1
|
Rajabi H, Jafari SM. Synthesis and characterization of three-dimensional graphene oxide-chitosan/ glutaraldehyde nanocomposites: Towards adsorption of crocin from saffron. Int J Biol Macromol 2024; 281:136672. [PMID: 39426767 DOI: 10.1016/j.ijbiomac.2024.136672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Despite the unique properties of graphene oxide (GO) as a green adsorbent, its low structural stability presents a drawback. This study aimed to modify the properties of GO through its functionalization with chitosan (CH), cross-linked with glutaraldehyde (GLU), and synthesized via the freeze-drying method (GO-CH/GLU). Microscopic analysis illustrated that covering the GO sheets with CH and nanoparticles (NPs) resulted in a 15.8 % increase in d-spacing and a 600 % increase in sheet thickness. The GO-CH/GLU composite was utilized for the separation/purification of crocin from saffron extract under varying pH (5-9), temperature (298-318 K), stirring rate (100-300 rpm), and crocin concentration (25-200 mg/mL). The Freundlich isotherm and pseudo-second-order kinetic models provided a good fit for crocin adsorption. Thermodynamic analysis revealed that the process was endothermic, spontaneous, and physical. Optimal adsorption conditions in batch mode were pH 7, a stirring rate of 300 rpm, a temperature of 318 K, and a crocin concentration of 100 mg/mL. These conditions were applied in a continuous system, resulting in a crocin separation efficiency of 94.17 % at 180 mL/h. Additionally, HPLC data indicated that the purity of separated crocin exceeded 90 %. So, the GO-CH/GLU composite is a promising and economical adsorbent for the food industry.
Collapse
Affiliation(s)
- Hamid Rajabi
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Wu S. Preparation of attapulgite nanoparticles modified polypropylene adsorption membrane and its application in small molecular pollutant adsorption. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124338. [PMID: 39418696 DOI: 10.1016/j.jchromb.2024.124338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
In this study, a novel surface covalent reaction method was used to modify attapulgite nanoparticles on the surface of polypropylene adsorption membrane to adsorb various small molecular pollutants for the first time. The surface covalent reaction method has the advantage of step control. Therefore, the uniformity and stability of attapulgite nanoparticles can be ensured, and then could effectively improve the adsorption performance of polypropylene adsorption membrane. On the other hand, compared with various materials modified on the surface of polypropylene adsorption membrane currently, attapulgite nanoparticles has the characteristics of low cost and environmental friendliness, which is more conducive to the large-scale practical application. The polypropylene adsorption membrane modified with attapulgite nanoparticles was characterized by field emission scanning electron microscopy, fourier transform infrared spectrometer and X-ray diffractograph, and it was confirmed that the attapulgite nanoparticles was successfully modified on the surface of the polypropylene adsorption membrane. The experimental results showed that the adsorption capacities of polypropylene adsorption membrane modified with attapulgite nanoparticles could reach 11.53 mg/g, 8.7 mg/g and 5.78 mg/g for cyromazine, malachite green and dagenan respectively within 10 s. In the case of the above three analytes, the minimum detected concentration could reach 0.02 mg/mL, and the relative standard deviation was about 10 %. At the same time, the adsorption performance of polypropylene adsorption membrane modified with attapulgite nanoparticles did not decrease significantly after 50 cycles. A standard recovery of 76.8 % - 89.5 % and a relative standard deviation of 7.2 % - 15.2 % were obtained by using the polypropylene adsorption membrane modified with attapulgite nanoparticles to adsorb cyromazine in cucumber skin samples, indicating that the polypropylene adsorption membrane modified with attapulgite nanoparticles has the ability to treat complex samples.
Collapse
Affiliation(s)
- Shuaibin Wu
- College of Chemistry and Bioengineering, Yichun University, Xuefu Road No. 576, Yichun 336000, China.
| |
Collapse
|
3
|
Li K, Chen M, Chen L, Zhao S, Pan W, Li P. Efficient removal of chlortetracycline hydrochloride and doxycycline hydrochloride from aqueous solution by ZIF-67. Heliyon 2024; 10:e36848. [PMID: 39281598 PMCID: PMC11399672 DOI: 10.1016/j.heliyon.2024.e36848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
ZIF-67 nanoparticles were synthesized by a simple method at room temperature and used to remove chlortetracycline hydrochloride (CTC) and doxycycline hydrochloride (DOX) from water. ZIF-67 was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) surface area, X-ray photoelectron spectroscopy (XPS), thermogravimetry (TGA) and zeta potential analyzer. The morphology and chemical composition of the synthesized ZIF-67 were characterized. The effects of key parameters such as pH, dosage, temperature, contact time, different initial concentrations and coexisting ions on the adsorption behavior were systematically studied. The results of batch adsorption experiments indicate that the adsorption process conforms to the pseudo-second-order kinetic model and Sips model. At 303K, the removal rates of CTC and DOX at 150 mg/L reached 99.16 % and 97.61 %, and the maximum adsorption capacity of CTC and DOX reached 1411.68 and 1073.28 mg/g, respectively. At the same time, ZIF-67 has excellent stability and reusability. Most importantly, the possible adsorption mechanism is proposed by exploring the changes of SEM, TEM, BET and FT-IR characterization results before and after the reaction, which mainly includes pore filling, electrostatic interaction and π-π interaction. The prepared ZIF-67 has a large specific surface area (1495.967 m2 g-1), achieves a high removal rate within a short time frame, and maintains a high removal rate across a wide pH range. These characteristics make ZIF-67 a potentially promising adsorbent for removing antibiotics from aqueous solutions.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Miaomiao Chen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Lei Chen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Songying Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Wenbo Pan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Pan Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| |
Collapse
|
4
|
Ibrahim FM, El-Liethy MA, Abouzeid R, Youssef AM, Mahdy SZA, El Habbasha ES. Preparation and characterization of pectin/hydroxyethyl cellulose/clay/TiO 2 bionanocomposite films for microbial pathogen removal from contaminated water. Int J Biol Macromol 2024; 274:133511. [PMID: 38944095 DOI: 10.1016/j.ijbiomac.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Some of conventional wastewater disinfectants can have a harmful influence on the environment as well as human health. The aim of this investigation was synthesis and characterizes ecofriendly pectin/hydroxyethyl cellulose (HEC)/clay and pectin/HEC/clay incorporated with titanium dioxide nanoparticles (TiO2NPs) and use the prepared bionanocomposite as microbial disinfectants for real wastewater. Pectin/HEC/clay and pectin/HEC/clay/TiO2 bionanocomposite were characterized by various methods including X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA). Mechanical properties and water vapor permeability (WVP) were carried out. The results of SEM showed that, the prepared bionanocomposite had a smooth surface. Additionally, TiO2 nanoparticles to the pectin/HEC/clay composites may lead to changes in the FTIR spectrum. The intensity of XRD peaks indicated that, TiO2NPs was small size crystallite. TGA illustrated that pectin has moderate thermal stability, while HEC generally exhibits good thermal stability. The TEM showed that, TiO2 nanoparticles have diameters <25 nm. On the other hand, antimicrobial activities of pectin/HEC/clay against Escherichia coli (E. coli), Staphylococcus aureus and Candida albicans have been enhanced by adding TiO2NPs. The minimum inhibitory concentration (MIC) of pectin/HEC/clay/TiO2 against E. coli was 200 mg/mL. Moreover, complete eradication of E. coli, Salmonella and Candida spp. from real wastewater was observed by using pectin/HEC/clay/TiO2 bionanocomposite. Finally, it can be concluded that, the synthesized bionanocomposite is environmentally friendly and considered an excellent disinfectant matter for removal of the microbial pathogens from wastewater to safely reuse.
Collapse
Affiliation(s)
- Faten Mohamed Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, P.O. Box 12622, Cairo, Egypt
| | - Mohamed Azab El-Liethy
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, 12622 Giza, Egypt.
| | - Ragab Abouzeid
- Cellulose and Paper Department, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Sara Z A Mahdy
- Chemistry Department, Faculty of Science, Benha University, Cairo, Egypt
| | - El Sayed El Habbasha
- Field crops Research Department, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
5
|
Yue J, Zheng Q, Ding S, Yin Y, Zhang X, Wang L, Gu Y, Li J, Zhang Y, Shi Y, Dong Y, Zhu Q, Duo H. Cu-Co bimetallic organic framework as effective adsorbents for enhanced adsorptive removal of tetracycline antibiotics. Sci Rep 2024; 14:17607. [PMID: 39080297 PMCID: PMC11289263 DOI: 10.1038/s41598-024-67986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
In this study, the removal effect of a new MOF-on MOF adsorbent based on Cu-Co bimetallic organic frameworks on tetracycline antibiotics (TCs) in water system was studied. The adsorbent (Cu-MOF@Co-MOF) were synthesized by solvothermal and self-assembly method at different concentrations of Co2+/Cu2+. The characterization results of SEM, XRD, XPS, FTIR and BET indicated that the MOF-on MOF structure of Cu-MOF@Co-MOF exhibited the best recombination and physicochemical properties when the molar ratio of Co2+: Cu2+ is 5:1. In addition, the Cu-MOF@Co-MOF have a high specific surface area and bimetallic clusters, which can achieve multi-target synergistic adsorption of TCs. Based on above advantages, Cu-MOF@Co-MOF provided a strong affinity and could efficiently adsorb more than 80% of pollutants in just 5 to 15 min using only 10 mg of the adsorbent. The adsorption capacity of tetracycline and doxycycline was 434.78 and 476.19 mg/g, respectively, showing satisfactory adsorption performance. The fitting results of the experimental data were more consistent with the Langmuir isotherm model and pseudo-second-order kinetic model, indicating that the adsorption process of TC and DOX occurred at the homogeneous adsorption site and was mainly controlled by chemisorption. Thermodynamic experiments showed that Cu-MOF@Co-MOF was thermodynamically advantageous for the removal of TCs, and the whole process was spontaneous. The excellent adsorption capacity and rapid adsorption kinetics indicate the prepared MOF-on MOF adsorbent can adsorb TCs economically and quickly, and have satisfactory application prospects for removing TCs in practical environments. The results of the study pave a new way for preparing novel MOFs-based water treatment materials with great potential for efficient removal.
Collapse
Affiliation(s)
- Jiayuan Yue
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Qi Zheng
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shushu Ding
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, 226001, Jiangsu, China
| | - Yujian Yin
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaodan Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Liyun Wang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yipeng Gu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiejia Li
- Affiliated Hospital 2 of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yuhan Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yurou Shi
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yuetan Dong
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, 226001, Jiangsu, China.
| | - Huixiao Duo
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
6
|
Jiao Y, Yi Y, Fang Z, Eric Tsang P. Selective removal of oxytetracycline by molecularly imprinted magnetic biochar. BIORESOURCE TECHNOLOGY 2024; 395:130394. [PMID: 38301940 DOI: 10.1016/j.biortech.2024.130394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Molecularly imprinted magnetic biochar (MBC@MIPs) was synthesized through molecular imprinting precipitation polymerization. This material demonstrated a selective adsorption capacity of oxytetracycline (OTC) from water samples. Upon characterization of MBC@MIPs, results revealed the formation of a memory cavity shell layer on the magnetic biochar's surface, exhibiting a distinctive recognition effect alongside commendable magnetic and thermal stability. Analysis of the adsorption kinetics indicated that the OTC adsorption process aligned well with the pseudo-second-order rate equation, with chemisorption acting as the predominant mechanism for antibiotic adsorption onto MBC@MIPs. The data could be well described by the Langmuir isotherm model. At 299 K, MBC@MIPs showed a maximum binding capacity of 67.89 mg·g-1, surpassing that of MBC (38.84 mg·g-1) by 1.77 times. MBC@MIPs exhibited the highest selectivity towards OTC, with an imprinting factor (IF) of 5.64. Even amidst interference from antibiotics, MBC@MIPs maintained a significant adsorption capacity for OTC (6.10 mg·g-1), with IF of 6.70.
Collapse
Affiliation(s)
- Yuhan Jiao
- School of Environment, South China Normal University, Guangzhou, 510006, China; Normal University (Qingyuan) Environmental Remediation Technology Co., Ltd., Qingyuan 511500, China
| | - Yunqiang Yi
- Normal University (Qingyuan) Environmental Remediation Technology Co., Ltd., Qingyuan 511500, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou 510006, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China; Normal University (Qingyuan) Environmental Remediation Technology Co., Ltd., Qingyuan 511500, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou 510006, China.
| | - Pokeung Eric Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, 00852, Hong Kong, China
| |
Collapse
|
7
|
Alaa Abdulhusain N, Tark Abd Ali Z. Green approach for fabrication of sand-bimetallic (Fe/Pb) nanocomposite as reactive material for remediation of contaminated groundwater using permeable reactive barrier. ALEXANDRIA ENGINEERING JOURNAL 2023; 72:511-530. [DOI: 10.1016/j.aej.2023.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
Li L, Zhang H, Liu Z, Su Y, Du C. Adsorbent biochar derived from corn stalk core for highly efficient removal of bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27545-6. [PMID: 37209328 DOI: 10.1007/s11356-023-27545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Environmental-friendly biochar (BC) with low cost was obtained by simple pyrolysis of corn stalk core, which was employed as an adsorbent for efficiently removing organic pollutants in water. The physicochemical properties of BCs were characterized by various techniques, including X-ray diffractometer (XRD), Fourier transforms infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS), Raman, Thermogravimetric (TGA), N2 adsorption-desorption and zeta potential tests. The influence of pyrolysis temperature on the structure and adsorption efficiency of the adsorbent was emphasized. The graphitization degree and sp2 carbon content of BCs were enhanced by increasing the pyrolysis temperature, which was favorable for the enhancement of the adsorption efficiency. The adsorption results showed that corn stalk core calcined at 900 °C (BC-900) displayed exceptional adsorption efficiency toward bisphenol A (BPA) in wide pH (1-13) and temperature (0-90 °C) ranges. Moreover, adsorbent BC-900 could adsorb various pollutants from water, including antibiotics, organic dyes, and phenol (50 mg·L-1). The adsorption process of BPA over BC-900 matched well with the Langmuir isotherm and pseudo-second-order kinetic model. Mechanism investigation suggested that large specific surface area and pore filling acted the foremost role in the adsorption process. Adsorbent BC-900 has the potential application in wastewater treatment due to its simple preparation, low cost, and excellent adsorption efficiency.
Collapse
Affiliation(s)
- Libo Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, People's Republic of China
| | - Hongji Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, People's Republic of China
| | - Zhiliang Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, People's Republic of China
| | - Yiguo Su
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, People's Republic of China
| | - Chunfang Du
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, People's Republic of China.
| |
Collapse
|
9
|
SefidSiahbandi M, Moradi O, Akbari-Adergani B, Aberoomand Azar P, Sabar Tehrani M. The effect of Fe-Zn mole ratio (2:1) bimetallic nanoparticles supported by hydroxyethyl cellulose/graphene oxide for high-efficiency removal of doxycycline. ENVIRONMENTAL RESEARCH 2023; 218:114925. [PMID: 36462691 DOI: 10.1016/j.envres.2022.114925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In this research, Hydroxyethyl cellulose - graphene oxide HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1) nanocomposite as adsorbents were fabricated by crosslinking ethylene glycol dimethacrylate (EGDMA) to study the thermodynamic, kinetic and isotherm of doxycycline antibiotic adsorption. The morphology and structure of the adsorbents were analyzed by Fourier transform infrared spectroscopy (FT-IR), Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (FE-SEM- EDX), and Transmission electron microscopy (TEM). The adsorption behavior of doxycycline (DOX) was studied with different parameters including doxycycline concentration, pH, the dose of adsorbent (HEC-GO and HEC-GO/Fe-Zn, mole ratio (2:1)), contact time, and temperature. The optimal conditions for the removal of DOX are pH = 3.0, contact time 100 min, and 20 min for HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1). The removal percentage for HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1) was 97% and 95.5%, respectively. Equilibrium adsorption isotherms such as the Langmuir, Freundlich, and Temkin models were analyzed according to the experimental data. Also, four adsorption kinetics were investigated for removing DOX. The Langmuir isotherm and pseudo-second-order kinetic models provided the best fit for experimental data for HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1). Thermodynamic data showed that negative values of Gibbs free energy (ΔG°) and the negative value of enthalpy (ΔH°) of the adsorption process for adsorbents. It means that DOX removal was a spontaneous and exothermic reaction.
Collapse
Affiliation(s)
- Minoo SefidSiahbandi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr -e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Behrouz Akbari-Adergani
- Water Safety Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Sabar Tehrani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|