1
|
Santovito A, Lambertini M, Nota A. In Vitro and In Vivo Genotoxicity of Polystyrene Microplastics: Evaluation of a Possible Synergistic Action with Bisphenol A. J Xenobiot 2024; 14:1415-1431. [PMID: 39449420 PMCID: PMC11503296 DOI: 10.3390/jox14040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
The ubiquitous presence of plastics represents a global threat for all ecosystems and human health. In this study, we evaluated, in vitro and in vivo, the genotoxic potential of different concentrations of polystyrene microplastics (PS-MPs) and their possible synergistic interactions with bisphenol-A (BPA). For the in vitro and the in vivo assays, we used human lymphocytes and hemocytes from Lymnaea stagnalis, respectively. The genomic damage was evaluated by the micronucleus assay, and differences in eggs laid and growth of L. stagnalis were also evaluated. In human lymphocytes, PS-MPs alone at the concentration of 200 μg/mL and in association with BPA 0.100 µg/mL significantly increased the frequencies of micronuclei and nuclear buds, indicating a possible in vitro genotoxic additive action of these two compounds. Vice versa, PS-MPs did not result in genotoxicity in hemocytes. Our results indicated that PS-MPs have genotoxic properties only in vitro and at a concentration of 200 µg/mL; moreover, this compound could intensify the genomic damage when tested with BPA, indicating possible cumulative effects. Finally, PS significantly reduced the growth and the number of laid eggs in L. stagnalis.
Collapse
Affiliation(s)
- Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Mattia Lambertini
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy;
| | - Alessandro Nota
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy;
| |
Collapse
|
2
|
Yang Y, Li G, Li Z, Lu L. The roles of typical emerging pollutants on N 2O emissions during biological nitrogen removal from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172851. [PMID: 38685430 DOI: 10.1016/j.scitotenv.2024.172851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
N2O as a potent greenhouse gas often generates in the biological nitrogen removal (BNR) processes during wastewater treatment, which makes BNR become an important greenhouse gas emission source. The emerging pollutants (EPs) are ubiquitous in wastewater and they have shown to influence the BNR processes. However, the deep discussion on potential impacts of EPs on N2O emissions during BNR is rare. Moreover, the experimental parameters for EPs investigation in most of literatures are generally not in line with real-world BNR processes, which calls for deep elucidating the roles of EPs on N2O production and emission. In this work, a critical review summarizes the existing literature about influences of typical EPs on N2O emissions and associated mechanisms during BNR, and it discusses the impacts of some easily overlooked factors, such as real EPs environmental concentrations, EPs bioaccumulation, and multiple EPs coexistence on N2O emissions. This review will provide an insight into exploring and mitigating threats posed by typical EPs on N2O emissions.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Guifeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zhida Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
3
|
Wang Q, Chen H, Gu W, Wang S, Li Y. Biodegradation of aged polyethylene (PE) and polystyrene (PS) microplastics by yellow mealworms (Tenebrio molitor larvae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172243. [PMID: 38582118 DOI: 10.1016/j.scitotenv.2024.172243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Globally, over 287 million tons of plastic are disposed in landfills, rivers, and oceans or are burned every year. The results are devastating to our ecosystems, wildlife and human health. One promising remedy is the yellow mealworm (Tenebrio molitor larvae), which has proved capable of degrading microplastics (MPs). This paper presents a new investigation into the biodegradation of aged polyethylene (PE) film and polystyrene (PS) foam by the Tenebrio molitor larvae. After a 35 - day feeding period, both pristine and aged MPs can be consumed by larvae. Even with some inhibitions in larvae growth due to the limited nutrient supply of aged MPs, when compared with pristine MPs, the aged MPs were depolymerized more efficiently in gut microbiota based on gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) analysis. With the change in surface chemical properties, the metabolic intermediates of aged MPs contained more oxygen-containing functional groups and shortened long-chain alkane, which was confirmed by gas chromatography and mass spectrometry (GC-MS). High-throughput sequencing revealed that the richness and diversity of gut microbes were restricted in the MPs-fed group. Although MPs had a negative effect on the relative abundance of the two dominant bacteria Enterococcaceae and Lactobacillaceae, the aged MPs may promote the relative abundance of Enterobacteriaceae and Streptococcaceae. Redundancy analysis (RDA) further verified that the aged MPs are effectively biodegraded by yellow mealworm. This work provides new insights into insect-mediated mechanisms of aged MP degradation and promising strategies for MP sustainable and efficient solutions.
Collapse
Affiliation(s)
- Qiongjie Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Huijuan Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Wanqing Gu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Shurui Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yinghua Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| |
Collapse
|
4
|
Li X, Pu Q, Xu Y, Yang H, Wu Y, Wang W, Li Y. The masking phenomenon of microplastics additives on oxidative stress responses in freshwater food chains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172156. [PMID: 38588742 DOI: 10.1016/j.scitotenv.2024.172156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
The variability and intrinsic mechanisms of oxidative stress induced by microplastics at different trophic levels in freshwater food chains are not well understood. To comprehensively assess the oxidative stress induced by polystyrene microplastics (PS-MPs) in freshwater food chains, the present study first quantified the oxidative stress induced by PS-MPs in organisms at different trophic levels using factorial experimental design and molecular dynamics methods. Then focuses on analyzing the variability of these responses across different trophic levels using mathematical statistical analysis. Notably, higher trophic level organisms exhibit diminished responses under PS-MPs exposure. Furthermore, the coexistence of multiple additives was found to mask these responses, with antioxidant plastic additives significantly influencing oxidative stress responses. Mechanism analysis using computational chemistry simulation determines that protein structure and amino acid characteristics are key factors driving PS-MPs induced oxidative stress variation in freshwater organisms at different nutrient levels. Increased hydrophobic additives induce protein helicalization and amino acid residue aggregation. This study systematically reveals the variability of biological oxidative stress response under different nutrient levels, emphasizing the pivotal role of chemical additives. Overall, this study offers crucial insights into PS-MPs' impact on oxidative stress responses in freshwater ecosystems, informing future environmental risk assessment.
Collapse
Affiliation(s)
- Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Yingjie Xu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Yang Wu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Wenwen Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
5
|
Lin W, Hu F, Liu F, Liao L, Ling L, Li L, Yang J, Yang P. Microcystin-LR and polystyrene microplastics jointly lead to hepatic histopathological damage and antioxidant dysfunction in male zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123789. [PMID: 38490526 DOI: 10.1016/j.envpol.2024.123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The co-occurrence of cyanobacterial blooms and nano-microplastic pollution in the water is becoming an emerging risk. To assess the combined hepatotoxicity of microcystin-LR (MC-LR) and polystyrene microplastics (PSMPs) on zebrafish (Danio rerio), male adult zebrafish were exposed to single MC-LR (0, 1, 5, 25 μg/L) and a mixture of MC-LR and PSMPs (100 μg/L). After 60 d exposure, the results indicated that PSMPs significantly increased the MC-LR bioaccumulation in the livers in contrast to the single 25 μg/L MC-LR treatment group. Moreover, the severity of hepatic pathological lesions was aggravated in the MC-LR + PSMPs treatment groups, which were mainly characterized by cellular vacuolar degeneration, swollen hepatocytes, and pyknotic nucleus. The ultrastructural changes also proved that PSMPs combined with MC-LR could enhance the swollen mitochondria and dilated endoplasmic reticulum. The biochemical results, including increased malondialdehyde (MDA) and decreased glutathione (GSH), indicated that PSMPs intensified the MC-LR-induced oxidative damage in the combined treatment groups. Concurrently, alterations of sod1 and keap1a mRNA levels also confirmed that PSMPs together with MC-LR jointly lead to enhanced oxidative injury. Our findings demonstrated that PSMPs enhanced the MC-LR bioavailability by acting as a vector and exacerbating the hepatic injuries and antioxidant dysfunction in zebrafish.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, PR China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, PR China
| | - Fen Hu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Fang Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Ling Liao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Ling Ling
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jifeng Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, PR China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, 415000, PR China.
| |
Collapse
|
6
|
Cui J, Zhu M, Sun X, Yang J, Guo M. Microplastics induced endoplasmic reticulum stress to format an inflammation and cell death in hepatocytes of carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106870. [PMID: 38395010 DOI: 10.1016/j.aquatox.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Microplastics (MPs) are a serious threat to the living environment of aquatic organisms. However, there are fewer studies on the toxicity of microplastics to freshwater organisms. This study aimed to establish a polystyrene microplastics (PS-MPs) model by feeding carp (Cyprinus carpio) PS-MP (1000 ng/L) particles 8 μm in size. HE staining revealed a mass of inflammatory cells infiltrated in the carp hepatopancreas. The activities of alkaline phosphatase (AKP), aspartate transaminase (AST), lactate dehydrogenase (LDH), and alanine transaminase (ALT) were strengthened considerably, suggesting that PS-MPs cause injury to the hepatopancreas of carp. Real-Time polymerase chain reaction and western blotting results indicated increased levels of glucose-regulated protein 78 (GRP78), (PKR)-like ER kinase (PERK), eukaryotic translation initiation Factor 2α (EIF2α) and activating transcription Factor 4 (ATF4) genes and increased levels of inflammatory factors downstream of endoplasmic reticulum stress (ERs) thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), interleukin-18 (IL-18), interleukin-1β (IL-1β), and caspase 1. Increased expression of microtubule-associated protein-2 (LC3II), autophagy-related 5 (ATG5) and autophagy-related 12 (ATG12) genes revealed that PS-MPs promoted autophagy in carp hepatocytes. The enhanced expression of the Caspase 12, Caspase 3, and Bax genes suggested that PS-MPs led to the apoptosis of carp hepatocytes. These results suggest that PS-MPs result in serious injury to the hepatopancreas of carp. The present study of PS-MPs in freshwater fish from the aspect of endoplasmic reticulum stress was conducted to provide references and suggestions for toxicological studies of PS-MPs in freshwater environments.
Collapse
Affiliation(s)
- Jie Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengran Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoran Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Yu J, Wang S, Zhang HQ, Song XR, Liu LF, Jiang Y, Chen R, Zhang Q, Chen YQ, Zhou HJ, Yang GP. Effects of nanoplastics exposure on ingestion, life history traits, and dimethyl sulfide production in rotifer Brachionus plicatilis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123308. [PMID: 38185352 DOI: 10.1016/j.envpol.2024.123308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have gained global concern due to their detrimental effects on marine organisms. We investigated the effects of 80 nm polystyrene (PS) NPs on life history traits, ingestion, and dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP) production in the rotifer Brachionus plicatilis. Fluorescently labeled 80 nm PS NPs were ingested by the rotifer B. plicatilis and accumulated in the digestive tract. The lethal rates of B. plicatilis exposed to NPs were dose-dependent. High concentrations of PS NPs exposure had negative effects on developmental duration, leading to prolonged embryonic development and pre-reproductive periods, shortened reproductive period, post-reproductive period, and lifespan in B. plicatilis. High concentrations of PS NPs exposure inhibited life table demographic parameters such as age-specific survivorship and fecundity, generation time, net reproductive rate, and life expectancy. Consequently, the population of B. plicatilis was adversely impacted. Furthermore, exposure to PS NPs resulted in a reduced ingestion rate in B. plicatilis, as well as a decreased in DMS, particulate DMSP (DMSPp) concentration, and DMSP lyase activity (DLA), which exhibited a dose-response relationship. B. plicatilis grazing promoted DLA and therefore increased DMS production. PS NPs exposure caused a decline in the increased DMS induced by rotifer grazing. Our results help to understand the ecotoxicity of NPs on rotifer and their impact on the biogeochemical cycle of dimethylated sulfur compounds.
Collapse
Affiliation(s)
- Juan Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Su Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Hao-Quan Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xin-Ran Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Long-Fei Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yu Jiang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Rong Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Qi Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yong-Qiao Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Hou-Jin Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
8
|
Bhutto SUA, Akram M, You XY. Probabilistic risk assessment of microplastics in Tai Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169965. [PMID: 38211859 DOI: 10.1016/j.scitotenv.2024.169965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Microplastics are a global environmental concern, especially in freshwater ecosystems. Despite the studies in specific regions of Tai lake, a gap persists in understanding the comprehensive risk of MPs across the entire watershed. Therefore, this study offers an overview of MPs abundance and assesses ecotoxicological risk by employing acute and chronic species sensitivity distributions, which consider the effects triggered by MPs. The concentrations of MPs ranged from 0 to 18.6 particles/L within the lake, 1.56 to 1.42 × 102 particles/L in the rivers, and 0.16 to 0.7 particles/L in the estuaries. Certain areas, particularly the northwest and southeast regions, exhibit higher concentrations. Using existing toxicity data, this study calculated predicted no effect concentrations for acute and chronic exposure of MPs to freshwater species, resulting in values of 11.5 and 31.72 particles/L, respectively. The probabilistic risk assessment indicates that the average risk possibility of MPs in Tai lake was 16 %. Moreover, the risk characterization ratio indicated that 22 % of the locations in Tai lake showed an acute ecological risk, while 7.4 % exhibit a chronic ecological risk. The assessment concluded that MPs reported in the literature could pose a considerable risk to Tai lake biota. However, the risk associated with MPs followed descending order: river >lake > estuary waters. Our research supplies valuable insights for the assessment of ecological risks associated with MPs on a whole watershed scale.
Collapse
Affiliation(s)
- Seerat Ul Ain Bhutto
- School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin 300350, China
| | - Muhammad Akram
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xue-Yi You
- School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
9
|
Chen J, Liang Q, Zheng Y, Lei Y, Gan X, Mei H, Bai C, Wang H, Ju J, Dong Q, Song Y. Polystyrene nanoplastics induced size-dependent developmental and neurobehavioral toxicities in embryonic and juvenile zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106842. [PMID: 38266469 DOI: 10.1016/j.aquatox.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Because of widespread environmental contamination, there is growing concern that nanoplastics may pose a risk to humans and the environment. Due to their small particle size, nanoplastics may cross the blood-nerve barrier and distribute within the nervous system. The present study systematically investigated the uptake/distribution and developmental/neurobehavioral toxicities of different sizes (80, 200, and 500 nm) of polystyrene nanoplastics (PS) in embryonic and juvenile zebrafish. The results indicate that all three sizes of PS could cross the chorion, adsorb by the yolk, and distribute into the intestinal tract, eye, brain, and dorsal trunk of zebrafish, but with different patterns. The organ distribution and observed developmental and neurobehavioral effects varied as a function of PS size. Although all PS exposures induced cell death and inflammation at the cellular level, only exposures to the larger PS resulted in oxidative stress. Meanwhile, exposure to the 80 nm PS increased the expression of neural and optical-specific mRNAs. Collectively, these studies indicate that early life-stage exposures to PS adversely affect zebrafish neurodevelopment and that the observed toxicities are influenced by particle size.
Collapse
Affiliation(s)
- Jiangfei Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China; Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Qiuju Liang
- School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yi Zheng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuhang Lei
- School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Xiufeng Gan
- School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - He Mei
- School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chenglian Bai
- School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Haiyan Wang
- School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jingjuan Ju
- School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China; Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Qiaoxiang Dong
- School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
10
|
Iovino P, Lavorgna M, Orlo E, Russo C, De Felice B, Campolattano N, Muscariello L, Fenti A, Chianese S, Isidori M, Musmarra D. An integrated approach for the assessment of the electrochemical oxidation of diclofenac: By-product identification, microbiological and eco-genotoxicological evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168511. [PMID: 37977373 DOI: 10.1016/j.scitotenv.2023.168511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Diclofenac (DCF), a contaminant of emerging concern, is a non-steroidal anti-inflammatory drug widely detected in water bodies, which demonstrated harmful acute and chronic toxicity toward algae, zooplankton and aquatic invertebrates, therefore its removal from impacted water is necessary. DCF is recalcitrant toward traditional treatment technologies, thus, innovative approaches are required. Among them, electrochemical oxidation (EO) has shown promising results. In this research, an innovative multidisciplinary approach is proposed to assess the electrochemical oxidation (EO) of diclofenac from wastewater by integrating the investigations on the removal efficiency and by-product identification with the disinfection capacity and the assessment of the effect on environmental geno-toxicity of by-products generated through the oxidation. The electrochemical treatment successfully degraded DCF by achieving >98 % removal efficiency, operating with NaCl 0.02 M at 50 A m-2. By-product identification analyses showed the formation of five DCF parental compounds generated by decarboxylic and CN cleavage reactions. The disinfection capacity of the EO technique was evaluated by carrying out microbiological tests on pathogens generally found in aquatic environments, including two rod-shaped Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), one rod-shaped Gram-positive bacterium (Bacillus atrophaeus), and one Gram-positive coccus (Enterococcus hirae). Eco-toxicity was evaluated in freshwater organisms (algae, rotifers and crustaceans) belonging to two trophic levels through acute and chronic tests. Genotoxicity tests were carried out by Comet assay, and relative expression levels of catalase, manganese and copper superoxide dismutase genes in crustaceans. Results highlight the effectiveness of EO for the degradation of diclofenac and the inactivation of pathogens; however, the downstream mixture results in being harmful to the aquatic ecosystem.
Collapse
Affiliation(s)
- P Iovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - M Lavorgna
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - E Orlo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - C Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy.
| | - B De Felice
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - N Campolattano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - L Muscariello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - A Fenti
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, Aversa 81031, Italy.
| | - S Chianese
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, Aversa 81031, Italy
| | - M Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - D Musmarra
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, Aversa 81031, Italy
| |
Collapse
|
11
|
Ning Z, Zhou S, Li P, Li R, Liu F, Zhao Z, Ren N, Lu L. Exaggerated interaction of biofilm-developed microplastics and contaminants in aquatic environments. CHEMOSPHERE 2023; 345:140509. [PMID: 37871873 DOI: 10.1016/j.chemosphere.2023.140509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Biofilm-developed microplastics (MPs) may serve as important vectors for contaminants in aquatic environments. Elucidating the interactions between biofilm-developed MPs and coexisting contaminants is crucial for understanding the vector capacities of MPs. However, little is known about how the adverse effects of contaminants on MP surface-colonized biofilms influence their vector capacity. In this study, we aimed to investigate the interaction mechanism of biofilms colonizing the surface of MPs with coexisting contaminants using microcosm experiments and biofilm characterization techniques. The results indicated that the biofilm biomass on polystyrene increased over time, providing an additional abundance of oxygen-containing functional groups and promoting Cd accumulation by biofilm-developed polystyrene. Moreover, as a coexisting contaminant, Cd exerted adverse effects such as additional mortality of microorganisms and senescence and MP-colonized biofilm shedding. Consequently, the contaminant vector capacity of biofilm-developed MPs could be mitigated. Thus, the adverse effects of coexisting contaminants on biofilms influenced the ability of MPs to act as vectors in aquatic environments. Neglecting the negative effects of contaminants on biofilms may lead to an overestimation of the contaminant vector capacity of biofilm-developed MPs. This study provides support for more accurate assessment of the interactions between biofilm-developed MPs as vectors and contaminants in aquatic environments.
Collapse
Affiliation(s)
- Zigong Ning
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Zhuhai Modern Agriculture Development Center, Zhuhai 519075, China.
| | - Shuang Zhou
- Shenzhen Honglue Research Institute of Innovation Management, Shenzhen 518119, China
| | - Pengxiang Li
- CCTEG Beijing Academy of Land Renovation and Ecological Restoration Technology Co.,Ltd, Beijing 100013, China; Research Center of Land Renovation and Ecological Restoration Engineering in the Coal Industry, Beijing 100013, China
| | - Rong Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Feihua Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Nanqi Ren
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lu Lu
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
12
|
Esmaeili Nasrabadi A, Zahmatkesh Anbarani M, Bonyadi Z. Investigating the efficiency of oak powder as a new natural coagulant for eliminating polystyrene microplastics from aqueous solutions. Sci Rep 2023; 13:20402. [PMID: 37990113 PMCID: PMC10663507 DOI: 10.1038/s41598-023-47849-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023] Open
Abstract
Polystyrene (PS) is a commonly used plastic material in disposable containers. However, it readily breaks down into microplastic particles when exposed to water environments. In this research, oak powder was used as a natural, inexpensive, and eco-friendly coagulant. The present study aims to determine the effectiveness of oak powder in removing PS from aquatic environments. The Box-Behnken model (BBD) was used to determine the optimal conditions for removal. The removal efficiency was evaluated for various parameters including PS concentration (100-900 mg/L), pH (4-10), contact time (10-40 min), and oak dosage (100-400 mg/L). The maximum removal of PS microplastics (89.1%) was achieved by using an oak dose of 250 mg/L, a PS concentration of 900 mg/L, a contact time of 40 min, and a pH of 7. These results suggest that oak powder can effectively remove PS microplastics through surface adsorption and charge neutralization mechanisms, likely due to the presence of tannin compounds. Based on the results obtained, it has been found that the natural coagulant derived from oak has the potential to effectively compete with harmful chemical coagulants in removing microplastics from aqueous solutions.
Collapse
Affiliation(s)
- Afsaneh Esmaeili Nasrabadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Zahmatkesh Anbarani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Russo C, Nugnes R, Orlo E, di Matteo A, De Felice B, Montanino C, Lavorgna M, Isidori M. Diclofenac eco-geno-toxicity in freshwater algae, rotifers and crustaceans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122251. [PMID: 37506803 DOI: 10.1016/j.envpol.2023.122251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
This study assessed the eco-genotoxic impact of diclofenac (DCF) in sentinel species of the freshwater ecosystem. DCF residues are found in freshwater from few ng/L to tens of μg/L due to the inability of conventional wastewater treatment plants to ensure removal efficiency of the drug. An ample body of literature reports on the acute toxicity of DCF in non-target organisms without addressing potential chronic long-term effects on organisms at actual, environmental concentrations. Herein, assessment for acute and chronic toxicity was performed on organisms in vivo exposed to DCF, specifically on the green alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus and the crustacean Ceriodaphnia dubia. Furthermore, potential DNA damage and expression of antioxidant genes (MnSOD, Cu/ZnSOD and CAT) were evaluated in crustacean neonates. The toxicological risk of DCF was assessed as well as its. GENOTOXIC RISK: The acute toxicity was observed at concentrations far from those of environmental concern. Rotifers and crustaceans were much more chronically sensitive than the algae to DCF, observing besides, the median effect concentrations at tens of μg/L. In crustaceans, DNA damage was noted at units of μg/L, revealing concentrations of environmental concern. The dysregulated activity of SOD and CAT also showed the ability of DCF to provoke oxidative stress. On assessment of environmental risk, the chronic Risk Quotient (RQ) was above the threshold value of 1. Nevertheless, the genotoxic RQ was significantly greater than the chronic RQ, thus, the need of regulatory bodies to acknowledge the genotoxic impact as an environmental risk factor. To our knowledge, this study is the first investigation to perform environmental genotoxic risk assessment of DCF.
Collapse
Affiliation(s)
- Chiara Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Roberta Nugnes
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Elena Orlo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Angela di Matteo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Bruna De Felice
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Concetta Montanino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Margherita Lavorgna
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy.
| | - Marina Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| |
Collapse
|
14
|
Liang J, Abdullah ALB, Wang H, Liu G, Han M. Change in energy-consuming strategy, nucleolar metabolism and physical defense in Macrobrachium rosenbergii after acute and chronic polystyrene nanoparticles exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106711. [PMID: 37783050 DOI: 10.1016/j.aquatox.2023.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
The COVID-19 pandemic has further intensified plastic pollution due to the escalated use of single-use gloves and masks, consequently leading to the widespread presence of microplastics (MPs) and nanoplastics (NPs) in major rivers and lakes worldwide. Macrobrachium rosenbergii has become an important experimental subject due to its ecological role and environmental sensitivity. In this study, we sought to comprehend the ramifications of NPs on the widely-distributed freshwater prawn, M rosenbergii, by conducting a detailed analysis of its responses to NPs after both 96 h and 30 days of exposure. The transcriptome analysis revealed 918 differentially expressed unigenes (DEGs) after 30 days of NPs exposure (356 upregulated, 562 downregulated) and 2376 DEGs after 96 h of NPs exposure (1541 upregulated, 835 downregulated). The results of DEGs expression indicated that acute NPs exposure enhanced carbohydrate transport and metabolism, fostering chitin and extracellular matrix processes. In contrast, chronic NPs exposure induced nucleolar stress in M. rosenbergii, impeding ribosome development and mRNA maturation while showing no significant changes in glucose metabolism. Our findings underscore the M. rosenbergii distinct coping mechanisms during acute and chronic NPs exposure, elucidating its vital adaptive strategies. These results contribute to our understanding of the ecological implications of NPs pollution and its impact on aquatic animals.
Collapse
Affiliation(s)
- Ji Liang
- School of Humanities, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | | | - Hong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Mingming Han
- Centre for marine and coastal studies, University Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
15
|
Li Y, Li Y, Li J, Song Z, Zhang C, Guan B. Toxicity of polystyrene nanoplastics to human embryonic kidney cells and human normal liver cells: Effect of particle size and Pb 2+ enrichment. CHEMOSPHERE 2023; 328:138545. [PMID: 37011817 DOI: 10.1016/j.chemosphere.2023.138545] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Nanoplastics pollution in drinking water has aroused wide concern, but their effects on human health are still poorly understood. Herein we explore the responses of human embryonic kidney 293T cells and human normal liver LO2 cells to polystyrene nanoplastics, mainly focusing on the effects of particle sizes and enrichment of Pb2+. When the exposed particle size is higher than 100 nm, there is no obvious death for these two different cell lines. As the particle size decreases from 100 nm, cell mortality goes up. Although the internalization of polystyrene nanoplastics in LO2 cells is at least 5 times higher than that in 293T cells, the mortality of LO2 cells is lower than that of 293T cells, illustrating that LO2 cells are more resistant to polystyrene nanoplastics than 293T cells. Additionally, the Pb2+ enrichment on polystyrene nanoplastics in water can further enhance their toxicity, which should be taken seriously. The cytotoxicity of polystyrene nanoplastics to cell lines works through a molecular mechanism involving oxidative stress-induced damage of mitochondria and cell membranes, resulting in a decrease in ATP production and an increase in membrane permeability. Referenced to nanoplastics pollution in drinking water, there is no necessary to panic about the adverse effects of plastic itself on human health, but the enrichment of contaminants should get more attention. This work provides a reference for the risk assessment of nanoplastics in drinking water to human health.
Collapse
Affiliation(s)
- Yu Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Yaning Li
- School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Jie Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Zirong Song
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Chuanming Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Baohong Guan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
16
|
Yao M, Mu L, Gao Z, Hu X. Persistence of algal toxicity induced by polystyrene nanoplastics at environmentally relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162853. [PMID: 36924955 DOI: 10.1016/j.scitotenv.2023.162853] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/23/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Polystyrene (PS) often found in the ocean is one of the most commonly used plastic polymers in the world and can exist in different particle sizes. In particular, PS degrades relatively faster and widely accumulates at the nanoscale. Therefore, the penetration is strong and it is easy to enter the body and cause adverse effects. However, the persistence or recovery of their toxicity remains largely unclear. Here, we designed two subexperiments (exposure and recovery experiments) and investigated the persistence of the toxicity of polystyrene (PS) NPs at a wide concentration range (0.01-10 mg/L) to diatoms (Phaeodactylum tricornutum). PS-NPs significantly inhibited algal growth and clearly wrinkled the surfaces of cells, membrane permeability was significantly increased, and the steady-state state of cell redox and mitochondrial membrane potential was disturbed. However, in the recovery experiment, the increased membrane permeability was observed to persist, but the induced oxidative damage was reversible, and the absorbed NPs could be excreted. Integrated omics techniques (metabolomics and transcriptomics) revealed that PS-NPs significantly disrupts cell metabolism, including disturbances in fatty acid biosynthesis and enhanced biosynthesis of phenylalanine, tyrosine, and tryptophan. Inhibition of fatty acid, amino acid, energy and carbohydrate metabolism and disturbance of the antioxidant system contribute to the persistence of toxicity. These findings highlight the phenomena and mechanisms of the persistence of phytotoxicity and are critical to the accurate assessment of NPs.
Collapse
Affiliation(s)
- Mingqi Yao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China; Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China.
| | - Ziwei Gao
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| |
Collapse
|
17
|
Marco Tobías M, Åhlén M, Cheung O, Bucknall DG, McCoustra MRS, Yiu HHP. Plasma degradation of contaminated PPE: an energy-efficient method to treat contaminated plastic waste. NPJ MATERIALS DEGRADATION 2023; 7:33. [PMID: 37096160 PMCID: PMC10115383 DOI: 10.1038/s41529-023-00350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The use of PPE has drastically increased because of the SARS-CoV-2 (COVID-19) pandemic as disposable surgical face masks made from non-biodegradable polypropylene (PP) polymers have generated a significant amount of waste. In this work, a low-power plasma method has been used to degrade surgical masks. Several analytical techniques (gravimetric analysis, scanning electron microscopy (SEM), attenuated total reflection-infra-red spectroscopy (ATR-IR), x-ray photoelectron spectroscopy (XPS), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) and wide-angle x-ray scattering (WAXS)) were used to evaluate the effects of plasma irradiation on mask samples. After 4 h of irradiation, an overall mass loss of 63 ± 8%, through oxidation followed by fragmentation, was observed on the non-woven 3-ply surgical mask, which is 20 times faster than degrading a bulk PP sample. Individual components of the mask also showed different degradation rates. Air plasma clearly represents an energy-efficient tool for treating contaminated PPE in an environmentally friendly approach.
Collapse
Affiliation(s)
- Mariano Marco Tobías
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | - Michelle Åhlén
- Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, 752 37 Uppsala, Sweden
| | - Ocean Cheung
- Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, 752 37 Uppsala, Sweden
| | - David G. Bucknall
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | - Martin R. S. McCoustra
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | - Humphrey H. P. Yiu
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| |
Collapse
|
18
|
Kolarević S, Kračun-Kolarević M, Marić JJ, Djordjević J, Vuković-Gačić B, Joksimović D, Martinović R, Bajt O, Ramšak A. Single and combined potential of polystyrene microparticles and fluoranthene in the induction of DNA damage in haemocytes of Mediterranean mussel (Mytilus galloprovincialis). Mutagenesis 2023; 38:3-12. [PMID: 36082791 DOI: 10.1093/mutage/geac017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, the possible 'vector effect' within the exposure of Mediterranean mussels (Mytilus galloprovincialis) to polystyrene microplastics with adsorbed fluoranthene was investigated by applying the multibiomarker approach. The major focus was placed on genotoxicological endpoints as to our knowledge there are no literature data on the genotoxicity of polystyrene microparticles alone or with adsorbed fluoranthene in the selected experimental organisms. DNA damage was assessed in haemocytes by comet assay and micronucleus test. For the assessment of neurotoxicity, acetylcholinesterase activity was measured in gills. Glutathione S-transferase was assessed in gills and hepatopancreas since these enzymes are induced for biotransformation and excretion of lipophilic compounds such as hydrocarbons. Finally, differences in physiological response within the exposure to polystyrene particles, fluoranthene, or particles with adsorbed fluoranthene were assessed by the variation of heart rate patterns studied by the noninvasive laser fibre-optic method. The uniform response of individual biomarkers within the exposure groups was not recorded. There was no clear pattern in variation of acetylcholinesterase or glutathione S-transferase activity which could be attributed to the treatment. Exposure to polystyrene increased DNA damage which was detected by the comet assay but was not confirmed by micronucleus formation. Data of genotoxicity assays indicated differential responses among the groups exposed to fluoranthene alone and fluoranthene adsorbed to polystyrene. Change in the heart rate patterns within the studied groups supports the concept of the Trojan horse effect within the exposure to polystyrene particles with adsorbed fluoranthene.
Collapse
Affiliation(s)
- Stoimir Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Margareta Kračun-Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Jovana Jovanović Marić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Jelena Djordjević
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Branka Vuković-Gačić
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Danijela Joksimović
- University of Montenegro, Institute of Marine Biology, Dobrota bb, 85330 Kotor, Montenegro
| | - Rajko Martinović
- University of Montenegro, Institute of Marine Biology, Dobrota bb, 85330 Kotor, Montenegro
| | - Oliver Bajt
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.,University of Ljubljana, Faculty of Maritime Studies and Transport, Pot pomorščakov 4, 6320 Portorož, Slovenia
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia
| |
Collapse
|
19
|
Hollerova A, Hodkovicova N, Blahova J, Faldyna M, Franc A, Pavlokova S, Tichy F, Postulkova E, Mares J, Medkova D, Kyllar M, Svobodova Z. Polystyrene microparticles can affect the health status of freshwater fish - Threat of oral microplastics intake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159976. [PMID: 36347295 DOI: 10.1016/j.scitotenv.2022.159976] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Plastic waste pollution is considered one of the biggest problems facing our planet. The production and use of these materials has led to huge amounts of plastic waste entering the aquatic environment and affecting aquatic life. In our experiment, the effect of polystyrene microparticles (PS-MPs; 52.5 ± 11.5 μm) on individual juvenile rainbow trout (Oncorhynchus mykiss) was tested at three different dietary concentrations of 0.5, 2 and 5 % for six weeks. At the end of the experiment, various health parameters of exposed organisms were compared with the control group. The haematological profile revealed an immune response by a decrease in lymphocyte count with a concurrent increase in the number of neutrophil segments at the highest concentration of PS-MPs (5 %). Biochemical analysis showed significant reductions in plasma ammonia in all tested groups, which may be related to liver and gill damage, as determined by histopathological examination and analysis of inflammatory cytokines expression. In addition, liver damage can also cause a significant decrease in the plasma protein ceruloplasmin, which is synthesized in the liver. PS-MPs disrupted the antioxidant balance in the caudal kidney, gill and liver, with significant changes observed only at the highest concentration. In summary, PS-MPs negatively affect the health status of freshwater fish and represent a huge burden on aquatic ecosystems.
Collapse
Affiliation(s)
- A Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic; Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic.
| | - N Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - J Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - M Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - A Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - S Pavlokova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - F Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | - E Postulkova
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
| | - J Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
| | - D Medkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic; Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
| | - M Kyllar
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic; Institute of Morphology, University of Veterinary Medicine, Vienna, Austria
| | - Z Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
20
|
Wang Z, Hu X, Qu Q, Hao W, Deng P, Kang W, Feng R. Dual regulatory effects of microplastics and heat waves on river microbial carbon metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129879. [PMID: 36084464 DOI: 10.1016/j.jhazmat.2022.129879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Rivers play a critical role in the global carbon cycle, but the processes can be affected by widespread microplastic (MP) pollution and the increasing frequency of heat waves (HWs) in a warming climate. However, little is known about the role of river microbes in regulating the carbon cycle under the combined action of MP pollution and HWs. Here, through seven-day MP exposure and three cycles of HW simulation experiments, we found that MPs inhibited the thermal adaptation of the microbial community, thus regulating carbon metabolism. The CO2 release level increased, while the carbon degradation ability and the preference for stable carbon were inhibited. Metabonomic, 16 S rRNA and ITS gene analyses further revealed that the regulation of carbon metabolism was closely related to the microbial r-/K- strategy, community assembly and transformation of keystone taxa. The random forest model revealed that dissolved oxygen and ammonia-nitrogen were important variables influencing microbial carbon metabolism. The above findings regarding microbe-mediated carbon metabolism provide insights into the effect of climate-related HWs on the ecological risks of MPs.
Collapse
Affiliation(s)
- Zhongwei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weidan Hao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
21
|
Nugnes R, Russo C, Orlo E, Lavorgna M, Isidori M. Imidacloprid: Comparative toxicity, DNA damage, ROS production and risk assessment for aquatic non-target organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120682. [PMID: 36402422 DOI: 10.1016/j.envpol.2022.120682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Imidacloprid is a neonicotinoid systemic insecticide used worldwide. Despite its hazardous impact on non-target organisms, few studies have been conducted concerning the potential eco-genotoxic effects in invertebrates of surface waters where this pesticide is detected from units of ng/L to tens of μg/L. The aim of the present work was to determine the acute, the sub-chronic and the chronic toxicity of imidacloprid in producers and primary consumers of the freshwater trophic chain. The organisms under investigation were the green alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus, the cladoceran crustacean Ceriodaphnia dubia and the benthic ostracod Heterocypris incongruens. In addition, potential DNA damage and ROS production were evaluated in C. dubia. Furthermore, in accordance with European guidelines, toxicological risk assessment of imidacloprid was performed for all continents considering its global occurrence in surface waters. In addition, we assessed the genotoxicological risk and median inhibition of reproduction was observed at units of mg/L for rotifers and daphnids. Algae showed the lowest level of sensitivity to the pesticide with effective concentrations from units to hundreds of mg/L. DNA lesions were marked from 7 μg/L with a significant increase in damage as concentrations increased. Chronic toxicity risk quotient values were generally below to a threshold value of 1, with no consequential environmental concern other than for the Canadian areas. On the contrary, the genotoxicological risk quotient values were found higher than the threshold value in all continents.
Collapse
Affiliation(s)
- Roberta Nugnes
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania 'L. Vanvitelli', Via Vivaldi 43, 81100, Caserta, Italy
| | - Chiara Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania 'L. Vanvitelli', Via Vivaldi 43, 81100, Caserta, Italy.
| | - Elena Orlo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania 'L. Vanvitelli', Via Vivaldi 43, 81100, Caserta, Italy
| | - Margherita Lavorgna
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania 'L. Vanvitelli', Via Vivaldi 43, 81100, Caserta, Italy
| | - Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania 'L. Vanvitelli', Via Vivaldi 43, 81100, Caserta, Italy
| |
Collapse
|
22
|
Nugnes R, Russo C, Lavorgna M, Orlo E, Kundi M, Isidori M. Polystyrene microplastic particles in combination with pesticides and antiviral drugs: Toxicity and genotoxicity in Ceriodaphnia dubia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120088. [PMID: 36075334 DOI: 10.1016/j.envpol.2022.120088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Freshwater ecosystems are recognized as non-negligible sources of plastic contamination for the marine environment that is the final acceptor of 53 thousand tons of plastic per year. In this context, microplastic particles are well known to directly pose a great threat to freshwater organisms, they also indirectly affect the aquatic ecosystem by adsorbing and acting as a vector for the transport of other pollutants ("Trojan horse effect"). Polystyrene is one of the most widely produced plastics on a global scale, and it is among the most abundant microplastic particles found in freshwaters. Nevertheless, to date few studies have focused on the eco-genotoxic effects on freshwater organisms caused by polystyrene microplastic particles (PS-MPs) in combination with other pollutants such as pharmaceuticals and pesticides. The aim of this study is to investigate chronic and sub-chronic effects of the microplastic polystyrene beads (PS-MP, 1.0 μm) both as individual xenobiotic and in combination (binary/ternary mixtures) with the acicloguanosine antiviral drug acyclovir (AC), and the neonicotinoid broad-spectrum insecticide imidacloprid (IMD) in one of the most sensitive non-target organisms of the freshwater food chain: the cladoceran crustacean Ceriodaphnia dubia. Considering that the individually selected xenobiotics have different modes of action and/or different biological sites, the Bliss independence was used as reference model for this research. Basically, when C. dubia neonates were exposed for 24 h to the mixtures during Comet assay, mostly an antagonistic genotoxic effect was observed. When neonates were exposed to the mixtures for 7 days, mostly an additive chronic toxic effect occurred at concentrations very close or even overlapping to the environmental ones ranging from units to tens of ng/L for PS-MPs, from tenths/hundredths to units of μg/L for AC and from units to hundreds of μg/L for IMD, revealing great environmental concern.
Collapse
Affiliation(s)
- Roberta Nugnes
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Chiara Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Margherita Lavorgna
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Elena Orlo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Michael Kundi
- Medical University of Vienna, Center for Public Health, Department of Environmental Health, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | - Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| |
Collapse
|
23
|
Shi J, Deng H, Zhang M. Whole transcriptome sequencing analysis revealed key RNA profiles and toxicity in mice after chronic exposure to microplastics. CHEMOSPHERE 2022; 304:135321. [PMID: 35718033 DOI: 10.1016/j.chemosphere.2022.135321] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Investigating the long-term effects of microplastics (MPs) in vivo is necessary for evaluating its biological toxicity. Previously, we showed that MPs elicit vascular dysfunctions in atherosclerotic mice. However, the effects of long-term treatment with environmental levels of MPs on biological functions and RNA expression profiles in wild-type mice are unknown. Here, C57BL/6 mice were administered 1000 μg/L MPs through their drinking water for 180 days. Transcriptomic analyses, biochemical analysis, and histopathological examination were conducted to determine the key signals and molecular mechanisms triggered by MPs in vivo using whole transcriptome sequencing, enzyme-linked immunosorbent assay, and histopathological analysis. Notably, our data revealed that MPs aggravated vascular lesions and organ injuries, particularly liver, kidney, and heart injuries. Additionally, MPs exacerbated oxidative injuries by inhibiting the activities of antioxidant enzymes and increasing the levels of the serum biochemistry indicator of organ damage. RNA sequencing of vascular tissues showed that 674 mRNAs, 39 lncRNAs, 196 miRNAs, and 565 circRNAs were abnormally expressed in MPs-treated mice compared with the untreated group. Pathway enrichment analyses identified pathways linked to the toxicity of MPs, including lysosomal, NOD-like receptor, and peroxisome proliferator-activated receptor pathways. Additionally, competing endogenous RNA networks were constructed and hub RNAs were identified using bioinformatics analysis. Taken together, our data suggested that toxicity induced by long-term exposure to MPs continually presents with extensive changes in biological features and global gene expression profiles. Our data provides new insights into the biological toxicity of MPs.
Collapse
Affiliation(s)
- Jun Shi
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Huiping Deng
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Min Zhang
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China.
| |
Collapse
|
24
|
Nanoplastic-Induced Nanostructural, Nanomechanical, and Antioxidant Response of Marine Diatom Cylindrotheca closterium. WATER 2022. [DOI: 10.3390/w14142163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to examine the effect of positively charged (amine-modified) and negatively charged (carboxyl-modified) polystyrene nanoplastics (PS NPs) on the nanostructural, nanomechanical, and antioxidant responses of the marine diatom Cylindrotheca closterium. The results showed that both types of PS NPs, regardless of surface charge, significantly inhibited the growth of C. closterium during short-term exposure (3 and 4 days). However, longer exposure (14 days) to both PS NPs types did not significantly inhibit growth, which might be related to the detoxifying effect of the microalgal extracellular polymers (EPS) and the higher cell abundance per PS NPs concentration. The exposure of C. closterium to both types of PS NPs at concentrations above the corresponding concentrations that resulted in a 50% reduction of growth (EC50) demonstrated phytotoxic effects, mainly due to the excessive production of reactive oxygen species, resulting in increased oxidative damage to lipids and changes to antioxidant enzyme activities. Diatoms exposed to nanoplastics also showed a significant decrease in cell wall rigidity, which could make the cells more vulnerable. Atomic force microscopy images showed that positively charged PS NPs were mainly adsorbed on the cell surface, while both types of PS NPs were incorporated into the EPS that serves to protect the cells. Since microalgal EPS are an important food source for phytoplankton grazers and higher trophic levels, the incorporation of NPs into the EPS and interactions with the cell walls themselves may pose a major threat to marine microalgae and higher trophic levels and, consequently, to the health and stability of the marine ecosystem.
Collapse
|
25
|
Hyper production of polyhydroxyalkanoates by a novel bacterium Salinivibrio sp. TGB11. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Toxicity of polystyrene microplastics in freshwater algae Scenedesmus obliquus: Effects of particle size and surface charge. Toxicol Rep 2022; 9:1953-1961. [DOI: 10.1016/j.toxrep.2022.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
|