1
|
Zhang L, Ai T, Dai S, Xiao G, Xiong X, Zhang N, Si J, Wang G, Xue W, Xu J. Mechanisms of removing terdizolamide phosphate from water by the activation of potassium peroxymonosulfate with CeFe 2O 4 biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35966-8. [PMID: 39885072 DOI: 10.1007/s11356-025-35966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Terdizolamide phosphate (TZD), a second-generation oxazolidinone antibiotic with a long half-cycle, poses a potential threat to ecosystems and humans if present in water over an extended duration. Magnetic biochar (CF-biochar) loaded with CeFe2O4 was firstly synthesized by microwave ablation-anaerobic carbonization using corn straw as raw material and Ce(NO3)3 and Fe(NO3)3 as modifiers. These modifiers were used as activators for peroxymonosulfate (PMS) and adsorbents for removing TZD. The maximum adsorption capacity of CF-biochar was up to 2869.44 mg g-1, which was much higher than that of modified biochar. The CF-biochar/PMS system achieved 99.72% removal of TZD and accelerated the removal rate with good results. Results from quenching and electron spin resonance (ESR) tests showed that · O H andSO 4 · - played a major role in the oxidative degradation of TZD. Besides, they had a good removal effect on TZD among other co-existing anions. CF-biochar exhibited a smaller particle size, larger specific surface area, more abundant pore size, and high magnetic nature. The removal kinetics and removal isotherms were modeled to show that the adsorption of TZD by CF-biochar was a spontaneous, exothermic, physical multilayer adsorption process. Main driving force corresponded to electrostatic attraction and hydrophobic properties. Therefore, the CF-biochar/PMS system was an efficient, promising, and sustainable technology for removing TZD.
Collapse
Affiliation(s)
- Lei Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Tian Ai
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China.
| | - Shujuan Dai
- School of Mining Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Guoyong Xiao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Xiaolu Xiong
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Nan Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Jian Si
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Guanyue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Wanwan Xue
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Jing Xu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| |
Collapse
|
2
|
Liu T, Li CX, Chen X, Chen Y, Cui K, Wei Q. Magnetic MgFeO@BC Derived from Rice Husk as Peroxymonosulfate Activator for Sulfamethoxazole Degradation: Performance and Reaction Mechanism. Int J Mol Sci 2024; 25:11768. [PMID: 39519319 PMCID: PMC11546872 DOI: 10.3390/ijms252111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Heterogeneous Mg-Fe oxide/biochar (MgFeO@BC) nanocomposites were synthesized by a co-precipitation method and used as biochar-based catalysts to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. The optimal conditions for SMX degradation were examined as follows: pH 7.0, MgFeO@BC of 0.4 g/L, PMS concentration of 0.6 mM and SMX concentration of 10.0 mg/L at 25 ℃. In the MgFeO@BC/PMS system, the removal efficiency of SMX was 99.0% in water within 40 min under optimal conditions. In the MgFeO@BC/PMS system, the removal efficiencies of tetracycline (TC), cephalexin (CEX), ciprofloxacin (CIP), 4-chloro-3-methyl phenol (CMP) and SMX within 40 min are 95.3%, 98.4%, 98.2%, 97.5% and 99.0%, respectively. The radical quenching experiments and electron spin resonance (ESR) analysis suggested that both non-radical pathway and radical pathway advanced SMX degradation. SMX was oxidized by sulfate radicals (SO4•-), hydroxyl radicals (•OH) and singlet oxygen (1O2), and SO4•- acted as the main active species. MgFeO@BC exhibits a higher current density, and therefore, a higher electron migration rate and redox capacity. Due to the large number of available binding sites on the surface of MgFeO@BC and the low amount of ion leaching during the catalytic reaction, the system has good anti-interference ability and stability. Finally, the intermediates of SMX were detected.
Collapse
Affiliation(s)
- Tong Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.-X.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Chen-Xuan Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.-X.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Xing Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.-X.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.-X.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.-X.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Qiang Wei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Liu T, Li CX, Chen X, Chen Y, Cui K, Wei Q. Peroxymonosulfate Activation by Rice-Husk-Derived Biochar (RBC) for the Degradation of Sulfamethoxazole: The Key Role of Hydroxyl Groups. Int J Mol Sci 2024; 25:11582. [PMID: 39519134 PMCID: PMC11545899 DOI: 10.3390/ijms252111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 11/16/2024] Open
Abstract
In this work, rice-husk-derived biochar (RBC) was synthesized by using simple one-step pyrolysis strategies and served as catalysts to activate peroxymonosulfate (PMS) for degrading sulfamethoxazole (SMX). When the annealing temperature (T) = 800 °C, RBC800 exhibits the typical hardwood structure with several micropores and mesoporous. Furthermore, RBC800 obtains more defect sites than RBC600, RBC700, and RBC900. In the RBC800/PMS system, the removal rate of the SMX reached 92.0% under optimal conditions. The kinetic reaction rate constant (kobs) of the RBC800/PMS system was 0.009 min-1, which was about 1.50, 1.28, and 4.50 times that of the RBC600/PMS (kobs = 0.006 min-1), RBC700/PMS (kobs = 0.007 min-1), and RBC900/PMS (kobs = 0.002 min-1) systems, respectively. In the RBC800/PMS system, sulfate radical (SO4•-) is the main active species. Compared with other active sites, the hydroxyl group (C-OH) on the surface of RBC800 interacts more strongly with PMS, which is more likely to promote the stretching of the O-O bond of the PMS, thus breaking into the activated state and significantly reducing the activation energy required for reaction. The degradation intermediates of SMX were speculated, and the toxicity analysis was conducted. Generally, this work reveals in depth the interaction between reactive sites of biochar-based catalysts and PMS at the molecular level.
Collapse
Affiliation(s)
- Tong Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.-X.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Chen-Xuan Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.-X.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Xing Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.-X.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.-X.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.-X.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Qiang Wei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Adeel M, Cirillo C, Sarno M, Rizzo L. Urban wastewater disinfection by FeCl 3-activated biochar/peroxymonosulfate system: Escherichia coli inactivation and microplastics interference. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124607. [PMID: 39053802 DOI: 10.1016/j.envpol.2024.124607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Biochar coupled with peroxymonosulfate (PMS) to produce sulfate radicals and its application to urban wastewater disinfection has been rarely investigated and no information is available about microplastics (MPs) interference on the disinfection process. In this study, FeCl3-activated biochar (Fe-BC) was coupled to PMS to evaluate the inactivation of Escherichia coli (E. coli) in real secondary treated urban wastewater. Surface morphology of Fe-BC sample, characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), showed a rough texture with uniform distribution of iron particles over the entire surface area. E. coli inactivation improved (∼3.8 log units, detection limit = 1 CFU/100 mL) as Fe-BC concentration was decreased (from 1.0 g/L to 0.5 g/L), at a constant PMS dose (300 mg/L). Besides, removal efficiency of E. coli was negatively affected by the presence of small (30-50 μm) polyethylene MPs (PE MPs) (200 mg/L), which could be attributed to the adsorption of MPs on Fe-BC surface, according to SEM images of post-treated Fe-BC. The low disinfection efficiency of Fe-BC/PMS system in presence MPs could be due to blocking of Fe-BC sites for PMS activation and/or radicals scavenging during treatment. These results allowed to unveil the mechanisms of MPs interference on E. coli inactivation by Fe-BC/PMS, as well as the potential of this process to make the effluent in compliance with the stringent limit for agricultural reuse.
Collapse
Affiliation(s)
- Mister Adeel
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Claudia Cirillo
- Department of Physics "E.R. Caianiello" and Centre NANO_MATES, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Maria Sarno
- Department of Physics "E.R. Caianiello" and Centre NANO_MATES, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
5
|
Liu T, Li C, Chen X, Chen Y, Cui K, Wang D, Wei Q. Peroxymonosulfate Activation by Fe@N Co-Doped Biochar for the Degradation of Sulfamethoxazole: The Key Role of Pyrrolic N. Int J Mol Sci 2024; 25:10528. [PMID: 39408859 PMCID: PMC11477339 DOI: 10.3390/ijms251910528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
In this study, Fe, N co-doped biochar (Fe@N co-doped BC) was synthesized by the carbonization-pyrolysis method and used as a carbocatalyst to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. In the Fe@N co-doped BC/PMS system, the degradation efficiency of SMX (10.0 mg·L-1) was 90.2% within 40 min under optimal conditions. Radical quenching experiments and electron spin resonance (ESR) analysis suggested that sulfate radicals (SO4•-), hydroxyl radicals (•OH), and singlet oxygen (1O2) participated in the degradation process. After the reaction, the proportion of pyrrolic N decreased from 57.9% to 27.1%. Pyrrolic N served as an active site to break the inert carbon network structure and promote the generation of reactive oxygen species (ROS). In addition, pyrrolic N showed a stronger interaction with PMS and significantly reduced the activation energy required for the reaction (∆G = 23.54 kcal/mol). The utilization potentiality of Fe@N co-doped BC was systematically evaluated in terms of its reusability and selectivity to organics. Finally, the intermediates of SMX were also detected.
Collapse
Affiliation(s)
- Tong Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Chenxuan Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Xing Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Dejin Wang
- School of Resources and Environment, Anqing Normal University, Anqing 246011, China;
| | - Qiang Wei
- School of Resources and Environment, Anqing Normal University, Anqing 246011, China;
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Dung NT, Khiem TC, Thao NP, Phu NA, Son NT, Dat TQ, Phuong NT, Trang TT, Nhi BD, Thuy NT, Lin KYA, Huy NN. Enhancing catalytic activity of CuCoFe-layered double oxide towards peroxymonosulfate activation by coupling with biochar derived from durian peel for antibiotic degradation: The role of C=O in biochar and underlying mechanism of built-in electric field. CHEMOSPHERE 2024; 361:142452. [PMID: 38810804 DOI: 10.1016/j.chemosphere.2024.142452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
CuCoFe-LDO/BCD was successfully synthesized from CuCoFe-LDH and biochar derived from durian shell (BCD). Ciprofloxacin (CFX) degraded more than 95% mainly by O2•- and 1O2 in CuCoFe-LDO/BCD(2/1)/PMS system within 10 min with a rate constant of 0.255 min-1, which was 14.35 and 2.66 times higher than those in BCD/PMS and CuCoFe-LDO/PMS systems, respectively. The catalytic system exhibited good performance over a wide pH range (3-9) and high degradation efficiency of other antibiotics. Built-in electric field (BIEF) driven by large difference in the work function/Fermi level ratio between CuCoFe-LDO and BCD accelerated continuous electron transfer from CuCoFe-LDO to BCD to result in two different microenvironments with opposite charges at the interface, which enhanced PMS adsorption and activation via different directions. As a non-radical, 1O2 was mainly generated via PMS activation by C=O in BCD. The presence of C=O in BCD resulted in an increase in atomic charge of C in C=O and redistributed the charge density of other C atoms. As a result, strong adsorption of PMS at C atom in C=O and other C with a high positive charge was favorable for 1O2 generation, whereas an enhanced adsorption of PMS at negatively charged C accounted for the generation of •OH and SO4•-. After adsorption, electrons in C of BCD became deficient and were fulfilled with those transferred from CuCoFe-LDO driven by BIEF, which ensured the high catalytic activity of CuCoFe-LDO/BCD. O2•-, on the other hand, was generated via several pathways that involved in the transformation of •OH and SO4•- originated from PMS activation by the transition of metal species in CuCoFe-LDO and negatively charged C in BCD. This study proposed a new idea of fabricating a low-cost metal-LDH and biomass-derived catalyst with a strong synergistic effect induced by BIEF for enhancing PMS activation and antibiotic degradation.
Collapse
Affiliation(s)
- Nguyen Trung Dung
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Ta Cong Khiem
- Innovation and Development Center of Sustainable Agriculture and Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Nguyen Phuong Thao
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Nguyen Anh Phu
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Nguyen Truong Son
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Tran Quang Dat
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Nguyen Thu Phuong
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay, Hanoi, Viet Nam
| | - Tran Thi Trang
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay District, Hanoi, Viet Nam
| | - Bui Dinh Nhi
- Faculty of Chemical and Environmental Technology, Viet Tri University of Industry, 9 Tien Son St., Viet Tri City, Phu Tho Province, Viet Nam
| | - Nguyen Thi Thuy
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Kun-Yi Adrew Lin
- Innovation and Development Center of Sustainable Agriculture and Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Nguyen Nhat Huy
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
7
|
Liu Z, Shi X, Yan Z, Sun Z. Synergistic activation of peroxymonosulfate by 3D CoNiO 2/Co core-shell structure biochar catalyst for sulfamethoxazole degradation. BIORESOURCE TECHNOLOGY 2024; 406:130983. [PMID: 38880266 DOI: 10.1016/j.biortech.2024.130983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
In this study, a 3D CoNiO2/Co core-shell structure biochar catalyst derived from walnut shell was synthesized by hydrothermal and ion etching methods. The prepared BC@CoNi-600 catalyst exhibited exceptional peroxymonosulfate (PMS) activation. The system achieved 100 % degradation of sulfamethoxazole (SMX). The reactive oxygen species in the BC@CoNi-600/PMS system included SO4-, OH, and O2-. Density functional theory calculations explored the synergistic effects between nickel-cobalt bimetallic and carbon matrix during PMS activation. The unique 3D core-shell structure of BC@CoNi-600 features an outer nickel-cobalt bimetallic layer with exceptional PMS adsorption capacity, while protecting the zero-valence Co of the inner layer from oxidation. Based on the experimental-data, machine learning modeling mechanism, and information theory, a nonlinear modeling method was proposed. This study utilizes a machine learning approach to investigate the degradation of SMX in complex aquatic environments. This study synthesized a novel biochar-based catalyst for activated PMS and provided unique insights into its environmental applications.
Collapse
Affiliation(s)
- Zhibin Liu
- Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Xuelin Shi
- Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Zihao Yan
- Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Zhirong Sun
- Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
8
|
de Menezes FL, Freire TM, do Nascimento CPG, Fechine LMUD, da Costa VM, Freire RM, Longhinotti E, do Nascimento JHO, Denardin JC, Fechine PBA. FeCo@hydrochar nanocomposites as efficient peroxymonosulfate activator for organic pollutant degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44965-44982. [PMID: 38954345 DOI: 10.1007/s11356-024-34145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Sulfate radical-based advanced oxidation processes (SR-AOPs) are renowned for their exceptional capacity to degrade refractory organic pollutants due to their wide applicability, cost-effectiveness, and swift mineralization and oxidation rates. The primary sources of radicals in AOPs are persulfate (PS) and peroxymonosulfate (PMS) ions, sparking significant interest in their mechanistic and catalytic aspects. To develop a novel nanocatalyst for SR-AOPs, particularly for PMS activation, we synthesized carbon-coated FeCo nanoparticles (NPs) using solvothermal methods based on the polyol approach. Various synthesis conditions were investigated, and the NPs were thoroughly characterized regarding their structure, morphology, magnetic properties, and catalytic efficiency. The FeCo phase was primarily obtained at [OH-] / [Metal] = 26 and [Fe] / [Co] = 2 ratios. Moreover, as the [Fe]/[Co] ratio increased, the degree of xylose carbonization to form a carbon coating (hydrochar) on the NPs also increased. The NPs exhibited a spherical morphology with agglomerates of varying sizes. Vibrating-sample magnetometer analysis (VSM) indicated that a higher proportion of iron resulted in NPs with higher saturation magnetization (up to 167.8 emu g-1), attributed to a larger proportion of FeCo bcc phase in the nanocomposite. The best catalytic conditions for degrading 100 ppm Rhodamine B (RhB) included 0.05 g L-1 of NPs, 2 mM PMS, pH 7.0, and a 20-min reaction at 25 °C. Notably, singlet oxygen was the predominant specie formed in the experiments in the SR-AOP, followed by sulfate and hydroxyl radicals. The catalyst could be reused for up to five cycles, retaining over 98% RhB degradation, albeit with increased metal leaching. Even in the first use, dissolved Fe and Co concentrations were 0.8 ± 0.3 and 4.0 ± 0.5 mg L-1, respectively. The FeCo catalyst proved to be effective in dye degradation and offers the potential for further refinement to minimize Co2+ leaching.
Collapse
Affiliation(s)
- Fernando Lima de Menezes
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará, 60455-970, Brazil
| | - Tiago Melo Freire
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará, 60455-970, Brazil
| | - Carlos Pedro Gonçalves do Nascimento
- Materials Modification and Analysis Methods Laboratory (LABMA), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará, 60455-970, Brazil
| | - Lillian Maria Uchôa Dutra Fechine
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará, 60455-970, Brazil
| | - Victor Moreira da Costa
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará, 60455-970, Brazil
| | - Rafael Melo Freire
- Facultad de Ingeniería y Arquitectura, Universidad Central de Chile, Santiago, Chile
| | - Elisane Longhinotti
- Materials Modification and Analysis Methods Laboratory (LABMA), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará, 60455-970, Brazil
| | - José Heriberto Oliveira do Nascimento
- Research Group for Innovation in Micro- and Nanotechnologies - Centre of Technology, Federal University of Rio Grande do Norte, Campus Lagoa Nova, Natal, Rio Grande Do Norte, 59078-900, Brazil
| | | | - Pierre Basílio Almeida Fechine
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará, 60455-970, Brazil.
| |
Collapse
|
9
|
Gaber MM, Samy M, Shokry H. Effective degradation of synthetic micropollutants and real textile wastewater via a visible light-activated persulfate system using novel spinach leaf-derived biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25163-25181. [PMID: 38462567 PMCID: PMC11636759 DOI: 10.1007/s11356-024-32829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
A novel biochar (BC), derived from spinach leaves, was utilized as an activator for persulfate (PS) in the degradation of methylene blue (MB) dye under visible light conditions. Thorough analyses were conducted to characterize the physical and chemical properties of the biochar. The (BC + light)/PS system exhibited superior MB degradation efficiency at 83.36%, surpassing the performance of (BC + light)/hydrogen peroxide and (BC + light)/peroxymonosulfate systems. The optimal conditions were ascertained through the implementation of response surface methodology. Moreover, the (BC + light)/PS system demonstrated notable degradation ratios of 90.82%, 81.88%, and 84.82% for bromothymol blue dye, paracetamol, and chlorpyrifos, respectively, under optimal conditions. The predominant reactive species responsible for MB degradation were identified as sulfate radicals. Notably, the proposed system consistently achieved high removal efficiencies of 99.02%, 96.97%, 94.94%, 92%, and 90.35% for MB in five consecutive runs. The applicability of the suggested system was further validated through its effectiveness in treating real textile wastewater, exhibiting a substantial MB removal efficiency of 98.31% and dissolved organic carbon mineralization of 87.49%.
Collapse
Affiliation(s)
- Mohamed Mohamed Gaber
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City 21934, Alexandria, Egypt.
| | - Mahmoud Samy
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Hassan Shokry
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City 21934, Alexandria, Egypt
| |
Collapse
|
10
|
Xu W, Liang F, Liu Z, Li S, Li J, Jiang X, Pillai SC, Wu X, Wang H. Rational design of animal-derived biochar composite for peroxymonosulfate activation: Understanding the mechanism of singlet oxygen-mediated degradation of sulfamethoxazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122807. [PMID: 37907192 DOI: 10.1016/j.envpol.2023.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Animal-derived biochar are identified as a promising candidate for peroxymonosulfate (PMS) activation due to the abundant aromatics and oxygen-containing functional groups. The current investigation focuses on pig carcass-derived biochar (800-BA-PBC) by ball milling-assisted alkali activation. The results showed that 800-BA-PBC could effectively activate PMS and degraded 94.2% sulfamethoxazole (SMX, 10 mg/L) within 40 min. The reaction rate constant was found to be 47 times higher than that observed with PBC. The enhanced catalytic activity is mainly attributed to the increase in specific surface area, the increase content of oxygen-containing groups on the surface, and the formation of graphitic nitrogen. The quenching tests and electron paramagnetic resonance (EPR) analysis demonstrated that 1O2 is the main active species in the degradation of SMX. Moreover, the 800-BA-PBC + PMS system can maintain excellent degradation rate under different water quality, wide pH range, and the presence of different anions. The degradation pathways of SMX in the optimal system are also evaluated through intermediate identification and DFT calculation. These results indicate that the catalytic system has high anti-interference ability and practical application potential. This investigation provides new insight into the rational design of animal-derived biochar and develops a low-cost technology for the treatment of antibiotic containing wastewater.
Collapse
Affiliation(s)
- Weicheng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Fawen Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, PR China
| | - Shuai Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Jiesen Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China.
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland
| | - Xiaolian Wu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| |
Collapse
|
11
|
Che M, Shan C, Huang R, Cui M, Qi W, Klemeš JJ, Su R. A rapid removal of Phaeocystis globosa from seawater by peroxymonosulfate enhanced cellulose nanocrystals coagulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115318. [PMID: 37531927 DOI: 10.1016/j.ecoenv.2023.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Cellulose nanocrystals (CNC) are recognized as promising bio-based flocculants for controlling harmful algal blooms (HABs). Due to the charge shielding effect in seawater and the strong mobility of algae cells, CNC can't effectively remove Phaeocystis globosa from seawater. To solve this problem, peroxymonosulfate (PMS) was used to enhance the coagulation of CNC for rapidly removal of P. globosa. The results showed that 91.7% of Chl-a, 95.2% of OD680, and 97.2% of turbidity of P. globosa were reduced within 3 h with the use of 200 mg L-1 of CNC and 20 mg L-1 of PMS. The removal of P. globosa was consisted of inactivation and flocculation. Notably, electron paramagnetic resonance (EPR) spectrums and quenching experiments revealed that the inactivation of P. globosa was dominated by PMS oxidation and 1O2. Subsequently, CNC entrained inactivated algal cells to settle to the bottom to achieve efficient removal of P. globosa. The content of total organic carbon (TOC) and chemical oxygen demand (COD) decreased significantly, indicating that a low emission risk of algal cell effluent was produced in the CNC-PMS system. In view of the excellent performance on P. globosa removal, we believe that the CNC-PMS system has great potential for HABs treatments.
Collapse
Affiliation(s)
- Mingda Che
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Cancan Shan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Renliang Huang
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, PR China; Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, PR China.
| |
Collapse
|
12
|
Wang JQ, He ZC, Peng W, Han TH, Mei Q, Wang QZ, Ding F. Dissecting the Enantioselective Neurotoxicity of Isocarbophos: Chiral Insight from Cellular, Molecular, and Computational Investigations. Chem Res Toxicol 2023; 36:535-551. [PMID: 36799861 DOI: 10.1021/acs.chemrestox.2c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Chiral organophosphorus pollutants are found abundantly in the environment, but the neurotoxicity risks of these asymmetric chemicals to human health have not been fully assessed. Using cellular, molecular, and computational toxicology methods, this story is to explore the static and dynamic toxic actions and its stereoselective differences of chiral isocarbophos toward SH-SY5Y nerve cells mediated by acetylcholinesterase (AChE) and further dissect the microscopic basis of enantioselective neurotoxicity. Cell-based assays indicate that chiral isocarbophos exhibits strong enantioselectivity in the inhibition of the survival rates of SH-SY5Y cells and the intracellular AChE activity, and the cytotoxicity of (S)-isocarbophos is significantly greater than that of (R)-isocarbophos. The inhibitory effects of isocarbophos enantiomers on the intracellular AChE activity are dose-dependent, and the half-maximal inhibitory concentrations (IC50) of (R)-/(S)-isocarbophos are 6.179/1.753 μM, respectively. Molecular experiments explain the results of cellular assays, namely, the stereoselective toxic actions of isocarbophos enantiomers on SH-SY5Y cells are stemmed from the differences in bioaffinities between isocarbophos enantiomers and neuronal AChE. In the meantime, the modes of neurotoxic actions display that the key amino acid residues formed strong noncovalent interactions are obviously different, which are related closely to the molecular structural rigidity of chiral isocarbophos and the conformational dynamics and flexibility of the substrate binding domain in neuronal AChE. Still, we observed that the stable "sandwich-type π-π stacking" fashioned between isocarbophos enantiomers and aromatic Trp-86 and Tyr-337 residues is crucial, which notably reduces the van der Waals' contribution (ΔGvdW) in the AChE-(S)-isocarbophos complexes and induces the disparities in free energies during the enantioselective neurotoxic conjugations and thus elucidating that (S)-isocarbophos mediated by synaptic AChE has a strong toxic effect on SH-SY5Y neuronal cells. Clearly, this effort can provide experimental insights for evaluating the neurotoxicity risks of human exposure to chiral organophosphates from macroscopic to microscopic levels.
Collapse
Affiliation(s)
- Jia-Qi Wang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Zhi-Cong He
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tian-Hao Han
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- School of Environment, Nanjing University, Nanjing 210023, China
| | - Qiong Mei
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
- School of Land Engineering, Chang'an University, Xi'an 710054, China
| | - Qi-Zhao Wang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Fei Ding
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| |
Collapse
|