1
|
Nnama AU, Aguzie IO, Oguejiofor CF, Ugwu GN, Chukwu MN, Nwani CD. Cytotoxicity of sub-lethal doses of vanadium pentoxide in male Oryctolagus cuniculus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104641. [PMID: 39826660 DOI: 10.1016/j.etap.2025.104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/01/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Vanadium pentoxide (V2O5) is one of the compounds that have been reported to pose varying degrees of toxicity upon exposure; thus, making it a challenging environmental hazard that affects living organisms. This study investigated the cytotoxicity effects of daily sub-lethal oral doses of V2O5 on the bone marrow of male Oryctolagus cuniculus after 21 days. Male O. cuniculus (n = 60, ∼ 6 week old, 433.45 ± 5.00 g body weight) were simply randomized into four experimental groups and a control with three replicates of four animals each. Based on the estimated 96-h LD50 value of 119.0 mg/kg, sub-lethal doses of V2O5 were prepared as 1 mg/kg, 5 mg/kg, 10 mg/kg and 20 mg/kg, and administered to the test animals daily by oral gavage for 21 days. Vanadium pentoxide induced cytotoxicity in the bone marrow cells (BMCs) of exposed groups, with significant changes in all evaluated haemopoietic bone marrow stem cells (erythrocytes, leukocytes, thrombocytes and plasma cells). There were mixed trends in the values of leucocyte differentials in the exposed animal. Oral exposure to V2O5 exerts cytopathologic effects in the forms of DNA damage on the bone marrow of O. cuniculus. These findings support previous reports on the environmental hazards vanadium pentoxide poses to living organisms.
Collapse
Affiliation(s)
- Augustine U Nnama
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Ifeanyi O Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Chike F Oguejiofor
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Gladys Ndidiamaka Ugwu
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Maureen N Chukwu
- Department of Biological Sciences, National Open University of Nigeria, Jabi Abuja, Nigeria
| | - Christopher D Nwani
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
2
|
Li X, Qin Y, Yue F, Lü X. Comprehensive Analysis of Fecal Microbiome and Metabolomics Uncovered dl-Norvaline-Ameliorated Obesity-Associated Disorders in High-Fat Diet-Fed Obese Mice by Targeting the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2381-2392. [PMID: 39808000 DOI: 10.1021/acs.jafc.4c06638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Norvaline is a nonproteinogenic amino acid and an important food ingredient supplement for healthy food. In this study, dl-norvaline administration reduced body weight by more than 40% and improved glucose metabolism and energy metabolism in obese mice induced by a high-fat diet (HFD). Combination analysis of microbiome and metabolomics showed that dl-norvaline supplementation regulated gut bacteria structure, such as increasing beneficial bacteria (Mollicutes_RF39, Ruminococcaceae, Bacteroidaceae, Rikenellaceae, Lactobacillaceae, Clostridiaceae_1, uncultured_bacterium_f_Muribaculaceae, and Rikenellaceae_RC9_gut_group) and decreasing harmful bacteria (Fusobacteriia, Desulfovibrionales, Enterobacteriaceae, Burkholderiaceae, Helicobacteraceae, and Veillonellaceae) and modulated the metabolites involved in arachidonic acid metabolism, thus further promoting short-chain fatty acid production and improving gut barrier, thereby inflammatory responses and oxidative stress were ameliorated. In addition, the pseudogerm-free mouse model verified that dl-norvaline ameliorated obesity-associated disorders in HFD-fed obese mice by targeting gut microbiota. These results clarified that dl-norvaline may be promising for developing and innovating potential functional food products.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
- College of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China
| | - Yanting Qin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Fangfang Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, 712100 Shaanxi, China
| |
Collapse
|
3
|
Lv Y, Ma X, Liu Q, Long Z, Li S, Tan Z, Wang D, Xing X, Chen L, Chen W, Wang Q, Wei Q, Hou M, Xiao Y. c-Jun targets miR-451a to regulate HQ-induced inhibition of erythroid differentiation via the BATF/SETD5/ARHGEF3 axis. Toxicology 2024; 505:153843. [PMID: 38801936 DOI: 10.1016/j.tox.2024.153843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Benzene, a widely used industrial chemical, has been clarified to cause hematotoxicity. Our previous study suggested that miR-451a may play a role in benzene-induced impairment of erythroid differentiation. However, the mechanism underlying remains unclear. In this study, we explored the role of miR-451a and its underlying mechanisms in hydroquinone (HQ)-induced suppression of erythroid differentiation in K562 cells. 0, 1.0, 2.5, 5.0, 10.0, and 50 μM HQ treatment of K562 cells resulted in a dose-dependent inhibition of erythroid differentiation, as well as the expression of miR-451a. Bioinformatics analysis was conducted to predict potential target genes of miR-451a and dual-luciferase reporter assays confirmed that miR-451a can directly bind to the 3'-UTR regions of BATF, SETD5, and ARHGEF3 mRNAs. We further demonstrated that over-expression or down-regulation of miR-451a altered the expression of BATF, SETD5, and ARHGEF3, and also modified erythroid differentiation. In addition, BATF, SETD5, and ARHGEF3 were verified to play a role in HQ-induced inhibition of erythroid differentiation in this study. Knockdown of SETD5 and ARHGEF3 reversed HQ-induced suppression of erythroid differentiation while knockdown of BATF had the opposite effect. On the other hand, we also identified c-Jun as a potential transcriptional regulator of miR-451a. Forced expression of c-Jun increased miR-451a expression and reversed the inhibition of erythroid differentiation induced by HQ, whereas knockdown of c-Jun had the opposite effect. And the binding site of c-Jun and miR-451a was verified by dual-luciferase reporter assay. Collectively, our findings indicate that miR-451a and its downstream targets BATF, SETD5, and ARHGEF3 are involved in HQ-induced erythroid differentiation disorder, and c-Jun regulates miR-451a as a transcriptional regulator in this process.
Collapse
Affiliation(s)
- Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoju Ma
- Department of Hospital Acquired Infection Control and Public Health Management, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 517108, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zihao Long
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangqi Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoqing Tan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dongsheng Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wei
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengjun Hou
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Liu X, Zhang H, Shi G, Zheng X, Chang J, Lin Q, Tian Z, Yang H. The impact of gut microbial signals on hematopoietic stem cells and the bone marrow microenvironment. Front Immunol 2024; 15:1338178. [PMID: 38415259 PMCID: PMC10896826 DOI: 10.3389/fimmu.2024.1338178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Hematopoietic stem cells (HSCs) undergo self-renewal and differentiation in the bone marrow, which is tightly regulated by cues from the microenvironment. The gut microbiota, a dynamic community residing on the mucosal surface of vertebrates, plays a crucial role in maintaining host health. Recent evidence suggests that the gut microbiota influences HSCs differentiation by modulating the bone marrow microenvironment through microbial products. This paper comprehensively analyzes the impact of the gut microbiota on hematopoiesis and its effect on HSCs fate and differentiation by modifying the bone marrow microenvironment, including mechanical properties, inflammatory signals, bone marrow stromal cells, and metabolites. Furthermore, we discuss the involvement of the gut microbiota in the development of hematologic malignancies, such as leukemia, multiple myeloma, and lymphoma.
Collapse
Affiliation(s)
- Xiru Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Hao Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Guolin Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Xinmin Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Jing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
- Medical Service, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Quande Lin
- Medical Service, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
5
|
Cong X, Li X, Xu K, Yin L, Liang G, Sun R, Pu Y, Zhang J. HIF-1α/m 6A/NF-κB/CCL3 axis-mediated immunosurveillance participates in low level benzene-related erythrohematopoietic development toxicity. ENVIRONMENT INTERNATIONAL 2024; 184:108493. [PMID: 38350257 DOI: 10.1016/j.envint.2024.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Defective erythropoiesis is one of the causes of anemia and leukemia. However, the mechanisms underlying defective erythropoiesis under a low-dose environment of benzene are poorly understood. In the present study, multiple omics (transcriptomics and metabolomics) and methods from epidemiology to experimental biology (e.g., benzene-induced (WT and HIF-1α + ) mouse, hiPSC-derived HSPCs) were used. Here, we showed that erythropoiesis is more easily impacted than other blood cells, and the process is reversible, which involves HIF-1 and NF-kB signaling pathways in low-level benzene exposure workers. Decreased HIF-1α expression in benzene-induced mouse bone marrow resulted in DNA damage, senescence, and apoptosis in BMCs and HSCs, causing disturbances in iron homeostasis and erythropoiesis. We further revealed that HIF-1α mediates CCL3/macrophage-related immunosurveillance against benzene-induced senescent and damaged cells and contributes to iron homeostasis. Mechanistically, we showed that m6A modification is essential in this process. Benzene-induced depletion of m6A promotes the mRNA stability of gene NFKBIA and regulates the NF-κB/CCL3 pathway, which is regulated by HIF-1α/METTL3/YTHDF2. Overall, our results identified an unidentified role for HIF-1α, m6A, and the NF-kB signaling machinery in erythroid progenitor cells, suggesting that HIF-1α/METTL3/YTHDF2-m6A/NF-κB/CCL3 axis may be a potential prevention and therapeutic target for chronic exposure of humans to benzene-associated anemia and leukemia.
Collapse
Affiliation(s)
- Xiaowei Cong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiaoqin Li
- Yangzhou Center for Disease Control and Prevention, Yangzhou 225100, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
6
|
Zhang L, Liu Z, Zhang W, Wang J, Kang H, Jing J, Han L, Gao A. Gut microbiota-palmitoleic acid-interleukin-5 axis orchestrates benzene-induced hematopoietic toxicity. Gut Microbes 2024; 16:2323227. [PMID: 38436067 PMCID: PMC10913712 DOI: 10.1080/19490976.2024.2323227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Due to the annual increase in its production and consumption in occupational environments, the adverse blood outcomes caused by benzene are of concern. However, the mechanism of benzene-induced hematopoietic damage remains elusive. Here, we report that benzene exposure causes hematopoietic damage in a dose-dependent manner and is associated with disturbances in gut microbiota-long chain fatty acids (LCFAs)-inflammation axis. C57BL/6J mice exposed to benzene for 45 days were found to have a significant reduction in whole blood cells and the suppression of hematopoiesis, an increase in Bacteroides acidifaciens and a decrease in Lactobacillus murinus. Recipient mice transplanted with fecal microbiota from benzene-exposed mice showed potential for hematopoietic disruption, LCFAs, and interleukin-5 (IL-5) elevation. Abnormally elevated plasma LCFAs, especially palmitoleic acid (POA) exacerbated benzene-induced immune-inflammation and hematopoietic damage via carnitine palmitoyltransferase 2 (CPT2)-mediated disorder of fatty acid oxidation. Notably, oral administration of probiotics protects the mice against benzene-induced hematopoietic toxicity. In summary, our data reveal that the gut microbiota-POA-IL-5 axis is engaged in benzene-induced hematopoietic damage. Probiotics might be a promising candidate to prevent hematopoietic abnormalities from benzene exposure.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Department of Occupational Health and Environmental Health, School of Public Health, Binzhou Medical University, Yantai, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Zhang L, Kang H, Zhang W, Wang J, Liu Z, Jing J, Han L, Gao A. Probiotics ameliorate benzene-induced systemic inflammation and hematopoietic toxicity by inhibiting Bacteroidaceae-mediated ferroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165678. [PMID: 37478946 DOI: 10.1016/j.scitotenv.2023.165678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The intestinal microbiota is associated with the development of benzene-induced hematopoietic toxicity. Modulation of intestinal homeostasis by probiotic supplementation has been considered an effective strategy to prevent adverse health effects. However, the role and mechanism of probiotics in benzene-induced hematopoietic toxicity are unclear. After 45 days of exposure, benzene caused bone marrow hematopoietic toxicity in mice. Furthermore, we found that benzene altered the intestinal barrier in mice, leading to an increase in the abundance of Bacteroidaceae and the activation of systemic inflammation. Interestingly, Fe2+ accumulation, lipid peroxidation, and differential expression of ferroptosis proteins were observed in the intestinal tissues of benzene-exposed mice. After fecal microbiota transplantation, stool microbes from benzene-exposed mice led to the development of intestinal ferroptosis in recipient mice. In particular, oral probiotics significantly reversed elevated Bacteroidaceae and intestinal ferroptosis, ultimately improving benzene-induced hematopoietic damage. We further used the benzene metabolite 1,4-BQ to treat human normal colonic epithelial cells (NCM460) and intervened with the ferroptosis inhibitor liproxstatin-1 (Lip-1) to validate the relationship between intestinal ferroptosis and inflammation. The results showed that 1,4-BQ treatment resulted in increased intracellular ROS levels and abnormal expression of ferroptosis proteins and the inflammatory factors IL-5 and IL-13. However, the use of Lip-1 significantly inhibited oxidative stress, ferroptosis, and inflammation in NCM460 cells. This result suggested that ferroptosis might be involved in benzene-induced hematopoietic toxicity by mediating Th2-type systemic inflammation. Overall, these findings revealed a role for Bacteroidaceae-intestinal ferroptosis-inflammation in benzene-induced hematopoietic toxicity and highlighted that probiotics could be a promising strategy to prevent adverse hematologic outcomes.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - JingYu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Zhao H, Tang Z, Wang Z, Li J, Hu Z, Wang Q, Yu Q, Zhang X, Zhou B, Meng E. Quantitative simulationSimulation of nitrogen doping effects on benzene selective adsorption by activated carbon in aqueous conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 340:122819. [PMID: 39491158 DOI: 10.1016/j.envpol.2023.122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Investigating the impact of nitrogen doping on the selective adsorption of benzene on activated carbon under aqueous conditions holds significant importance in regulating nitrogen content on activated carbon precisely and enhancing benzene adsorption in the air. This study utilizes quantum chemical simulation to systematically compute the pairwise interactions of pyridine nitrogen, pyrrole nitrogen, graphite nitrogen, and their coexistence on carbon materials, including electrostatic potential, van der Waals potential, and polarity changes. We examine the adsorption of benzene and water on nitrogen-doped carbon materials and calculate the type and proportion of weak interactions in the adsorption process through energy decomposition analysis. Visual analysis of weak interactions is conducted via independent gradient scatter plots and isosurface plots. Based on this research, we investigate the influence of nitrogen doping on the competitive adsorption of benzene and water on carbon materials using adsorption energy and configuration changes. Our findings reveal that nitrogen doping disrupts the uniform electrostatic potential distribution and polarity of carbon materials. Specifically, graphite nitrogen inhibits water molecule adsorption by enhancing mutual repulsion and weakening dispersion and electrostatic interactions, consequently promoting benzene adsorption on carbon materials. Moreover, hydrogen bonds form between pyridine nitrogen, pyrrole nitrogen, and water, making carbon materials more hydrophilic. However, when combined with graphite nitrogen, this increases the negative van der Waals potential of carbon materials, further enhancing benzene adsorption. Experimental results align with the simulation, reinforcing the significance of this research in developing efficient activated carbon adsorbents for benzene under aqueous conditions.
Collapse
Affiliation(s)
- Haiqian Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Ziyu Tang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhonghua Wang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Jun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Zhipei Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qingshu Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qi Yu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bo Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Erlin Meng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
9
|
Wang J, Han L, Liu Z, Zhang W, Zhang L, Jing J, Gao A. Genus unclassified_Muribaculaceae and microbiota-derived butyrate and indole-3-propionic acid are involved in benzene-induced hematopoietic injury in mice. CHEMOSPHERE 2023; 313:137499. [PMID: 36493894 DOI: 10.1016/j.chemosphere.2022.137499] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Benzene is a group I carcinogen determined by IARC. The prevalence of benzene in occupational and general environments increases the risk of acute myeloid leukemia (AML) among workers and childhood leukemia. However, the mechanism of hematotoxicity induced by benzene remains unclear. Recently, the gut microbiota has been regarded as a pivotal part of normal and malignant hematopoiesis. Therefore, in this study, we explored the function of gut microbiota in hematopoietic injury induced by benzene by 16S rRNA sequencing. We found that benzene exposure caused bone marrow damage, hematopoietic stem and progenitor cells (HSPCs) dysfunction, and peripheral blood cell reduction. Moreover, intestinal barrier damage and gut microbiota dysbiosis were also observed in benzene-exposed mice. Interestingly, two gut flora, Lachnospiraceae_NK4A136_group and unclassified_Muribaculaceae, were significantly up-regulated and associated with hematopoietic indicators, suggesting that gut-host crosstalk might mediate benzene hematotoxicity. Microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), bile acids, and tryptophan metabolites, are the primary mediators of the gut-host crosstalk. Therefore, we conducted absolute quantitative metabolomics to investigate the impact of benzene exposure on these metabolites in mice. The results showed that the concentration of SCFA butyrate, tryptophan metabolites kynurenine, and Indole-3-propionic acid (IPA) were significantly altered after benzene exposure. However, no difference was found in bile acids. Significant correlations were found between altered metabolites and hematopoietic indicators. We then investigated the flora that derived these metabolites. Lachnospiraceae_NK4A136_group and unclassified_Muribaculaceae were enriched in the butyrate metabolism and tryptophan metabolism pathways. Correlation analysis further suggested that unclassified_Muribaculaceae was positively associated with butyrate (r = 0.588, P < 0.05) and IPA (r = 0.59, P < 0.05). The above results demonstrated that unclassified_Muribaculaceae and microbiota-derived butyrate and IPA were involved in hematopoietic toxicity caused by benzene. This study provides insight into gut microbiota-derived metabolites-host crosstalk in benzene hematopoietic toxicity.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
10
|
RE-NiO (RE=Ce, Y, La) composite oxides coupled plasma catalysis for benzene oxidation and by-product ozone removal. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Cordiano R, Papa V, Cicero N, Spatari G, Allegra A, Gangemi S. Effects of Benzene: Hematological and Hypersensitivity Manifestations in Resident Living in Oil Refinery Areas. TOXICS 2022; 10:678. [PMID: 36355969 PMCID: PMC9697938 DOI: 10.3390/toxics10110678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Literature is teeming with publications on industrial pollution. Over the decades, the main industrial pollutants and their effects on human health have been widely framed. Among the various compounds involved, benzene plays a leading role in the onset of specific diseases. Two systems are mainly affected by the adverse health effects of benzene exposure, both acute and chronic: the respiratory and hematopoietic systems. The most suitable population targets for a proper damage assessment on these systems are oil refinery workers and residents near refining plants. Our work fits into this area of interest with the aim of reviewing the most relevant cases published in the literature related to the impairment of the aforementioned systems following benzene exposure. We perform an initial debate between the two clinical branches that see a high epidemiological expression in this slice of the population examined: residents near petroleum refinery areas worldwide. In addition, the discussion expands on highlighting the main immunological implications of benzene exposure, finding a common pathophysiological denominator in inflammation, oxidative stress, and DNA damage, thus helping to set the basis for an increasingly detailed characterization aimed at identifying common molecular patterns between the two clinical fields discussed.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Spatari
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
12
|
Morphology-modulated rambutan-like hollow NiO catalyst for plasma-coupled benzene removal: enriched O species and synergistic effects. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|