1
|
Jiang Y, Zhou C, Khan A, Zhang X, Mamtimin T, Fan J, Hou X, Liu P, Han H, Li X. Environmental risks of mask wastes binding pollutants: Phytotoxicity, microbial community, nitrogen and carbon cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135058. [PMID: 38986403 DOI: 10.1016/j.jhazmat.2024.135058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The increasing contamination of mask wastes presents a significant global challenge to ecological health. However, there is a lack of comprehensive understanding regarding the environmental risks that mask wastes pose to soil. In this study, a total of 12 mask wastes were collected from landfills. Mask wastes exhibited negligible morphological changes, and bound eight metals and four types of organic pollutants. Masks combined with pollutants inhibited the growth of alfalfa and Elymus nutans, reducing underground biomass by 84.6 %. Mask wastes decreased the Chao1 index and the relative abundances (RAs) of functional bacteria (Micrococcales, Gemmatimonadales, and Sphingomonadales). Metagenomic analysis showed that mask wastes diminished the RAs of functional genes associated with nitrification (amoABC and HAO), denitrification (nirKS and nosZ), glycolysis (gap2), and TCA cycle (aclAB and mdh), thereby inhibiting the nitrogen transformation and ATP production. Furthermore, some pathogenic viruses (Herpesviridae and Tunggulvirus) were also found on the mask wastes. Structural equation models demonstrated that mask wastes restrained soil enzyme activities, ultimately affecting nitrogen and carbon cycles. Collectively, these evidences indicate that mask wastes contribute to soil health and metabolic function disturbances. This study offers a new perspective on the potential environmental risks associated with the improper disposal of masks.
Collapse
Affiliation(s)
- Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Chunxiu Zhou
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xueyao Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoxiao Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
2
|
Dela Cruz J, Lammel D, Kim SW, Bi M, Rillig M. COVID-19 pandemic-related drugs and microplastics from mask fibers jointly affect soil functions and processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50630-50641. [PMID: 39102138 PMCID: PMC11364614 DOI: 10.1007/s11356-024-34587-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
The COVID-19 pandemic has led to an unprecedented increase in pharmaceutical drug consumption and plastic waste disposal from personal protective equipment. Most drugs consumed during the COVID-19 pandemic were used to treat other human and animal diseases. Hence, their nearly ubiquitous presence in the soil and the sharp increase in the last 3 years led us to investigate their potential impact on the environment. Similarly, the compulsory use of face masks has led to an enormous amount of plastic waste. Our study aims to investigate the combined effects of COVID-19 drugs and microplastics from FFP2 face masks on important soil processes using soil microcosm experiments. We used three null models (additive, multiplicative, and dominative models) to indicate potential interactions among different pharmaceutical drugs and mask MP. We found that the multiple-factor treatments tend to affect soil respiration and FDA hydrolysis more strongly than the individual treatments. We also found that mask microplastics when combined with pharmaceuticals caused greater negative effects on soil. Additionally, null model predictions show that combinations of high concentrations of pharmaceuticals and mask MP have antagonistic interactions on soil enzyme activities, while the joint effects of low concentrations of pharmaceuticals (with or without MP) on soil enzyme activities are mostly explained by null model predictions. Our study underscores the need for more attention on the environmental side effects of pharmaceutical contamination and their potential interactions with other anthropogenic global change factors.
Collapse
Affiliation(s)
- Jeane Dela Cruz
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Daniel Lammel
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Shin Woong Kim
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Mohan Bi
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Matthias Rillig
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| |
Collapse
|
3
|
Christudoss AC, Kundu R, Dimkpa CO, Mukherjee A. Time dependent release of microplastics from disposable face masks poses cyto-genotoxic risks in Allium cepa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116542. [PMID: 38850698 DOI: 10.1016/j.ecoenv.2024.116542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/20/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
The use of disposable face masks (DFMs) increased during the COVID-19 pandemic and has become a threat to the environment due to the release of microplastics (MPs). Although many reports have characterized and explored the release of MPs from DFMs and their effects in aquatic ecosystems, there is a lack of investigation into the effects in terrestrial plants. This report aims to fill this research gap by characterizing whole mask leachates (WMLs) collected at different time points and examining their toxicity on Allium cepa, a terrestrial model plant. Various analytical techniques including FE-SEM, FT-IR, and Raman spectroscopy were used to identify MPs in WMLs. The MPs are composed of polypropylene mostly and the concentration of smaller-sized MPs increased with leachate release time. The WMLs showed a MP concentration-dependent cytogenotoxic effect (72 %, 50 %, and 31 %, on 1, 5, and 11-day WMLs, respectively) on A. cepa root cells due to elevated oxidative stress (19 %, 45 %, and 70 %, on 1, 5, and 11-day WMLs, respectively). Heavy metal content of the WMLs was negligible and, thus, not a significant contributor to toxicity in the plant. Overall, this report highlights the fate of DFMs in the environment and their biological impacts in a model plant.
Collapse
Affiliation(s)
| | - Rita Kundu
- Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, India
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, United States
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Greenhalgh T, MacIntyre CR, Baker MG, Bhattacharjee S, Chughtai AA, Fisman D, Kunasekaran M, Kvalsvig A, Lupton D, Oliver M, Tawfiq E, Ungrin M, Vipond J. Masks and respirators for prevention of respiratory infections: a state of the science review. Clin Microbiol Rev 2024; 37:e0012423. [PMID: 38775460 PMCID: PMC11326136 DOI: 10.1128/cmr.00124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYThis narrative review and meta-analysis summarizes a broad evidence base on the benefits-and also the practicalities, disbenefits, harms and personal, sociocultural and environmental impacts-of masks and masking. Our synthesis of evidence from over 100 published reviews and selected primary studies, including re-analyzing contested meta-analyses of key clinical trials, produced seven key findings. First, there is strong and consistent evidence for airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory pathogens. Second, masks are, if correctly and consistently worn, effective in reducing transmission of respiratory diseases and show a dose-response effect. Third, respirators are significantly more effective than medical or cloth masks. Fourth, mask mandates are, overall, effective in reducing community transmission of respiratory pathogens. Fifth, masks are important sociocultural symbols; non-adherence to masking is sometimes linked to political and ideological beliefs and to widely circulated mis- or disinformation. Sixth, while there is much evidence that masks are not generally harmful to the general population, masking may be relatively contraindicated in individuals with certain medical conditions, who may require exemption. Furthermore, certain groups (notably D/deaf people) are disadvantaged when others are masked. Finally, there are risks to the environment from single-use masks and respirators. We propose an agenda for future research, including improved characterization of the situations in which masking should be recommended or mandated; attention to comfort and acceptability; generalized and disability-focused communication support in settings where masks are worn; and development and testing of novel materials and designs for improved filtration, breathability, and environmental impact.
Collapse
Affiliation(s)
- Trisha Greenhalgh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - C Raina MacIntyre
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Shovon Bhattacharjee
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| | - Abrar A Chughtai
- School of Population Health, University of New South Wales, Sydney, Australia
| | - David Fisman
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mohana Kunasekaran
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Amanda Kvalsvig
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Deborah Lupton
- Centre for Social Research in Health and Social Policy Research Centre, Faculty of Arts, Design and Architecture, University of New South Wales, Sydney, Australia
| | - Matt Oliver
- Professional Standards Advocate, Edmonton, Canada
| | - Essa Tawfiq
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Mark Ungrin
- Faculty of Veterinary Medicine; Department of Biomedical Engineering, Schulich School of Engineering; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joe Vipond
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Bogush AA, Kourtchev I. Disposable surgical/medical face masks and filtering face pieces: Source of microplastics and chemical additives in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123792. [PMID: 38518974 DOI: 10.1016/j.envpol.2024.123792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The production and consumption of disposable face masks (DFMs) increased intensely during the COVID-19 pandemic, leading to a high amount of them being found in the terrestrial and aquatic environment. The main goal of this research study is to conduct a comparative evaluation of the water-leachability of microplastics (MPs) and chemical additives from various types of disposable surgical/medical face masks (MM DFMs) and filtering face pieces (FFPs). Fourier-Transform Infrared Spectroscopy was used for MPs analysis. Liquid Chromatography/High Resolution Mass Spectrometry was used to analyse analytes presented in the water-leachates of DFMs. FFPs released 3-4 times more microplastic particles compared to MM DFMs. The release of MPs into water from all tested DFMs without mechanical stress suggests potential MP contamination originating from the DFM production process. Our study for the first time identified bisphenol B (0.25-0.42 μg/L) and 1,4-bis(2-ethylhexyl) sulfosuccinate (163.9-115.0 μg/L) as leachables from MM DFMs. MPs in the water-leachates vary in size, with predominant particles <100 μm, and the release order from DFMs is MMIIR > MMII > FFP3>FFP2>MMI. The main type of microplastics identified in the water leachates of the investigated face masks was polypropylene, accounting for 93-97% for MM DFMs and 82-83% for FFPs. Other polymers such as polyethylene, polycarbonate, polyester/polyethylene terephthalate, polyamide/Nylon, polyvinylchloride, and ethylene-propylene copolymer were also identified, but in smaller amounts. FFPs released a wider variety and a higher percentage (17-18%) of other polymers compared to MM DFMs (3-7%). Fragments and fibres were identified in all water-leachate samples, and fragments, particularly debris of polypropylene fibres, were the most common MP morphotype. The findings in this study are important in contributing additional data to develop science-based policy recommendations on the health and environmental impacts of MPs and associated chemical additives originated from DFMs.
Collapse
Affiliation(s)
- Anna A Bogush
- Research Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on Dunsmore, CV8 3LG, United Kingdom.
| | - Ivan Kourtchev
- Research Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on Dunsmore, CV8 3LG, United Kingdom
| |
Collapse
|
6
|
Zhao X, Gao P, Zhao Z, Wu Y, Sun H, Liu C. Microplastics release from face masks: Characteristics, influential factors, and potential risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171090. [PMID: 38387585 DOI: 10.1016/j.scitotenv.2024.171090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Since the COVID-19 pandemic, face masks have been used popularly and disposed of improperly, leading to the generation of a large amount of microplastics. The objective of this review is to provide a comprehensive insight into the characteristics of mask-derived microplastics, the influential factors of microplastics release, and the potential risks of these microplastics to the environment and organisms. Mask-derived microplastics were predominantly transparent fibers, with a length of <1 mm. The release of microplastics from masks is mainly influenced by mask types, use habits, and weathering conditions. Under the same conditions, surgical masks release more microplastics than other types of masks. Long-term wearing of masks and the disinfection for reuse can promote the release of microplastics. Environmental media, UV irradiation, temperature, pH value, and mechanical shear can also influence the microplastics release. The risks of mask-derived microplastics to human health via inhalation cannot be neglected. Future studies should pay more attention to the release of microplastics from the masks with alternative materials and under more weathering conditions.
Collapse
Affiliation(s)
- Xu Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Panpan Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ziqing Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinghong Wu
- Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunguang Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Cheng J, Wang P, Ghiglione JF, Liu L, Cai Z, Zhou J, Zhu X. Bacterial pathogens associated with the plastisphere of surgical face masks and their dispersion potential in the coastal marine environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132741. [PMID: 37827107 DOI: 10.1016/j.jhazmat.2023.132741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Huge numbers of face masks (FMs) were discharged into the ocean during the coronavirus pandemic. These polymer-based artificial surfaces can support the growth of specific bacterial assemblages, pathogens being of particular concern. However, the potential risks from FM-associated pathogens in the marine environment remain poorly understood. Here, FMs were deployed in coastal seawater for two months. PacBio circular consensus sequencing of the full-length 16S rRNA was used for pathogen identification, providing enhanced taxonomic resolution. Selective enrichment of putative pathogens (e.g., Ralstonia pickettii) was found on FMs, which provided a new niche for these pathogens rarely detected in the surrounding seawater or the stone controls. The total relative abundance of the putative pathogens in FMs was higher than in seawater but lower than in the stone controls. FM exposure during the two months resulted in 3% weight loss and the release of considerable amounts of microfibers. The ecological assembly process of the putative FM-associated pathogens was less impacted by the dispersal limitation, indicating that FM-derived microplastics can serve as vectors of most pathogens for their regional transport. Our results indicate a possible ecological risk of FMs for marine organisms or humans in the coastal and potentially in the open ocean.
Collapse
Affiliation(s)
- Jingguang Cheng
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Pu Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jean-François Ghiglione
- CNRS, Sorbonne Université, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur mer 66650, France
| | - Lu Liu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhonghua Cai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jin Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; College of Ecology and Environment, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
8
|
Basini G, Grolli S, Bertini S, Bussolati S, Berni M, Berni P, Ramoni R, Scaltriti E, Quintavalla F, Grasselli F. Nanoplastics induced oxidative stress and VEGF production in aortic endothelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104294. [PMID: 37838301 DOI: 10.1016/j.etap.2023.104294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Plastic is an important environmental issue and a more critical aspect concerns plastic fragments, mainly in term of nanoplastics (NPs). We demonstrated that NPs interfere with reproductive and adipose stromal cells. Since several research underlined an increased cardiovascular risk due to NPs, present study was undertaken to investigate their effect on aortic endothelial cells (AOC). We explored the specificity of their interaction with endothelial cells, quantifying their load in treated cells. Then, NPs effect was assessed on cell growth, generation of free radicals and antioxidant defence. Our data demonstrate that NPs colocalize with AOC. We found a significant (p < 0.01) increase both in metabolic activity and Vascular Endothelial Growth Factor (VEGF) production (p < 0.01). Redox status appeared to be disrupted (p < 0.05) by NPs. Taken together, the normal function of cultured AOC appeared negatively affected by AOC. Since NPs have been detected in blood, our present data appear of particular interest.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy.
| | - Stefano Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Simone Bertini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Melissa Berni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Strada dei Mercati 13a, 43126 Parma, Italy
| | - Priscilla Berni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Roberto Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Strada dei Mercati 13a, 43126 Parma, Italy
| | - Fausto Quintavalla
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Francesca Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| |
Collapse
|
9
|
Reeves A, Shaikh WA, Chakraborty S, Chaudhuri P, Biswas JK, Maity JP. Potential transmission of SARS-CoV-2 through microplastics in sewage: A wastewater-based epidemiological review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122171. [PMID: 37437759 DOI: 10.1016/j.envpol.2023.122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
In light of the current COVID-19 pandemic caused by the virus SARS-CoV-2, there is an urgent need to identify and investigate the various pathways of transmission. In addition to contact and aerosol transmission of the virus, this review investigated the possibility of its transmission via microplastics found in sewage. Wastewater-based epidemiological studies on the virus have confirmed its presence and persistence in both influent sewage as well as treated ones. The hypothesis behind the study is that the huge amount of microplastics, especially Polyvinyl Chloride and Polyethylene particles released into the open waters from sewage can become a good substrate and vector for microbes, especially Polyvinyl Chloride and Polyethylene particles, imparting stability to microbes and aiding the "plastisphere" formation. A bibliometric analysis highlights the negligence of research toward plastispheres and their presence in sewage. The ubiquity of microplastics and their release along with the virus into the open waters increases the risk of viral plastispheres. These plastispheres may be ingested by aquatic organisms facilitating reverse zoonosis and the commercial organisms already reported with accumulating microplastics through the food chain poses a risk to human populations as well. Reliance of high population density areas on open waters served by untreated sewage in economically less developed countries might bring back viral transmission.
Collapse
Affiliation(s)
- Arijit Reeves
- Department of Environmental Science, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Wasim Akram Shaikh
- Department of Basic Sciences, School of Science and Technology, The Neotia University, Sarisha, South 24 Parganas, West Bengal, 743368, India
| | - Sukalyan Chakraborty
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Jharkhand, 835215, India.
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Jyoti Prakash Maity
- Environmental Science Laboratory, Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
10
|
Dey S, Samanta P, Dutta D, Kundu D, Ghosh AR, Kumar S. Face masks: a COVID-19 protector or environmental contaminant? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93363-93387. [PMID: 37548785 DOI: 10.1007/s11356-023-29063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Face masks, a prime component of personal protective equipment (PPE) items, have become an integral part of human beings to survive under the ongoing COVID-19 pandemic situation. The global population requires an estimated 130 billion face masks and 64 billion gloves/month, while the COVID-19 pandemic has led to the daily disposal of approximately 3.5 billion single-use face masks, resulting in a staggering 14,245,230.63 kg of face mask waste. The improper disposal of face mask wastes followed by its mismanagement is a challenge to the scientists as the wastes create pollution leading to environmental degradation, especially plastic pollution (macro/meso/micro/nano). Each year, an estimated 0.15-0.39 million tons of COVID-19 face mask waste, along with 173,000 microfibers released daily from discarded surgical masks, could enter the marine environment, while used masks have a significantly higher microplastic release capacity (1246.62 ± 403.50 particles/piece) compared to new masks (183.00 ± 78.42 particles/piece). Surgical face masks emit around 59 g CO2-eq greenhouse gas emissions per single use, cloth face masks emit approximately 60 g CO2-eq/single mask, and inhaling or ingesting microplastics (MPs) caused adverse health problems including chronic inflammation, granulomas or fibrosis, DNA damage, cellular damage, oxidative stress, and cytokine secretion. The present review critically addresses the role of face masks in reducing COVID-19 infections, their distribution pattern in diverse environments, the volume of waste produced, degradation in the natural environment, and adverse impacts on different environmental segments, and proposes sustainable remediation options to tackle environmental challenges posed by disposable COVID-19 face masks.
Collapse
Affiliation(s)
- Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan, 713 104, West Bengal, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, 735 210, West Bengal, India
| | - Deblina Dutta
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Debajyoti Kundu
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, Burdwan, 713 104, West Bengal, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| |
Collapse
|
11
|
Cubas ALV, Moecke EHS, Provin AP, Dutra ARA, Machado MM, Gouveia IC. The Impacts of Plastic Waste from Personal Protective Equipment Used during the COVID-19 Pandemic. Polymers (Basel) 2023; 15:3151. [PMID: 37571045 PMCID: PMC10421242 DOI: 10.3390/polym15153151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
The period from 2019 to 2022 has been defined by the COVID-19 pandemic, resulting in an unprecedented demand for and use of Personal Protective Equipment (PPE). However, the disposal of PPE without considering its environmental impact and proper waste management practices has become a growing concern. The increased demand for PPE during the pandemic and associated waste management practices have been analyzed. Additionally, the discussion around treating these residues and exploring more environmentally friendly alternatives, such as biodegradable or reusable PPE, is crucial. The extensive use of predominantly non-degradable plastics in PPE has led to their accumulation in landfills, with potential consequences for marine environments through the formation of microplastics. Therefore, this article seeks to establish a connection between these issues and the Sustainable Development Goals, emphasizing the importance of efficient management aligned with sustainable development objectives to address these emerging challenges and ensure a more sustainable future.
Collapse
Affiliation(s)
- Anelise Leal Vieira Cubas
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 88137-270, Brazil; (E.H.S.M.); (A.P.P.); (A.R.A.D.)
| | - Elisa Helena Siegel Moecke
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 88137-270, Brazil; (E.H.S.M.); (A.P.P.); (A.R.A.D.)
| | - Ana Paula Provin
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 88137-270, Brazil; (E.H.S.M.); (A.P.P.); (A.R.A.D.)
| | - Ana Regina Aguiar Dutra
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 88137-270, Brazil; (E.H.S.M.); (A.P.P.); (A.R.A.D.)
| | - Marina Medeiros Machado
- Environmental Engineering, Federal University of Ouro Preto (UFOP), Ouro Preto 35402-163, Brazil;
| | - Isabel C. Gouveia
- FibEnTech R&D—Fiber Materials and Environmental Technologies, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal;
| |
Collapse
|
12
|
Sahoo S, Rathod W, Vardikar H, Biswal M, Mohanty S, Nayak SK. Biomedical waste plastic: bacteria, disinfection and recycling technologies-a comprehensive review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 21:1-18. [PMID: 37360566 PMCID: PMC10189688 DOI: 10.1007/s13762-023-04975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023]
Abstract
Plastic recycling reduces the wastage of potentially useful materials as well as the consumption of virgin materials, thereby lowering the energy consumption, air pollution by incineration, soil and water pollution by landfilling. Plastics used in the biomedical sector have played a significant role. Reducing the transmission of the virus while protecting the human life in particular the frontline workers. Enormous volumes of plastics in biomedical waste have been observed during the outbreak of the pandemic COVID-19. This has resulted from the extensive use of personal protective equipment such as masks, gloves, face shields, bottles, sanitizers, gowns, and other medical plastics which has created challenges to the existing waste management system in the developing countries. The current review focuses on the biomedical waste and its classification, disinfection, and recycling technology of different types of plastics waste generated in the sector and their corresponding approaches toward end-of-life option and value addition. This review provides a broader overview of the process to reduce the volume of plastics from biomedical waste directly entering the landfill while providing a knowledge step toward the conversion of "waste" to "wealth." An average of 25% of the recyclable plastics are present in biomedical waste. All the processes discussed in this article accounts for cleaner techniques and a sustainable approach to the treatment of biomedical waste. Graphical abstract
Collapse
Affiliation(s)
- S. Sahoo
- Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemical Engineering and Technology, Bhubaneswar, Odisha 751024 India
- Ravenshaw University, Cuttack, Odisha 753003 India
| | - W. Rathod
- Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemical Engineering and Technology, Bhubaneswar, Odisha 751024 India
| | - H. Vardikar
- Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemical Engineering and Technology, Bhubaneswar, Odisha 751024 India
| | - M. Biswal
- Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemical Engineering and Technology, Bhubaneswar, Odisha 751024 India
| | - S. Mohanty
- Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemical Engineering and Technology, Bhubaneswar, Odisha 751024 India
| | - S. K. Nayak
- Ravenshaw University, Cuttack, Odisha 753003 India
| |
Collapse
|
13
|
Kibria MG, Masuk NI, Safayet R, Nguyen HQ, Mourshed M. Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2023; 17:20. [PMID: 36711426 PMCID: PMC9857911 DOI: 10.1007/s41742-023-00507-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 05/20/2023]
Abstract
The present world is now facing the challenge of proper management and resource recovery of the enormous amount of plastic waste. Lack of technical skills for managing hazardous waste, insufficient infrastructure development for recycling and recovery, and above all, lack of awareness of the rules and regulations are the key factors behind this massive pile of plastic waste. The severity of plastic pollution exerts an adverse effect on the environment and total ecosystem. In this study, a comprehensive analysis of plastic waste generation, as well as its effect on the human being and ecological system, is discussed in terms of source identification with respect to developed and developing countries. A detailed review of the existing waste to energy and product conversion strategies is presented in this study. Moreover, this study sheds light on sustainable waste management procedures and identifies the key challenges to adopting effective measures to minimise the negative impact of plastic waste.
Collapse
Affiliation(s)
- Md. Golam Kibria
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology (RUET), Rajshahi, 6204 Bangladesh
| | - Nahid Imtiaz Masuk
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology (RUET), Rajshahi, 6204 Bangladesh
| | - Rafat Safayet
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology (RUET), Rajshahi, 6204 Bangladesh
| | - Huy Quoc Nguyen
- Faculty of Heat and Refrigeration Engineering, The University of Danang—University of Science and Technology, Danang, 550000 Vietnam
| | - Monjur Mourshed
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology (RUET), Rajshahi, 6204 Bangladesh
- Mechanical and Automotive Engineering, School of Engineering, RMIT University, Bundoora, 3083 Australia
| |
Collapse
|