1
|
Xu J, Cheng H, Zhang H, Sun C, Tian H, Yang J, Ding Y, Lin X, Wang P, Huang C. Visible light irradiation enhanced sulfidated zero-valent iron/peroxymonosulfate process for organic pollutant degradation. ENVIRONMENTAL RESEARCH 2024; 257:119292. [PMID: 38824982 DOI: 10.1016/j.envres.2024.119292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
This study developed a novel process named sulfidated zero-valent iron/peroxymonosulfate/visible light irradiation (S-mZVI/PMS/vis) for enhanced organic pollutant degradation. The S-mZVI/PMS/vis process exhibited remarkable catalytic activity, achieving a 99.6% rhodamine B (RhB) removal within 10 min. The degradation rate constant of RhB by the S-mZVI/PMS/vis process was found to be 6.49 and 79.84 times higher than that by the S-mZVI/PMS and PMS/vis processes, respectively. Furthermore, the S-mZVI/PMS/vis process worked efficiently across a wide pH range (3.0-9.0), and the result of five-cycle experiments demonstrated the excellent reusability and stability of S-mZVI. Radical quenching tests and electron paramagnetic resonance analysis indicated that ·O2-, 1O2, and h+ significantly contributed to the degradation of RhB through the S-mZVI/PMS/vis process. The visible light irradiation increased the Fe2+ concentration, improved the Fe3+/Fe2+ cycle, and consequently enhanced the PMS decomposition, reactive species production, and RhB degradation. This work offers a promising strategy to highly efficiently activate PMS for organic pollutants elimination from aqueous solutions.
Collapse
Affiliation(s)
- Jialu Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hao Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - He Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chengyou Sun
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Haoran Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jikun Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yingxin Ding
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xuan Lin
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Key Laboratory of Wetland and Soil Ecological Restoration, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
2
|
Zhang M, Wang J, Zhan X, Xu W, He M, Ma D, Yue Z. Degradation of thiocyanate by Fe/Cu/C microelectrolysis: Role of pre-magnetization and enhancement mechanism. ENVIRONMENTAL RESEARCH 2024; 252:118833. [PMID: 38599446 DOI: 10.1016/j.envres.2024.118833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Thiocyanate (SCN-), a non-volatile inorganic pollutant, is commonly found in various types of industrial wastewater, which is resistant to hydrolysis and has the potential to be toxic to organisms. Premagnetized iron-copper-carbon ternary micro-electrolytic filler (pre-Fe/Cu/C) was prepared to degrade SCN-. Pre-Fe/Cu/C exhibited the most significant enhancement effect on SCN- removal when magnetized for 5 min with an intensity of 100 mT, and the SCN- removal rate was the highest at an initial pH of 3.0 and an aeration rate of 1.6 L/min. The electrochemical corrosion and electron transfer in the pre-Fe/Cu/C system were confirmed through SEM, XPS, FTIR, XRD, and electrochemical tests. This resulted in the formation of more corrosion products and multiple cycles of Fe2+/Fe3+ and Cu0/Cu+/Cu2+. Additionally, density functional theory (DFT) calculations and electron paramagnetic resonance (EPR) were utilized to illustrate the oxygen adsorption properties of the materials and the participation of reactive oxygen species (1O2, ·O2-, and ·OH) in SCN- removal. The degradation products of SCN- were identified as SO42-, HCO3-, NH4+, and N2. This study introduced the use of permanent magnets for the first time to enhance Fe/Cu/C ternary micro-electrolytic fillers, offering a cost-effective, versatile, and stable approach that effectively effectively enhanced the degradation of SCN-.
Collapse
Affiliation(s)
- Min Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Xinyuan Zhan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Wusong Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Maolin He
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Ding Ma
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
3
|
Wang Z, Zeng Y, Tan Q, Shen Y, Shen L, Sun J, Zhao L, Lin H. Novel combination of iron-carbon composite and Fenton oxidation processes for high-concentration antibiotic wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120383. [PMID: 38382434 DOI: 10.1016/j.jenvman.2024.120383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
The research presented herein explores the development of a novel iron-carbon composite, designed specifically for the improved treatment of high-concentration antibiotic wastewater. Employing a nitrogen-shielded thermal calcination approach, the investigation utilizes a blend of reductive iron powder, activated carbon, bentonite, copper powder, manganese dioxide, and ferric oxide to formulate an efficient iron-carbon composite. The oxygen exclusion process in iron-carbon particles results in distinctive electrochemical cells formation, markedly enhancing wastewater degradation efficiency. Iron-carbon micro-electrolysis not only boosts the biochemical degradability of concentrated antibiotic wastewater but also mitigates acute biological toxicity. In response to the increased Fe2+ levels found in micro-electrolysis wastewater, this research incorporates Fenton oxidation for advanced treatment of the micro-electrolysis byproducts. Through the synergistic application of iron-carbon micro-electrolysis and Fenton oxidation, this research accomplishes a significant decrease in the initial COD levels of high-concentration antibiotic wastewater, reducing them from 90,000 mg/L to about 30,000 mg/L, thus achieving an impressive removal efficiency of 66.9%. This integrated methodology effectively reduces the pollutant load, and the recycling of Fe2+ in the Fenton process additionally contributes to the reduction in both the volume and cost associated with solid waste treatment. This research underscores the considerable potential of the iron-carbon composite material in efficiently managing high-concentration antibiotic wastewater, thereby making a notable contribution to the field of environmental science.
Collapse
Affiliation(s)
- Zhe Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yansha Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Qiyin Tan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Yue Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiahao Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Leihong Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
4
|
Lin Y, He Y, Sun Q, Ping Q, Huang M, Wang L, Li Y. Underlying the mechanisms of pathogen inactivation and regrowth in wastewater using peracetic acid-based disinfection processes: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132868. [PMID: 37944231 DOI: 10.1016/j.jhazmat.2023.132868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Peracetic acid (PAA) disinfection is an emerging wastewater disinfection process. Its advantages include excellent pathogen inactivation performance and little generation of toxic and harmful disinfection byproducts. The objective of this review is to comprehensively analyze the experimental data and scientific information related to PAA-based disinfection processes. Kinetic models and modeling frameworks are discussed to provide effective tools to assess pathogen inactivation efficacy. Then, the efficacy of PAA-based disinfection processes for pathogen inactivation is summarized, and the inactivation mechanisms involved in disinfection and the interactions of PAA with conventional disinfection processes are elaborated. Subsequently, the risk of pathogen regrowth after PAA-based disinfection process is clearly discussed. Finally, to address ecological risks related to PAA-based disinfection, its impact on the spread of antibiotic-resistant bacteria and the transfer of antibiotic resistance genes (ARGs) is also assessed. Among advanced PAA-based disinfection processes, ultraviolet/PAA is promising not only because it has practical application value but also because pathogen regrowth can be inhibited and ARGs transfer risk can be significantly reduced via this process. This review presents valuable and comprehensive information to provide an in-depth understanding of PAA as an alternative wastewater disinfection technology.
Collapse
Affiliation(s)
- Yuqian Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Yunpeng He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qiya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Manhong Huang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China; Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
5
|
Yan Z, Xie S, Yang M. Effect and mechanism of iron-carbon micro-electrolysis pretreatment of organic peroxide production wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11886-11897. [PMID: 38225488 DOI: 10.1007/s11356-023-31057-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024]
Abstract
The wastewater from organic peroxide production has high chemical oxygen demand (COD) concentration and poor biodegradability, so it is necessary to find a cost-effective treatment method. The iron-carbon microelectrolysis (IC-ME) technology was used to pretreat the organic peroxide production wastewater, and the influence of reaction conditions on the removal effect of pollutants and the degradation mechanism were studied. The effects of initial pH, iron filings, iron-carbon ratio, and reaction time on the wastewater treatment were investigated by single-factor and response surface optimization experiments, and the degradation mechanism was analyzed by three-dimensional fluorescence spectroscopy, UV-Vis, and gas chromatography mass spectrometry (GC-MS). The experimental results showed that the COD removal efficiency was 35.67% and the biodegradability of wastewater was increased from 0.113 to 0.173 under the conditions of initial pH of 3.1, the dosage of iron filings of 30.5 g/L, the ratio of iron-carbon of 1.01, and the reaction time of 122.8 min, and the process of IC-ME for degrading COD of wastewater from the production of organic peroxide was consistent with the secondary reaction. The IC-ME process could decompose macromolecular organic compounds such as tyrosine proteins and aromatic proteins, and improve the biodegradability of wastewater. It provides a theoretical reference for the practical application of IC-ME to treat this type of wastewater.
Collapse
Affiliation(s)
- Zichun Yan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment of Gansu Province, Lanzhou, 730070, China
| | - Shilong Xie
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Mingxia Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
6
|
Li X, Song H, Zhang G, Zou W, Cao Z, Pan Y, Zhang G, Zhou M. Enhanced organic pollutant removal in saline wastewater by a tripolyphosphate-Fe 0/H 2O 2 system: Key role of tripolyphosphate and reactive oxygen species generation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131821. [PMID: 37315414 DOI: 10.1016/j.jhazmat.2023.131821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
The effects of tripolyphosphate (TPP) on organic pollutant degradation in saline wastewater using Fe0/H2O2 were systematically investigated to elucidate its mechanism and the main reactive oxygen species (ROS). Organic pollutant degradation was dependent on the Fe0 and H2O2 concentration, Fe0/TPP molar ratio, and pH value. The apparent rate constant (kobs) of TPP-Fe0/H2O2 was 5.35 times higher than that of Fe0/H2O2 when orange II (OGII) and NaCl were used as the target pollutant and model salt, respectively. The electron paramagnetic resonance (EPR) and quenching test results showed that •OH, O2•-, and 1O2 participated in OGII removal, and the dominant ROS were influenced by the Fe0/TPP molar ratio. The presence of TPP accelerates Fe3+/Fe2+ recycling and forms Fe-TPP complexes, which ensures sufficient soluble Fe for H2O2 activation, prevents excessive Fe0 corrosion, and thereby inhibits Fe sludge formation. Additionally, TPP-Fe0/H2O2/NaCl maintained a performance similar to those of other saline systems and effectively removed various organic pollutants. The OGII degradation intermediates were identified using high-performance liquid chromatography-mass spectrometry (HPLC-MS) and density functional theory (DFT), and possible degradation pathways for OGII were proposed. These findings provide a facile and cost-effective Fe-based AOP method for removing organic pollutants from saline wastewater.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Huajing Song
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Gaili Zhang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Wei Zou
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Zhigguo Cao
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Guoqing Zhang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
7
|
Guo J, Zhang Y, Wen H, Jia H, Wang J. A novel recycling way of blast furnace dust from steelworks: Electrocoagulation coupled micro-electrolysis system in indigo wastewater treatment. CHEMOSPHERE 2023; 327:138416. [PMID: 36996917 DOI: 10.1016/j.chemosphere.2023.138416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In this study, a novel electrocoagulation electrode, based on blast furnace dust (BFD) from steelworks waste, was prepared for indigo wastewater treatment, and the performance was compared with different ratios of Fe-C composite electrodes. The BFD electrode exhibited great electrochemical performance and removal effect. The presence of Fe-C micro-electrolysis in the electrocoagulation system of the BFD electrode was demonstrated by FT-IR, Raman, ESR, and quenching experiments. Density Functional Theory (DFT) calculations further demonstrated that the iron-carbon ratio could influence the degree of O-O breaking and enhance ·OH generation. Finally, the BFD electrode's operating parameters were perfected, and the COD removal and decolorization could reach 75.7% and 95.8% within 60 min, respectively. Fe-C composite electrodes reduce energy consumption compared with the traditional Fe/Al electrode and have a lower production cost, which provides a potential way to recycle and reuse the resources of solid waste in steelworks, the concept of "waste controlled by waste" is realized.
Collapse
Affiliation(s)
- Jiaran Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Cangzhou, 061000, China
| | - Yang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Haitao Wen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Cangzhou, 061000, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Cangzhou, 061000, China.
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Cangzhou, 061000, China.
| |
Collapse
|