1
|
Teh JL, Walvekar R, Ho KC, Khalid M. Biolubricants from waste cooking oil: A review of extraction technologies, conversion techniques, and performance enhancement using natural antioxidants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124267. [PMID: 39879924 DOI: 10.1016/j.jenvman.2025.124267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/26/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Effective management of agricultural and industrial by-products is essential for promoting circular economic practices and enhancing environmental sustainability. Agri-food wastes and waste cooking oil (WCO) represent two abundant residual streams with significant potential for sustainable biolubricant production. Valorizing biomass and WCO aligns with Sustainable Development Goal (SDG) 7, as it improves energy efficiency through enhanced lubricant performance and reduced energy loss. Furthermore, this sustainable approach contributes to SDG 12 and SDG 13 by minimizing waste production and accumulation, thereby mitigating negative environmental impacts and climate change. This critical review addresses existing gaps in the production of biolubricants from WCO and the incorporation of natural antioxidants as versatile additives. It examines and compares various techniques for the extraction, chemical and physical modification, and characterization of WCO-derived biolubricants. Specific methods, including esterification, transesterification, and antioxidant incorporation, are evaluated for their effectiveness in converting WCO into biolubricants. The review also discusses the influence of residual bioactive compounds on oxidative stability and lubricating properties. While vegetable oils demonstrate superior friction-reducing capabilities compared to petroleum-based lubricants, their triglyceride structure often results in poor oxidative stability, limiting their practical applications. Modification strategies and antioxidant inclusion are proposed to enhance this stability. A comprehensive analysis of the physicochemical properties and tribological performance of biolubricants, both pre- and post-processing, is presented. This systematic evaluation of extraction and upgrading methodologies aims to facilitate the development and industrial adoption of sustainable biolubricants.
Collapse
Affiliation(s)
- Jia Leang Teh
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, Taylor's University Malaysia, No.1 Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia
| | - Rashmi Walvekar
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India.
| | - Kah Chun Ho
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, Taylor's University Malaysia, No.1 Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia
| | - Mohammad Khalid
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK; Faculty of Engineering, Manipal University Jaipur, Rajasthan, 303007, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Akanksha MS, Sumanth P, Akhil UV, Radhika N, Ravichandran M. The modification and adoption of biolubricants as alternatives in the automotive industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1043-1072. [PMID: 39733034 DOI: 10.1007/s11356-024-35670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 11/24/2024] [Indexed: 12/30/2024]
Abstract
Lubricants are pivotal in mitigating friction and wear between surfaces, ensuring seamless movement of solid objects. However, the predominant use of petroleum-based lubricants in the automotive and industrial ssectors raises substantial concerns for future energy security. The exploration of vegetable oils as an alternative lubricant in the automotive industry was motivated by the depletion of fossil fuels and escalating environmental concerns. The post-pandemic surge in environmental awareness has intensified the focus on biolubricants. Over the past two decades, the biolubricants field has burgeoned with numerous research, signaling a heightened interest in eco-friendly and sustainable lubrication solutions. This underscores biolubricants as a dynamic and evolving research area with lasting prominence, especially amid ongoing environmental innovation. The review centrally revolves around naturally sourced lubricants, primarily focusing on vegetable oils, which stand out as appealing substitutes for conventional petroleum-based lubricants due to their biodegradability, high lubricity, and elevated flash points. The article delves into modifications to enhance vegetable oil properties, explores the role of additives, and provides insights into current and future prospects. The paper also investigates diverse applications in engine oil, grease, hydraulic oil, and more.
Collapse
Affiliation(s)
- Maddali Saran Akanksha
- Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Penugonda Sumanth
- Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Uppinath Valayannur Akhil
- Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Nachimuthu Radhika
- Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India.
| | - Manickam Ravichandran
- Department of Mechanical Engineering, K. Ramakrishnan College of Engineering, Samayapuram, Trichy, India
| |
Collapse
|
3
|
Shazly RIE, El-Sheshtawy HS, Ahmed NS, Nassar AM. Synthesis and biodegradation testing of some synthetic oils based on ester. Sci Rep 2024; 14:3416. [PMID: 38341447 PMCID: PMC10858935 DOI: 10.1038/s41598-024-53331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Synthetic ester oils are widely used in many applications due to their ideal cleaning properties, lubricating performance and assured polarity. The majority of esters oils are more biodegradable. than any other base stock. For instance, oil soluble polyalkyleneglycols (PAGs) or polyalphaolephins (PAOs), are only biodegradable in the lower viscosity grades. The goal of this study is to create some synthetic base oils by two major protocols; the first is esterifying valeric acid with various glycols (ethylene glycol, propylene glycol, butylene glycol and poly (ethylene glycol 400). The second involves esterification of propanoic acid, heptanoic acid, or octanoic acid with ethylene glycol. The reaction yield varies between 85 and 94%. The chemical composition of the prepared esters was examined using various spectroscopic methods (Fourier-transform infrared (FT-IR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The thermal properties investigation by thermo gravimetric analysis (TGA) showed pronounced thermal stability of the prepared esters. The biodegradability was verified versus two bacterial isolates (B1, B2). The results showed that percentage of degradation of the lube oil was in the range of 34% to 84% after 3 days of incubation. Moreover, the rheological study revealed that the prepared esters exhibited Newtonian rheological behaviours. Viscosity examination displayed that the esters based on ethylene glycol, such as (A), had the highest VI: 179 values when compared to those based on higher glycols. Viscosity and viscosity index results showed slight increase as the number of carbon atoms in the acid chain increases. At last, most of the synthesized esters possessed pour points ≤ - 32 °C: ≤ - 40 except in case of using higher acids like heptanoic acid and octanoic acid in preparation the pour point increases to - 9 °C and - 15 °C.
Collapse
Affiliation(s)
- Reham I El Shazly
- Department of Petroleum Applications, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - Huda S El-Sheshtawy
- Department of Biotechnology, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Nehal S Ahmed
- Department of Petroleum Applications, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Amal M Nassar
- Department of Petroleum Applications, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| |
Collapse
|
4
|
Alsaiari M, Ahmad M, Zafar M, Harraz FA, Algethami JS, Šljukić B, Santos DMF, Akhtar MS. Transformation of waste seed biomass of Cordia myxa into valuable bioenergy through membrane bioreactor using green nanoparticles of indium oxide. CHEMOSPHERE 2023; 314:137604. [PMID: 36574789 DOI: 10.1016/j.chemosphere.2022.137604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Depletion of non-renewable fuel has obliged researchers to seek out sustainable and environmentally friendly alternatives. Membranes have proven to be an effective technique in biofuel production for reaction, purification, and separation, with the ability to use both porous and non-porous membranes. It is demonstrated that a membrane-based sustainable and green production can result in a high degree of process intensification, whereas the recovery and repurposing of catalysts and alcohol are anticipated to increase the process economics. Therefore, in this study sustainable biodiesel was synthesized from inedible seed oil (37 wt%) of Cordia myxa using a membrane reactor. Transesterification was catalyzed by heterogenous nano-catalyst of indium oxide prepared with leaf extract of Boerhavia diffusa. Highest biodiesel yield of 95 wt% was achieved at methanol to oil molar ratio of 7:1, catalyst load 0.8 wt%, temperature 82.5 °C and time 180 min In2O3 nanoparticles exhibited reusability up to five successive transesterification rounds. The production of methyl esters was confirmed using Fourier-transform infrared spectroscopy and Nuclear Magnetic Resonance. The predominant fatty acid methyl ester detected in the biodiesel was 5, 8-octadecenoic acid. Biodiesel fuel qualities were determined to be comparable to worldwide ASTM D-6571 and EN-14214 standards. Finally, it was concluded that membrane technology can result in a highly intensified reaction process while efficient recovery of both nano catalysts and methanol increases the economics of transesterification and lead to sustainable production.
Collapse
Affiliation(s)
- Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia.
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87 Helwan, Cairo, 11421, Egypt
| | - Jari S Algethami
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia
| | - Biljana Šljukić
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Diogo M F Santos
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|