on sustainable remediation technologies. Biological emerging contaminants, agrochemicals, endocrine-disrupting chemicals, and pharmaceutical and personal care products were considered for this review study, and their removal by bioremediation techniques involving plants, bacteria, microalgae, and fungi. Finally, further research opportunities are presented based on current challenges from an economic, biological, and operation perspective.
Collapse
Affiliation(s)
| | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|