1
|
Granja HS, Silva JDOS, Andrade YB, Farrapeira RO, Sussuchi EM, Freitas LS. Emerging carbonaceous material based on residual grape seed applied in selective and sensitive electrochemical detection of fenamiphos. Talanta 2025; 281:126784. [PMID: 39245008 DOI: 10.1016/j.talanta.2024.126784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Fenamiphos (FNP) is a pesticide applied for soil pest control, particularly nematodes, and sucking insects, including aphids and thrips. Despite its use being banned in several countries due to its highly toxic nature for living beings, including mammals, because of its acetylcholine-inhibiting action, it is still marketed for use in agriculture. Therefore, a carbon paste electrode modified with residual grape seed biochar (bSU), served as an electrochemical sensor (E-bSU) for the quantification of fenamiphos in grape juice, tap water, and river water samples. The bSU underwent comprehensive characterization employing elemental, morphological, and spectroscopic analysis techniques. The impact of electrode modification and the electrochemical behavior of the FNP were systematically assessed through cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry. The biochar manifested a microporous surface adorned with dispersed functional groups, enhancing its affinity for organic compounds, particularly the investigated pesticide. Electrode modification and the optimization of analysis parameters resulted in a notable 6-fold amplification of the electrochemical signal of FNP relative to initial conditions, underscoring the efficacy of the E-bSU. The developed methodology attained limits of detection and quantification of 0.3 and 0.9 nmol L⁻1, respectively. Repeatability and reproducibility assays demonstrated relative standard deviations below 5%, underscoring the reliability of the applied electrode. The sensor showcased recoveries ranging from 99.75% to 109.9% across the analyzed samples, highlighting the utility of this selective, stable, and reproducible sensor for fenamiphos determination.
Collapse
Affiliation(s)
- Honnara S Granja
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| | - Jonatas de Oliveira S Silva
- Programa de Pós-Graduação Em Química, Instituto de Química, Universidade Federal da Bahia, R. Barão de Jeremoabo, S/n - Ondina, Salvador, BA, 40170-280, Brazil.
| | - Yasmine B Andrade
- Programa de Pós-Graduação Em Biotecnologia Industrial, Universidade Tiradentes, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil.
| | - Rafael O Farrapeira
- NUESC - Núcleo de Estudos Em Sistemas Coloidais - ITP, Universidade Tiradentes, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil.
| | - Eliana M Sussuchi
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| | - Lisiane S Freitas
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| |
Collapse
|
2
|
Mariappan K, Alagarsamy S, Chen TW, Chen SM, Sakthinathan S, Chiu TW, Binobead MA, Ali MA, Elshikh MS. Cubic structured zinc ferrite methodically incorporated into porous graphene sheets as a selective Electrocatalyst for electrochemical detection of Carbendazim. Food Chem 2024; 461:140892. [PMID: 39178540 DOI: 10.1016/j.foodchem.2024.140892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Carbendazim (CBZ) insecticides have been widely employed, raising serious concerns about their impacts on human health and the environment. A facile hydrothermal technique was used to prepare a zinc ferrite (ZnFe₂O₄) combined with porous graphene oxide (PGO) as a nanocomposite for selective CBZ detection. The ZnFe₂O₄/PGO nanocomposite was then used to modify a glassy carbon electrode (GCE), an affordable platform for CBZ detection. Various spectroscopic techniques were employed to confirm the nanomaterial. The electrochemical properties were further investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The ZnFe₂O₄/PGO nanocomposite modified the glassy carbon electrode surface for CBZ detection. A broad linear response range of 0.0039 to 200 μM, high sensitivity (2.184 μAμM-1 cm-2), a low detection limit of 0.0013 μM, outstanding stability, repeatability, and practical applicability are the intriguing qualities of the ZnFe₂O₄/PGO-modified electrode for CBZ detection.
Collapse
Affiliation(s)
- Kiruthika Mariappan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Saranvignesh Alagarsamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources, Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources, Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Manal Abdulaziz Binobead
- Department of Food Science and Nutrition, College of Agriculture Food Science, King Saud university, Riyadh, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Tharuman S, Nataraj N, Chen SM. Advanced electrochemical detection of carbendazim in staple food samples using cobalt hydroxide/titanium dioxide nanocomposite. Food Chem 2024; 464:141616. [PMID: 39423544 DOI: 10.1016/j.foodchem.2024.141616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
This research introduces a novel composite material, cobalt hydroxide/titanium dioxide (Co(OH)2/TiO2), engineered for the detection of the fungicide carbendazim (CBZ) in environmental samples. A glassy carbon electrode (GCE) was modified with Co(OH)2/TiO2 to create an electrochemical sensor capable of highly sensitive CBZ detection. Differential pulse voltammetry was utilized to quantify various CBZ concentrations, revealing that the Co(OH)2/TiO2-GCE sensor provided robust response signals across a concentration range from 0.039 μM to 2630.1 μM, with a detection limit of 0.007 μM. The sensor demonstrated notable stability, reproducibility, and selectivity towards CBZ, attributable to the synergistic effects of Co(OH)2/TiO2. Additionally, the Co(OH)2/TiO2-GCE sensor proved effective for analyzing CBZ in fruit and vegetable samples. Thus, this sensor presents significant potential for widespread application in environmental monitoring and food safety assessments.
Collapse
Affiliation(s)
- Sharmila Tharuman
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| |
Collapse
|
4
|
Sheikh TA, Ismail M, Rabbee MF, Khan H, Rafique A, Rasheed Z, Siddique A, Rafiq MZ, Khattak ZAK, Jillani SMS, Shahzad U, Akhtar MN, Saeed M, Alzahrani KA, Uddin J, Rahman MM, Verpoort F. 2D MXene-Based Nanoscale Materials for Electrochemical Sensing Toward the Detection of Hazardous Pollutants: A Perspective. Crit Rev Anal Chem 2024:1-46. [PMID: 39046991 DOI: 10.1080/10408347.2024.2379851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
MXenes (Mn+1XnTx), a subgroup of 2-dimensional (2D) materials, specifically comprise transition metal carbides, nitrides, and carbonitrides. They exhibit exceptional electrocatalytic and photocatalytic properties, making them well-suited for the detection and removal of pollutants from aqueous environments. Because of their high surface area and remarkable properties, they are being utilized in various applications, including catalysis, sensing, and adsorption, to combat pollution and mitigate its adverse effects. Different characterization techniques like XRD, SEM, TEM, UV-Visible spectroscopy, and Raman spectroscopy have been used for the structural elucidation of 2D MXene. Current responses against applied potential were measured during the electrochemical sensing of the hazardous pollutants in an aqueous system using a variety of electroanalytical techniques, including differential pulse voltammetry, amperometry, square wave anodic stripping voltammetry, etc. In this review, a comprehensive discussion on structural patterns, synthesis, properties of MXene and their application for electrochemical detection of lethal pollutants like hydroquionone, phenol, catechol, mercury and lead, etc. are presented. This review will be helpful to critically understand the methods of synthesis and application of MXenes for the removal of environmental pollutants.
Collapse
Affiliation(s)
- Tahir Ali Sheikh
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ismail
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Hira Khan
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ayesha Rafique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zeerak Rasheed
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Amna Siddique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Zeeshan Rafiq
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Nadeem Akhtar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid A Alzahrani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- National Research Tomsk Polytechnic University, Tomsk, Russian
| |
Collapse
|
5
|
Maia Júnior FF, Sales Junior R, Barbosa GF, Hussain S, Jara-Cornejo E, Khan S. Design and Fabrication of a Biomimetic Smart Material for Electrochemical Detection of Carbendazim Pesticides in Real Samples with Enhanced Selectivity. BIOSENSORS 2024; 14:304. [PMID: 38920608 PMCID: PMC11202226 DOI: 10.3390/bios14060304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Agricultural products are vitally important for sustaining life on earth and their production has notably grown over the years worldwide in general and in Brazil particularly. Elevating agricultural practices consequently leads to a proportionate increase in the usage of pesticides that are crucially important for enhanced crop yield and protection. These compounds have been employed excessively in alarming concentrations, causing the contamination of soil, water, and air. Additionally, they pose serious threats to human health. The current study introduces an innovative tool for producing appropriate materials coupled with an electrochemical sensor designed to measure carbendazim levels. The sensor is developed using a molecularly imprinted polymer (MIP) mounted on a glassy carbon electrode. This electrode is equipped with multi-walled carbon nanotubes (MWCNTs) for improved performance. The combined system demonstrates promising potential for accurately quantifying carbendazim. The morphological characteristics of the synthesized materials were investigated using field emission scanning electron microscopy (FESEM) and the Fourier-transform infrared (FTIR) technique. The analytical curve was drawn using the electrochemical method in the range of 2 to 20 ppm while for HPLC 2-12 ppm; the results are presented as the maximum adsorption capacity of the MIP (82.4%) when compared with NIP (41%) using the HPLC method. The analysis conducted using differential pulse voltammetry (DPV) yielded a limit of detection (LOD) of 1.0 ppm and a repeatability of 5.08% (n = 10). The results obtained from the analysis of selectivity demonstrated that the proposed electrochemical sensor is remarkably efficient for the quantitative assessment of carbendazim, even in the presence of another interferent. The sensor was successfully tested for river water samples for carbendazim detection, and recovery rates ranging from 94 to 101% were obtained for HPLC and 94 to 104% for the electrochemical method. The results obtained show that the proposed electrochemical technique is viable for the application and quantitative determination of carbendazim in any medium.
Collapse
Affiliation(s)
- Francisco Franciné Maia Júnior
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil
| | - Rui Sales Junior
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil
| | - Geovani Ferreira Barbosa
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Swabi 23640, Pakistan;
| | - Eduardo Jara-Cornejo
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima 15032, Peru;
| | - Sabir Khan
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima 15032, Peru;
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus 45662-900, BA, Brazil
| |
Collapse
|
6
|
Jayapaul A, Lin YC, Lin LY, Dhawan U, Duann YF, Lee YH, Liu TY, Sakthivel R, Chung RJ. Synergistic activation of lamellar bismuth selenide anchored functionalized carbon nanofiber for detecting hazardous carbendazim in environmental water samples. CHEMOSPHERE 2024; 355:141744. [PMID: 38522669 DOI: 10.1016/j.chemosphere.2024.141744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/10/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
Pesticides pollute natural water reservoirs through persistent accumulation. Therefore, their toxicity and degradability are serious issues. Carbendazim (CBZ) is a pesticide used against fungal infections in agricultural crops, and its overexploitation detrimentally affects aquatic ecosystems and organisms. It is necessary to design a logical, efficient, and field-deployable method for monitoring the amount of CBZ in environmental samples. Herein, a nano-engineered bismuth selenide (Bi2Se3)/functionalized carbon nanofiber (f-CNF) nanocomposite was utilized as an electrocatalyst to fabricate an electrochemical sensing platform for CBZ. Bi2Se3/f-CNF exhibited a substantial electroactive surface area, high electrocatalytic activity, and high conductivity owing to the synergistic interaction of Bi2Se3 with f-CNF. The structural chemical compositions and morphology of the Bi2Se3/f-CNF nanocomposite were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Electrochemical analysis was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The voltammetry and impedance experiments exposed that the Bi2Se3/f-CNF-modified GCE has attained adequate electrocatalytic function with amended features of electron transportation (Rct = 35.93 Ω) and improved reaction sites (0.082 cm2) accessible by CBZ moiety along with exemplary electrochemical stability (98.92%). The Bi2Se3/f-CNF nanocomposite exhibited higher sensitivity of 0.2974 μA μM-1cm-2 and a remarkably low limit of detection (LOD) of 1.04 nM at a broad linera range 0.001-100 μM. The practicability of the nanocomposite was tested in environmental (tap and pond water) samples, which supports excellent signal amplification with satisfactory recoveries. Hence, the Bi2Se3/f-CNF nanocomposite is a promising electrode modifier for detecting CBZ.
Collapse
Affiliation(s)
- Abishek Jayapaul
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan; ZhongSun Co., LTD, New Taipei City 220031, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yi-Hsuan Lee
- Department of Mechanical Engineering, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City, 32003, Taiwan.
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| |
Collapse
|
7
|
Yang D, Li X, Li X, Chen J, Zhang T, Lian T, Wang H. Design and synthesis of nano-iron oxyhydroxide-based molecularly imprinted electrochemical sensors for trace-level carbendazim detection in actual samples. Mikrochim Acta 2024; 191:163. [PMID: 38413431 DOI: 10.1007/s00604-024-06236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Carbendazim (CBD) is widely used as a fungicide that acts as a pesticide in farming to prevent crop diseases. However, CBD can remain on crops for a long time. When consumed by humans and animals, it produces a range of toxic symptoms and poses a serious threat to their health. Therefore, the detection of CBD is necessary. Traditional assay strategies for CBD detection, although sensitive and practical, can hardly achieve fast, robust monitoring during food processing and daily life. Here, we designed a novel electrochemical sensor for CBD detection. In this method, iron oxyhydroxide nanomaterial (β-FeOOH) was first prepared by hydrothermal method. Then, a molecularly imprinted polymer (MIP) layer was electropolymerized on the surface using CBD as the template and resorcinol (RC) as the functional monomer. The synergistic interaction between β-FeOOH and MIP endows the MIP/β-FeOOH/CC-based electrochemical sensor with high specificity and sensitivity. Under optimal conditions, the MIP/β-FeOOH/CC-based sensor showed a wide linear range of 39 pM-80 nM for CBD and a detection limit as low as 25 pM. Therefore, the as-prepared sensor can be a practical and effective tool for pesticide residue detection.
Collapse
Affiliation(s)
- Dong Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China.
| | - Xuhua Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China
| | - Xiangyu Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China
| | - Jifan Chen
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China
| | - Ting Lian
- School of Clinical Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Haihua Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China.
| |
Collapse
|
8
|
AlSalem HS, Monier M, Abomuti MA, Alnoman RB, Alharbi HY, Aljohani MS, Al-Goul ST, Elkaeed EB, Zghab I, Shafik AL. Chiral resolution of (±)-flurbiprofen using molecularly imprinted hydrazidine-modified cellulose microparticles. Int J Biol Macromol 2023; 253:126928. [PMID: 37717875 DOI: 10.1016/j.ijbiomac.2023.126928] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Flurbiprofen (FP) is one of the non-steroidal anti-inflammatory drugs (NSAIDs) commonly used to treat arthritic conditions. FP has two enantiomers: S-FP and R-FP. S-FP has potent anti-inflammatory effects, while R-FP has nearly no such effects. Herein, molecularly imprinted microparticles produced from hydrazidine-cellulose (CHD) biopolymer for the preferential uptake of S-FP and chiral resolution of (±)-FP were developed. First, cyanoethylcellulose (CECN) was synthesized, and the -CN units were transformed into hydrazidine groups. The developed CHD was subsequently shaped into microparticles and ionically interacted with the S-FP enantiomer. The particles were then imprinted after being cross-linked with glutaraldehyde, and then the S-FP was removed to provide the S-FP enantio-selective sorbent (S-FPCHD). After characterization, the optimal removal settings for the S- and R-FP enantiomers were determined. The results indicated a capacity of 125 mg/g under the optimum pH range of 5-7. Also, S-FPCHD displayed a noticeable affinity toward S-FP with a 12-fold increase compared to the R-FP enantiomer. The chiral resolution of the (±)-FP was successfully attempted using separation columns, and the outlet sample of the loading solution displayed an enantiomeric excess (ee) of 93 % related to the R-FP, while the eluent solution displayed an ee value of 95 % related to the S-FP.
Collapse
Affiliation(s)
- Huda S AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - May Abdullah Abomuti
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi 11911, Saudi Arabia
| | - Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Soha T Al-Goul
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Imen Zghab
- Chemistry department, College of Science, Jazan university, Saudi Arabia
| | - Amira L Shafik
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Hakimian F, Mazloum-Ardakani M. Ag nanorod@PEI-Ag nanohybrid as an excellent signal label for sensitive and rapid detection of serum HER2. Sci Rep 2023; 13:21792. [PMID: 38066021 PMCID: PMC10709618 DOI: 10.1038/s41598-023-48838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The accurate detection of Human epidermal growth factor receptor-2 (HER2) as a critical breast cancer biomarker can be essential for the early selection of therapeutic approaches. HER2 is a prominent component of a signaling network. Overexpression of the HER2 protein due to amplification of its gene leads to the development of an aggressive subtype of breast cancer. Patients with tumors that overexpress HER2 are eligible for treatment that significantly reduces mortality rates. Herein, we present a fast and simple method for detecting serum HER2. A new electrochemical label has been developed using charged Ag nanorod@ polyethylenimine-Ag (Ag NR@ PEI-Ag) nanohybrid. The synthesized Ag NR@PEI-Ag nanohybrid simultaneously has the electroactive property of silver and the large surface area of the PEI, which results in the enhancement of the detection signal. So, using Ag NR@PEI-Ag nanohybrid as the electrochemical label, a simple, fast, and sensitive electrochemical biosensor was designed to detect HER2. This way, after immobilizing HER2 aptamer on the Au electrode surface, HER2 or human serum was exposed to the aptamer. Then, the positively charged Ag NR@PEI-Ag nanohybrid was adsorbed onto the negatively charged aptamer-HER2 complex, and the current that was produced due to the Ag/AgCl reaction was measured as the electrochemical signal. The aptasensor shows a broad linear response from 10-12 to 10-7 g, a low detection limit (LOD) of 10 pg, and a total assay time of ~ 30 min.
Collapse
Affiliation(s)
- Fatemeh Hakimian
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran
| | | |
Collapse
|
10
|
Niyitanga T, Khan MQ, Ahmad K, Khan RA. Fabrication of an Azithromycin Sensor. BIOSENSORS 2023; 13:986. [PMID: 37998161 PMCID: PMC10669414 DOI: 10.3390/bios13110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Azithromycin (AZY) is a well-known top-prioritized antibiotic and is used by humans in strong concentrations. However, the side effects of the AZY antibiotic may cause some serious and significant damage to humans and the environment. Thus, there is a need to develop effective and sensitive sensors to monitor accurate concentrations of AZY. In the last decade, electrochemistry-based sensors have received enormous attention from the scientific community because of their high sensitivity, selectivity, cost-effectiveness, fast response, rapid detection response, simple fabrication, and working principle. It is important to mention that electrochemical sensors rely on the properties of electrode modifiers. Hence, the selection of electrode materials is of great significance when designing and developing efficient and robust electrochemical sensors. In this study, we fabricated an AZY sensor by utilizing a molybdenum disulfide/titanium aluminum carbide (MoS2@Ti3AlC2) composite as the electrode material. The MoS2@Ti3AlC2 composite was synthesized via a simple sonication process. The synthesized MoS2@Ti3AlC2 composite was characterized using a powder X-ray diffraction (XRD) method to examine the phase purity and formation of the MoS2@Ti3AlC2 composite. Scanning electron microscopy (SEM) was used to study the surface morphological features of the prepared MoS2@Ti3AlC2 composite, whereas energy dispersive X-ray spectroscopy (EDAX) was adopted to determine the elemental composition of the prepared MoS2@Ti3AlC2 composite. The glassy carbon (GC) electrode was modified with the prepared MoS2@Ti3AlC2 composite and applied as the AZY sensor. The sensing performance of the MoS2@Ti3AlC2 composite-modified GC electrode was studied using linear sweep voltammetry. The sensor demonstrated excellent performance when determining AZY and showed a good detection limit of 0.009 µM with a sensitivity of 6.77 µA/µM.cm2.
Collapse
Affiliation(s)
- Theophile Niyitanga
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Mohd Quasim Khan
- Department of Chemistry, M.M.D.C, Moradabad, M.J.P. Rohilkhand University, Bareilly 244001, UP, India
| | - Khursheed Ahmad
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Liu H, Qin W, Li X, Feng L, Gu C, Chen J, Tian Z, Chen J, Yang M, Qiao H, Guo X, Zhang Y, Zhao B, Yin S. Molecularly Imprinted Electrochemical Sensors Based on Ti 3C 2T x-MXene and Graphene Composite Modifications for Ultrasensitive Cortisol Detection. Anal Chem 2023; 95:16079-16088. [PMID: 37883745 DOI: 10.1021/acs.analchem.3c01715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The increasing pressure and unhealthy lifestyle are gradually eroding the physical and mental health of modern people. As a key hormone responsible for maintaining the normal functioning of human systems, cortisol plays a vital role in regulating physiological activities. Moreover, cortisol can serve as a marker for monitoring psychological stress. The development of cortisol detection sensors carries immense potential, as they not only facilitate timely adjustments and treatments by detecting abnormal physiological indicators but also provide comprehensive data for conducting research on the correlation between cortisol and several potential diseases. Here, we report a molecularly imprinted polymer (MIP) electrochemical biosensor that utilizes a porous composite (MXG) modified electrode. MXG composite is prepared by combining Ti3C2Tx-MXene sheets and graphene (Gr). MXG composite material with high conductive properties and large electroactive surface area promotes the charge transfer capability of the electrode surface, expands the effective surface area of the sensor, and increases the content of cortisol-imprinted cavities on the electrode, thereby improving the sensing ability of the sensor. By optimizing the preparation process, the prepared sensor has an ultralow lower limit of detection of 0.4 fM, a wide detection range of 1 fM-10 μM, and good specificity for steroid hormones and interfering substances with similar cortisol structure. The ability of the sensor to detect cortisol in saliva was also confirmed experimentally. This highly sensitive and selective cortisol sensor is expected to be widely used in the fields of physiological and psychological care.
Collapse
Affiliation(s)
- Hengchao Liu
- School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Wenjing Qin
- School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - XinXin Li
- School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Lei Feng
- School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Changshun Gu
- School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Junji Chen
- School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Zhenhao Tian
- School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Jianxing Chen
- School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Min Yang
- School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Hanying Qiao
- School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Xiujie Guo
- School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Yan Zhang
- School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Boxin Zhao
- School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Shougen Yin
- School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
12
|
Beigmoradi F, Rohani Moghadam M, Garkani-Nejad Z, Bazmandegan-Shamili A, Masoodi HR. Dual-template imprinted polymer electrochemical sensor for simultaneous determination of malathion and carbendazim using graphene quantum dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5027-5037. [PMID: 37740360 DOI: 10.1039/d3ay01054f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Malathion (MAL) and carbendazim (CBZ) are organophosphate pesticides and fungicides, respectively. They are often used simultaneously in agriculture, and both have been shown to have harmful effects on humans and animals. Therefore, it is important to be able to measure both of these toxins simultaneously in order to assess their potential risks. This study aims to design a dual template electrochemical sensor using a cost-effective graphite-epoxy composite electrode (GECE) modified with molecularly imprinted polymers (MIPs) coated on graphene quantum dots (GQDs) for simultaneous detection of MAL and CBZ in real samples. GQDs were synthesized initially, and their surface was coated with MIPs that were formed using MAL and CBZ as the template molecules, ethylene glycol dimethyl acrylate as the cross-linker, and methacrylic acid as the functional monomer. The GQDs@MIP were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and X-ray scattering spectroscopy. Parameters affecting the sensor response, such as the percentage of GQDs@MIP in the fabricated electrode, the pH of the rebinding solution and analysis solution, and the incubation time, were optimized. The optimum pH values of the rebinding solution were verified using density functional theory (DFT) calculations. Under the optimized conditions, differential pulse voltammetry (DPV) response calibration curves of MAL and CBZ were generated, and the results showed that the sensor had a linear response to MAL in the range of 0.02-55.00 μM with a limit of detection (LOD) of 2 nM (S/N = 3) and to CBZ in the range of 0.02-45.00 μM with a low LOD of 1 nM (S/N = 3). The results also demonstrated the proposed sensor's long-term stability and anti-interference capability. The practical applicability of the fabricated electrode was evaluated for real sample analysis, and good recovery values were obtained.
Collapse
Affiliation(s)
- Fariba Beigmoradi
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Masoud Rohani Moghadam
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Zahra Garkani-Nejad
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Hamid Reza Masoodi
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| |
Collapse
|
13
|
Crapnell RD, Adarakatti PS, Banks CE. Electroanalytical overview: the sensing of carbendazim. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4811-4826. [PMID: 37721714 DOI: 10.1039/d3ay01053h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Carbendazim is a broad-spectrum systemic fungicide that is used to control various fungal diseases in agriculture, horticulture, and forestry. Carbendazim is also used in post-harvest applications to prevent fungal growth on fruits and vegetables during storage and transportation. Carbendazim is regulated in many countries and banned in others, thus, there is a need for the sensing of carbendazim to ensure that high levels are avoided which can result in potential health risks. One approach is the use of electroanalytical sensors which present a rapid, but highly selective and sensitive output, whilst being economical and providing portable sensing platforms to support on-site analysis. In this minireview, we report on the electroanalytical sensing of carbendazim overviewing recent advances, helping to elucidate the electrochemical mechanism and provide conclusions and future perspectives of this field.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Prashanth S Adarakatti
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| |
Collapse
|
14
|
Venegas CJ, Bollo S, Sierra-Rosales P. Carbon-Based Electrochemical (Bio)sensors for the Detection of Carbendazim: A Review. MICROMACHINES 2023; 14:1752. [PMID: 37763915 PMCID: PMC10536525 DOI: 10.3390/mi14091752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Carbendazim, a fungicide widely used in agriculture, has been classified as a hazardous chemical by the World Health Organization due to its environmental persistence. It is prohibited in several countries; therefore, detecting it in food and environmental samples is highly necessary. A reliable, rapid, and low-cost method uses electrochemical sensors and biosensors, especially those modified with carbon-based materials with good analytical performance. In this review, we summarize the use of carbon-based electrochemical (bio)sensors for detecting carbendazim in environmental and food matrixes, with a particular interest in the role of carbon materials. Focus on publications between 2018 and 2023 that have been describing the use of carbon nanotubes, carbon nitride, graphene, and its derivatives, and carbon-based materials as modifiers, emphasizing the analytical performance obtained, such as linear range, detection limit, selectivity, and the matrix where the detection was applied.
Collapse
Affiliation(s)
- Constanza J. Venegas
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox (CiPRex), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago 8380492, Chile
| | - Paulina Sierra-Rosales
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| |
Collapse
|
15
|
Xue T, Shao F, Miao H, Li X. Porous polymer magnetic adsorbents for dye wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97147-97159. [PMID: 37584804 DOI: 10.1007/s11356-023-29102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
Dye wastewater discharged from industries has caused serious environmental problems. The recent decade has witnessed adsorption technology emerging as an advanced dye wastewater treatment method with great potential Therefore, we fabricated two kinds of magnetic porous adsorbents (HSF and HSVF) with different specific surface areas and activity sites. Both of which exhibit excellent performance with remarkable dye adsorption capacities, especially HSVF. We further investigated their adsorption kinetic and isotherm in detail. Therein, HSVF showed a nice desorption capacity, and it could be recycled rapidly by magnetism, which exhibited the advantages of effective, easy operation, and low cost. In addition, their adsorption kinetic and isotherm were further studied and compared in detail. The results revealed that introducing strong active sites could improve both the adsorption capacity and rate effectively even though sacrificing part of specific surface areas, indicating that active sites might play a dominant role during the dye adsorption process.
Collapse
Affiliation(s)
- Tao Xue
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130, Meilong Road, Shanghai, 200237, People's Republic of China
| | - Feifei Shao
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130, Meilong Road, Shanghai, 200237, People's Republic of China
| | - Han Miao
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130, Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xinxin Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130, Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
16
|
Mavioğlu Kaya M, Deveci HA, Kaya İ, Atar N, Yola ML. The Electrochemical Detection of Ochratoxin A in Apple Juice via MnCO 3 Nanostructures Incorporated into Carbon Fibers Containing a Molecularly Imprinting Polymer. BIOSENSORS 2023; 13:760. [PMID: 37622846 PMCID: PMC10452824 DOI: 10.3390/bios13080760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
A novel electrochemical sensor based on MnCO3 nanostructures incorporated into carbon fibers (MnCO3NS/CF), including a molecularly imprinting polymer (MIP), was developed for the determination of Ochratoxin A (OTA). In this study, a sensitive and selective sensor design for OTA detection was successfully performed by utilizing the selectivity and catalysis properties of MIP and the synthesized MnCO3NS/CF material at the same time. MnCO3 nanostructures incorporated into carbon fibers were first characterized by using various analytical techniques. The sensor revealed a linearity towards OTA in the range of 1.0 × 10-11-1.0 × 10-9 mol L-1 with a detection limit (LOD) of 2.0 × 10-12 mol L-1. The improved electrochemical signal strategy was achieved by high electrical conductivity on the electrode surface, providing fast electron transportation. In particular, the analysis process could be finished in less than 5.0 min without complex and expensive equipment. Lastly, the molecular imprinted electrochemical sensor also revealed superior stability, repeatability and reproducibility.
Collapse
Affiliation(s)
- Müge Mavioğlu Kaya
- Department of Molecular Biology and Genetic, Faculty of Arts and Sciences, Kafkas University, Kars 36000, Turkey;
| | - Haci Ahmet Deveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gaziantep University, Gaziantep 27000, Turkey;
| | - İnan Kaya
- Department of Biology, Faculty of Arts and Sciences, Kafkas University, Kars 36000, Turkey;
| | - Necip Atar
- Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli 20000, Turkey;
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey
| |
Collapse
|
17
|
Liao X, Luo X, Li Y, Zhou Y, Liang Q, Feng K, Camarada MB, Xiong J. An antifouling electrochemical sensor based on multiwalled carbon nanotubes functionalized black phosphorus for highly sensitive detection of carbendazim and corresponding response mechanisms analyses. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
18
|
Çapar N, Polat İ, Yola BB, Atar N, Yola ML. A novel molecular imprinted QCM sensor based on MoS 2NPs-MWCNT nanocomposite for zearalenone determination. Mikrochim Acta 2023; 190:262. [PMID: 37329340 DOI: 10.1007/s00604-023-05842-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Zearalenone (ZEN) is a mycotoxin that has a carcinogenic effect and is often found at a high rate in frequently consumed foods. In this study, a characteristic molecular imprinted quartz crystal microbalance (QCM) sensor based on molybdenum disulfide nanoparticle (MoS2NPs)-multiwalled carbon nanotube (MWCNT) nanocomposite (MoS2NPs-MWCNTs) is presented for selective determination of ZEA in rice samples. Firstly, molybdenum disulfide nanoparticle (MoS2NP)-multiwalled carbon nanotube nanocomposites were characterized by using microscopic, spectroscopic, and electrochemical techniques. Then, ZEA-imprinted QCM chip was prepared in the presence of methacryloylamidoglutamicacid (MAGA) as monomer, N,N'-azobisisobutyronitrile (AIBN) as initiator, and ZEA as target molecule by using UV polymerization. The sensor revealed a linearity toward ZEA in the range 1.0-10.0 ng L-1 with a detection limit (LOD) of 0.30 ng L-1. The high repeatability, reusability, selectivity, and stability of the developed sensor enable reliable ZEA detection in rice samples.
Collapse
Affiliation(s)
- Nesrin Çapar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey
| | - İlknur Polat
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Bahar Bankoğlu Yola
- Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Necip Atar
- Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey.
| |
Collapse
|
19
|
Turan HE, Medetalibeyoglu H, Polat İ, Yola BB, Atar N, Yola ML. Graphene quantum dots incorporated NiAl 2O 4 nanocomposite based molecularly imprinted electrochemical sensor for 5-hydroxymethyl furfural detection in coffee samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1932-1938. [PMID: 37013684 DOI: 10.1039/d3ay00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
5-Hydroxymethyl furfural (HMF) is an intermediate produced by dehydrating sugars, such as fructose, sucrose, and glucose, in an acidic medium or during the Maillard reaction. It also occurs due to the storage of sugary foods at inappropriate temperatures. In addition, HMF is seen as a quality criterion in products. In this study, a novel molecularly imprinted electrochemical sensor based on graphene quantum dots incorporated NiAl2O4 (GQDs-NiAl2O4) nanocomposite was presented for the selective determination of HMF in coffee samples. Various microscopic, spectroscopic, and electrochemical methods were carried out for the structural characterizations of GQDs-NiAl2O4 nanocomposite. The molecularly imprinted sensor was prepared by multi-scanning using cyclic voltammetry (CV) in the presence of 100.0 mM pyrrole monomer and 25.0 mM HMF. After method optimization, the sensor revealed linearity towards HMF in the range of 1.0-10.0 ng L-1 with a detection limit (LOD) of 0.30 ng L-1. The developed MIP sensor's high repeatability, selectivity, stability, and fast response ability can provide reliable HMF detection in beverages, such as coffee, which is heavily consumed.
Collapse
Affiliation(s)
- Hatice Ebrar Turan
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey.
| | - Hilal Medetalibeyoglu
- Kafkas University, Faculty of Science and Letters, Department of Chemistry, Kars, Turkey
| | - İlknur Polat
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey.
| | - Bahar Bankoğlu Yola
- Gaziantep Islam Science and Technology University, Faculty of Engineering and Natural Sciences, Department of Engineering Basic Sciences, Gaziantep, Turkey
| | - Necip Atar
- Pamukkale University, Faculty of Engineering, Department of Chemical Engineering, Denizli, Turkey
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey.
| |
Collapse
|
20
|
Aaryashree, Choudhary AK, Yoshimi Y. Disposable Sensor Chips with Molecularly Imprinted Carbon Paste Electrodes for Monitoring Anti-Epileptic Drugs. SENSORS (BASEL, SWITZERLAND) 2023; 23:3271. [PMID: 36991982 PMCID: PMC10059048 DOI: 10.3390/s23063271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 08/12/2023]
Abstract
Epilepsy is a neurological disorder that affects millions of people worldwide. Anti-epileptic drugs (AEDs) are critical for their management. However, the therapeutic window is narrow, and traditional laboratory-based therapeutic drug monitoring (TDM) methods can be time consuming and unsuitable for point-of-care testing. To address this issue, we developed a disposable sensor chip based on molecularly imprinted polymer-modified carbon paste electrodes (MIP-CPs) for the TDM of AEDs such as phenobarbital (PB), carbamazepine (CBZ), and levetiracetam (LEV). In this work, functional monomers (methacrylic acid) and crosslinking monomers (methylene bisacrylamide and ethylene glycol dimethacrylate) were copolymerized in the presence of the AED template and grafted on the graphite particles by simple radical photopolymerization. The grafted particles were mixed with silicon oil, dissolving ferrocene as a redox marker to make the MIP-carbon paste (CP). Disposable sensor chips were fabricated by packing the MIP-CP into the base made of poly (ethylene glycol terephthalate) (PET) film. The sensor's sensitivity was determined using differential pulse voltammetry (DPV), carried out on a single sensor chip for each operation. Linearity was obtained from 0-60 μg/mL in PB and LEV and 0-12 μg/mL in CBZ, covering their respective therapeutic range. The time taken for each measurement was around 2 min. The experiment using whole bovine blood and bovine plasma indicated that the existence of species that interfered had a negligible effect on the test's sensitivity. This disposable MIP sensor provides a promising approach for point-of-care testing and facilitating the management of epilepsy. Compared with existing tests, this sensor offers a faster and more accurate way to monitor AEDs, which is crucial for optimizing therapy and improving patient outcomes. Overall, the proposed disposable sensor chip based on MIP-CPs represents a significant advancement in AED monitoring, with the potential for rapid, accurate, and convenient point-of-care testing.
Collapse
Affiliation(s)
- Aaryashree
- Innovative Global Program, Shibaura Institute of Technology, Toyosu, Koto-City, Tokyo 135-8548, Japan;
| | - Ashish Kumar Choudhary
- Department Applied Chemistry, Shibaura Institute of Technology, Toyosu, Koto-City, Tokyo 135-8548, Japan
| | - Yasuo Yoshimi
- Department Applied Chemistry, Shibaura Institute of Technology, Toyosu, Koto-City, Tokyo 135-8548, Japan
| |
Collapse
|
21
|
Valentino M, Imbriano A, Tricase A, Della Pelle F, Compagnone D, Macchia E, Torsi L, Bollella P, Ditaranto N. Electropolymerized molecularly imprinted polypyrrole film for dimethoate sensing: investigation on template removal after the imprinting process. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1250-1253. [PMID: 36861684 DOI: 10.1039/d2ay02024f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The development of ultrasensitive analytical detection methods for organophosphorus pesticides such as dimethoate (DMT) plays a key role in healthy food production. DMT is an inhibitor of acetylcholinesterase (AChE), which can lead to the accumulation of acetylcholine and result in symptoms related to the autonomous and central nervous systems. Herein, we report the first spectroscopic and electrochemical study on template removal after an imprinting process from a polypyrrole-based molecularly imprinted polymer (PPy-MIP) film for the detection of DMT. Several template removal procedures were tested and evaluated using X-ray photoelectron spectroscopy. The most effective procedure was achieved in 100 mM NaOH. The proposed DMT PPy-MIP sensor exhibits a limit of detection of (8 ± 2) × 10-12 M.
Collapse
Affiliation(s)
- Marlene Valentino
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.
| | - Anna Imbriano
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Angelo Tricase
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100 Teramo, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100 Teramo, Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Luisa Torsi
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Paolo Bollella
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Nicoletta Ditaranto
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
22
|
Maurya P, Verma R. MIP integrated surface plasmon resonance in vitro detection of sodium benzoate. Analyst 2023; 148:1141-1150. [PMID: 36728403 DOI: 10.1039/d2an01910h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Food safety is a major concern, with several new diseases arising from unhealthy foods and their composition. Our lifestyle leads us to use ready-to-eat and ready-to-cook foods. The use of preservatives is necessary to make these foods long-lasting. Sodium Benzoate (SB) is one of the most used preservatives in foodstuffs due to its antifungal and antibacterial properties and it also works as a microbial agent. SB keeps foodstuffs fresh and prevents mould and spoilage. The permissible limit of SB is 0-5 mg per kg of body weight per day, which is generally recognized to be safe, as a high intake of SB may increase your risk of inflammation, oxidative stress, obesity, allergies, and disrupting hormones. Therefore, one needs to design a rapid, sensitive, and selective sensor for SB detection. Thus, in this work, we report a Kretschmann-based surface plasmon resonance (SPR) sensor for the detection of SB using the molecularly imprinted polymer (MIP) method over silver-coated SF-11 glass. The wavelength interrogation method was used for the characterization of the Ag/MIP probe. The SPR spectra were blue-shifted with increasing concentrations of SB. The detection range of the sensor is found to be from 0-40 μg ml-1 and the sensor gets saturated beyond these concentrations. The proposed sensor has high sensitivity and a high figure of merit (FOM) at low concentrations, with these parameters decreasing with increasing SB concentration. The sensor is highly selective for SB as it does not respond to the other chemical compounds we tested, - atrazine, melamine and chitosan. The limit of detection of the sensor is found to be 0.083 μg ml-1, which is very low compared to other reported methods for SB sensing. The FOM is recorded as 0.026 (μg ml-1)-1 for 4 μg ml-1 concentration. This sensor works within the permissible limit and beyond for SB. This sensor can be utilized for the detection of traces of SB in packed food/juice, pickles, drinks, wines, sauces, and ready-to-cook foodstuffs, and also in personal care products: serums, toothpaste etc. This sensor is cost-effective, highly selective, reliable, easy to handle and has the advantage of online monitoring.
Collapse
Affiliation(s)
| | - Roli Verma
- Department Of Physics, University of Lucknow, India.
| |
Collapse
|
23
|
Wang A, Zou D, Xu Z, Chen B, Zhang X, Chen F, Zhang M. Combined effects of spent mushroom substrate and dicyandiamide on carbendazim dissipation in soils: Double-edged sword effects and potential risk controls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120992. [PMID: 36596378 DOI: 10.1016/j.envpol.2022.120992] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Repeated and high-dose carbendazim applications have caused serious soil carbendazim contamination, and eco-friendly and economical approaches have been suggested to promote carbendazim removal in agricultural soil. Spent mushroom substrate (SMS) is a special recycled resource after harvesting mushrooms and can be utilized in contaminated soil amendment. The SMS application into agricultural soil might increase antibiotic resistance gene abundances, and the health risks of SMS application might be reduced with reasonable management to adjust the related electron transport of soil nitrification or denitrification. In this study, the SMS and nitrification inhibitor dicyandiamide were used to remediate agricultural soil contaminated with the carbendazim, and the carbendazim contents, soil microbial biomass, activities and community and human disease genes were determined. Compared to the control treatment, the combined applications of SMS and dicyandiamide significantly decreased soil carbendazim content by 38.14% but significantly enhanced soil β-glucosidase, chitinase, arylsulfatase, urease and electron transfer system activities. The relative abundances of Proteobacteria and Actinobacteria were increased by 11.0% and 8.2% with the SMS application, respectively. The carbendazim residues were negatively correlated with the soil pH, electron transfer system activities and relative abundances of Proteobacteria and Actinobacteria. The relative abundances of human disease genes were also dramatically increased with the SMS application, but compared to the SMS alone, extra dicyandiamide application significantly reduced the relative abundances of human disease genes in soils. The SMS applications into fungicide-contaminated soils could generate double-edged sword effects of facilitating fungicide dissipation but leading to potential health risk increase, while applying the dicyandiamide with SMS might be an effective strategy to decrease the negative effect of health risk.
Collapse
Affiliation(s)
- Andong Wang
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Dongsheng Zou
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhihong Xu
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
| | - Bin Chen
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xiaopeng Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230001, PR China
| | - Falin Chen
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Manyun Zhang
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia.
| |
Collapse
|
24
|
Palanisamy S, Alagumalai K, Chiesa M, Kim SC. Rational design of Nd 2O 3 decorated functionalized carbon nanofiber composite for selective electrochemical detection of carbendazim fungicides in vegetables, water, and soil samples. ENVIRONMENTAL RESEARCH 2023; 219:115140. [PMID: 36565846 DOI: 10.1016/j.envres.2022.115140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 05/26/2023]
Abstract
Abuse of carbendazim (CBZ) leaves excessive pesticide residues on agricultural products, which endangers human health because of the residues' high concentrations. Hence, a composite consisting of functionalized carbon nanofibers (f-CNF) with neodymium oxide (Nd2O3) was fabricated to monitor CBZ at trace levels. The Nd2O3/f-CNF composite-modified electrode displays higher electro-oxidation ability towards CBZ than Nd2O3 and f-CNF-modified electrodes. The combined unique properties of Nd2O3 and f-CNF result in a substantial specific surface area, superior structural stability, and excellent electrocatalytic activity of the composite yielding enhanced sensitivity to detecting CBZ with a detection limit of 4.3 nM. Also, the fabricated sensor electrode can detect CBZ in the linear concentration range of up to 243.0 μM with high selectivity, appropriate reproducibility, and stability. A demonstration of the sensing capability of CBZ in vegetables, water, and soil samples was reported paving the way for its use in practical applications.
Collapse
Affiliation(s)
- Selvakumar Palanisamy
- Laboratory for Energy and NanoScience (LENS), Khalifa University of Science and Technology, Masdar Campus, PO Box, 54224, Abu Dhabi, United Arab Emirates.
| | | | - Matteo Chiesa
- Laboratory for Energy and NanoScience (LENS), Khalifa University of Science and Technology, Masdar Campus, PO Box, 54224, Abu Dhabi, United Arab Emirates; Department of Physics and Technology, UiT The Artic University of Norway, 9010, Tromso, Norway.
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
25
|
Ren S, Cheng S, Wang Q, Zheng Z. Molecularly imprinted voltammetric sensor sensibilized by nitrogen-vacancy graphitized carbon nitride and Ag-MWCNTs towards the detection of acetaminophen. J Mol Recognit 2022; 35:e2992. [PMID: 36089774 DOI: 10.1002/jmr.2992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/05/2023]
Abstract
The overdose of acetaminophen (AP) can cause serious acute liver injury even the irreversible liver necrosis. The quantitative detection of AP is of great significance not only for clinical applications but also for the quantity control of its pharmaceutical formulations. In this paper, a sensitive molecularly imprinted voltammetric sensor towards AP was constructed based on synergistic enhancement of nitrogen-vacancy graphitized carbon nitride (NV-g-C3 N4 ) and carboxylated MWCNTs loaded with silver nanoparticles (Ag-MWCNTs). The powder X-Ray diffraction spectrum, field emission scanning and transmission electron microscopes, cyclic voltammetry (CV), and electrochemical impedance spectrum were used to characterize the composites. The results show that NV-g-C3 N4 and Ag-MWCNTs closely embedded each other, forming loose porous hybrid structure by hydrogen bond. The prepared sensor molecular imprinting polymer (MIP)/C3 N4 /Ag-CNTs/GCE shows a strong synergistic enhancement of electroanalytical response by CV and differential pulse voltammetry (DPV) tests when compared with NV-g-C3 N4 /GCE, Ag-CNTs/GCE, and MIP/GCE. Through the optimization of the ratio of monomer and template, electropolymerization cycle, elution cycle, incubation time, and pH, linear ranges of 0.007-5 and 5-100 μM were found with the limit of detection of 2.33 nM by DPV. Moreover, its selectivity towards AP was satisfied when compared with detection towards ascorbic acid, dopamine, and glucose. The recovery range of 96.3%-100.5% was obtained in the spiked human serum and urine samples with the SD below 3.0%. In addition, the prepared sensor shows great detecting robustness with good anti-interference, reproducibility, and stability.
Collapse
Affiliation(s)
- Shufang Ren
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou, China
| | - Shounian Cheng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Qingtao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Zhixiang Zheng
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou, China
| |
Collapse
|
26
|
Superior photocatalytic and electrochemical activity of novel WS2/PANI nanocomposite for the degradation and detection of pollutants: Antibiotic, heavy metal ions, and dyes. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Long Z, Shen S, Yuan H. Dy(III)-coordination imprinted self-assembly microspheres based on a silica core for highly sensitive and selective detection of two carbamate pesticides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4077-4084. [PMID: 36197096 DOI: 10.1039/d2ay01269c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbamate (CB) pesticides possess potential carcinogenic and mutagenic activities towards humans even at very low dosages. Thus, broad-specificity probes with high sensitivity and speed are needed for multiple CB determination. This study is the first to focus on Dy3+ ions-coordinated self-assembly on a silica core using a surface imprinting procedure, for the simultaneous fluorometric detection of residues of metolcarb (MC) and pirimicarb (PC) insecticides. A simple and mild solvothermal method was applied for the preparation of fluorescent imprinted microspheres starting from 1,10-phenanthroline (Phen)-ligated Dy3+ ions to guide imprinted self-assembly of chitosan (CTS), glutaraldehyde (GA), and two carbamate pesticides (MC and PC) on the silica surface by means of coordinate bonds and hydrogen bonds. The as-prepared microspheres displayed strong fluorescence emissions via the antenna effect derived from the Phen ligand and the Schiff base oligomers for sensitizing the Dy3+ ions. An expanded in-depth mechanism study was performed on the fluorescence enhancement involving Förster resonance energy transfer (FRET) from the pesticides (donor) to the acceptor. A linear increase in fluorescence at 483 nm for MC and 574 nm for PC upon the imprinted microspheres was observed under the same 350 nm excitation wavelength. Moreover, the quantitative recognition process could be carried out simultaneously and tolerate strong distractions both from five other similar carbamate insecticides and from complicated matrices (e.g., an extract of Chrysanthemum morifolium Ramat). The detection limit was 4 ng mL-1 with a range of 10-60 ng mL-1 for MC and 0.4 ng mL-1 with a range of 1-30 ng mL-1 for PC. Further characterization of the material, including TEM, SEM, XPS, and FTIR, Raman, and fluorescence spectra, verified that the Dy3+ ions play a decisive role in promoting imprinted self-assembly around the silica core. Hence, a novel polynuclear Ln-organic imprinted probe having high selectivity, stability, and sensitivity for the detection of two carbamate insecticides is presented in this study.
Collapse
Affiliation(s)
- Zerong Long
- State Key Laboratory of Market Supervision, Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi, China.
| | - Shilin Shen
- State Key Laboratory of Market Supervision, Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi, China.
- School of Chinese Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Hui Yuan
- State Key Laboratory of Market Supervision, Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi, China.
| |
Collapse
|