1
|
Chen Y, Chen Z, Li X, Malik K, Li C. Metagenomic Analysis: Alterations of Soil Microbial Community and Function due to the Disturbance of Collecting Cordyceps sinensis. Int J Mol Sci 2024; 25:10961. [PMID: 39456745 PMCID: PMC11507193 DOI: 10.3390/ijms252010961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Soil microorganisms are critical to the occurrence of Cordyceps sinensis (Chinese Cordyceps), a medicinal fungi used in Traditional Chinese Medicine. The over-collection of Chinese Cordyceps has caused vegetation degradation and impacted the sustainable occurrence of Cordyceps. The effects of Chinese Cordyceps collection on soil microorganisms have not been reported. Metagenomic analysis was performed on the soil of collecting and non-collecting areas of production and non-production areas, respectively. C. sinensis collection showed no alteration in alpha-diversity but significantly affected beta-diversity and the community composition of soil microorganisms. In Cordyceps production, Thaumarchaeota and Crenarchaeota were identified as the dominant archaeal phyla. DNA repair, flagellar assembly, propionate metabolism, and sulfur metabolism were affected in archaea, reducing the tolerance of archaea in extreme habitats. Proteobacteria, Actinobacteria, Acidobacteria, Verrucomicrobia, and Nitrospirae were identified as the dominant bacterial phyla. The collection of Chinese Cordyceps enhanced the bacterial biosynthesis of secondary metabolites and suppressed ribosome and carbon metabolism pathways in bacteria. A more complex microbial community relationship network in the Chinese Cordyceps production area was found. The changes in the microbial community structure were closely related to C, N, P and enzyme activities. This study clarified soil microbial community composition and function in the Cordyceps production area and established that collection clearly affects the microbial community function by altering microbial community structure. Therefore, it would be important to balance the relationship between cordyceps production and microbiology.
Collapse
Affiliation(s)
- Yangyang Chen
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 222, Tianshui South Road, Chengguan District, Lanzhou 730020, China; (Y.C.); (K.M.)
| | - Zhenjiang Chen
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 222, Tianshui South Road, Chengguan District, Lanzhou 730020, China; (Y.C.); (K.M.)
| | - Xiuzhang Li
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China;
| | - Kamran Malik
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 222, Tianshui South Road, Chengguan District, Lanzhou 730020, China; (Y.C.); (K.M.)
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 222, Tianshui South Road, Chengguan District, Lanzhou 730020, China; (Y.C.); (K.M.)
| |
Collapse
|
2
|
Wang M, Li D, Liu X, Chen C, Frey B, Sui X, Li MH. Microplastics stimulated soil bacterial alpha diversity and nitrogen cycle: A global hierarchical meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136043. [PMID: 39383695 DOI: 10.1016/j.jhazmat.2024.136043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Microplastics (MPs) pollution is recognized as a global emerging threat with serious potential impacts on ecosystems. Our meta-analysis was conducted based on 117 carefully selected publications, from which 2160 datasets were extracted. These publications described experiments in which MPs were added to soil (in laboratory or greenhouse experiments or in the field) after which the soil microbial community was analyzed and compared to a control group. From these publications, we extracted 1315 observations on soil bacterial alpha diversity and richness indices and 845 datasets on gene abundance of bacterial genes related to the soil nitrogen cycle. These data were analyzed using a multiple hierarchical mixed effects meta-analysis. The mean effect of microplastic exposure was a significant decrease of soil bacterial community diversity and richness. We explored these responses for different regulators, namely MPs addition rates, particle size and plastic type, soil texture and land use, and study type. Of the bacterial processes involved in the soil nitrogen cycle, MPs addition significantly promoted assimilation of ammonium, nitrogen fixation and urea decomposition, but significantly inhibited nitrification. These results suggest that MPs contamination may have considerable impacts on soil bacterial community structure and function as well as on the soil nitrogen cycle.
Collapse
Affiliation(s)
- Mingyu Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Detian Li
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Xiangyu Liu
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Chengrong Chen
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Beat Frey
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland; Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, PR China; School of Life Science, Hebei University, Baoding, PR China.
| |
Collapse
|
3
|
Wang M, Li D, Liu X, Chen C, Frey B, Sui X, Li MH. Global hierarchical meta-analysis to identify the factors for controlling effects of antibiotics on soil microbiota. ENVIRONMENT INTERNATIONAL 2024; 192:109038. [PMID: 39357259 DOI: 10.1016/j.envint.2024.109038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
It is widely known that antibiotics can affect the structure and function of soil microbial communities, but the specific degree of impact and controlled factors on different indicators remain inconclusive. We conducted a multiple hierarchical mixed effects meta-analysis on 2564 observations that were extracted from 60 publications, to comprehensively assess the impact of antibiotics on soil microbiota. The results showed that antibiotics had significant negative effects on soil microbial biomass, α-diversity and soil enzyme activity. Under neutral initial soil, when soil was derived from agricultural land or had a fine-textured, the negative impacts of antibiotics on soil microbial community were exacerbated. Both single and mixed additions of antibiotics had significant inhibitory effects on soil microbial enzyme activities. The Random Forest model predicted the following key moderators involved in the effects of antibiotics on the soil microbiome, and antibiotics type, soil texture were key moderators on the severity of soil microbial biomass changes. Soil texture, temperature and single or combined application constitute of antibiotics were the main drivers of effects on soil enzyme activities. The reported results can be helpful to assess the ecological risk of antibiotics in a soil environment and provides a scientific basis for the rational of antibiotics use in the soil environment.
Collapse
Affiliation(s)
- Mingyu Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, PR China
| | - Detian Li
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Xiangyu Liu
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Chengrong Chen
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Beat Frey
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, PR China.
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland; Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, PR China; School of Life Science, Hebei University, Baoding, PR China.
| |
Collapse
|
4
|
Fasaeiyan N, Jung S, Boudreault R, Arenson LU, Maghoul P. A review on mathematical modeling of microbial and plant induced permafrost carbon feedback. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173144. [PMID: 38768718 DOI: 10.1016/j.scitotenv.2024.173144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
This review paper analyses the significance of microbial activity in permafrost carbon feedback (PCF) and emphasizes the necessity for enhanced modeling tools to appropriately predict carbon fluxes associated with permafrost thaw. Beginning with an overview of experimental findings, both in situ and laboratory, it stresses the key role of microbes and plants in PCF. The research investigates several modeling techniques, starting with current models of soil respiration and plant-microorganism interactions built outside of the context of permafrost, and then moving on to specific models dedicated to PCF. The review of the current literature reveals the complex nature of permafrost ecosystems, where various geophysical factors have considerable effects on greenhouse gas emissions. Soil properties, plant types, and time scales all contribute to carbon dynamics. Process-based models are widely used for simulating greenhouse gas production, transport, and emissions. While these models are beneficial at capturing soil respiration complexity, adjusting them to the unique constraints of permafrost environments often calls for novel process descriptions for proper representation. Understanding the temporal coherence and time delays between surface soil respiration and subsurface carbon production, which are controlled by numerous parameters such as soil texture, water content, and temperature, remains a challenge. This review highlights the need for comprehensive models that integrate thermo-hydro-biogeochemical processes to understand permafrost system dynamics in the context of changing climatic circumstances. Furthermore, it emphasizes the need for rigorous validation procedures to reduce model complexity biases.
Collapse
Affiliation(s)
- Niloofar Fasaeiyan
- Sustainable Infrastructure and Geoengineering Lab (SIGLab), Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Sophie Jung
- Sustainable Infrastructure and Geoengineering Lab (SIGLab), Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Richard Boudreault
- Sustainable Infrastructure and Geoengineering Lab (SIGLab), Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | | | - Pooneh Maghoul
- Sustainable Infrastructure and Geoengineering Lab (SIGLab), Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, QC, Canada.
| |
Collapse
|
5
|
Jia W, Huang P, Zhu K, Gao X, Chen Q, Chen J, Ran Y, Chen S, Ma M, Wu S. Zonation of bulk and rhizosphere soil bacterial communities and their covariation patterns along the elevation gradient in riparian zones of three Gorges reservoir, China. ENVIRONMENTAL RESEARCH 2024; 249:118383. [PMID: 38331152 DOI: 10.1016/j.envres.2024.118383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Zonation is a typical pattern of soil distribution and species assembly across riparian habitats. Microorganisms are essential members of riparian ecosystems and whether soil microbial communities demonstrate similar zonation patterns and how bulk and rhizosphere soil microorganisms interact along the elevation (submergence stress) gradient remain largely unknown. In this study, bulk and rhizosphere (dominant plant) soil samples were collected and investigated across riparian zones where the submergence stress intensity increased as the elevation decreased. Results showed that the richness of bacterial communities in bulk and rhizosphere soil samples was significantly different and presented a zonation pattern along with the submergence stress gradient. Bulk soil at medium elevation that underwent moderate submergence stress had the most abundant bacterial communities, while the species richness of rhizobacteria at low elevation that experienced serious submergence stress was the highest. Additionally, principal coordinate analysis (PCoA) and significance tests showed that bulk and rhizosphere soil samples were distinguished according to the structure of bacterial communities, and so were bulk or rhizosphere soil samples from different elevations. Redundancy analysis (RDA) and Mantel test suggested that bacterial communities of bulk soil mainly relied on the contents of soil organic matter, total carbon (TC), total nitrogen (TN), sodium (Na), calcium (Ca) and magnesium (Mg). Contrastingly, the contents of Na and Mg were the main factors explaining the variation in rhizobacterial community composition. Correlation and microbial source tracking analyses showed thatthe relationship of bulk and rhizosphere soil bacteria became much stronger, and the rhizosphere soil may get more bacterial communities from bulk soil with the increase in submergence severity. Our results suggest that the abiotic and biotic components of the riparian ecosystem are closely covariant along the submergence stress gradient and imply that the bacterial community may be a key node linking soil physiochemical properties and vegetation communities.
Collapse
Affiliation(s)
- Weitao Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Ping Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Kai Zhu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Xin Gao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Qiao Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Jilong Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yiguo Ran
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Shanshan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Maohua Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Shengjun Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.
| |
Collapse
|
6
|
Wu H, Zhang Z, Zhao W, Jin H, Sang L, Wu H. Spartina alterniflora invasion decouples multiple elements in coastal wetland soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171502. [PMID: 38453070 DOI: 10.1016/j.scitotenv.2024.171502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Deciphering the biogeochemical coupling of multiple elements in soils could better mechanistic understanding of ecosystem stability response to the alien invasion. The coupling of 45 elements in soils from wetlands covered by Spartina alterniflora (Sa) was compared with that in soils covered by native Phragmites australis (Pa) in coastal regions of China. Results showed that S. alterniflora invasion not only significantly reshaped geochemical enrichment and dispersion states, but also decoupled the coupling of multiple elements in soils compared with Pa. Atomic mass emerged as the primary factor governing the coupling of multiple elements, of which a significantly positive correlation exhibited between atomic mass with elemental coupling in Pa, but no such relation was observed in SaThe coupling of lighter elements was more susceptible to and generally enhanced by the invasion of S. alterniflora compared to the heavier, of which carbon, iron (Fe), and cadmium (Cd) had the highest susceptibility. Besides atomic mass, biological processes (represented by soil organic carbon, nitrogen, phosphorus, and sulfur), interactions between sea and land (represented by salinity and pH), and their combination explained 17 %, 10 %, and 13 % variation in the coupling of multiple elements, respectively. The present work confirmed that S. alterniflora invasion was the important factor driving soil multi-element cycling and covariation in coastal wetlands.
Collapse
Affiliation(s)
- Haobo Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Institute of Northeast Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130012, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongsheng Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Institute of Northeast Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130012, China.
| | - Wenwen Zhao
- State Key Laboratory of Black Soils Conservation and Utilization, Institute of Northeast Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130012, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbiao Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Institute of Northeast Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130012, China
| | - Luan Sang
- State Key Laboratory of Black Soils Conservation and Utilization, Institute of Northeast Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130012, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Institute of Northeast Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130012, China
| |
Collapse
|
7
|
Feng Y, Chen H, Fu L, Yin M, Wang Z, Li Y, Cao W. Green Manuring Enhances Soil Multifunctionality in Tobacco Field in Southwest China. Microorganisms 2024; 12:949. [PMID: 38792779 PMCID: PMC11124463 DOI: 10.3390/microorganisms12050949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The use of green manure can substantially increase the microbial diversity and multifunctionality of soil. Green manuring practices are becoming popular for tobacco production in China. However, the influence of different green manures in tobacco fields has not yet been clarified. Here, smooth vetch (SV), hairy vetch (HV), broad bean (BB), common vetch (CV), rapeseed (RS), and radish (RD) were selected as green manures to investigate their impact on soil multifunctionality and evaluate their effects on enhancing soil quality for tobacco cultivation in southwest China. The biomass of tobacco was highest in the SV treatment. Soil pH declined, and soil organic matter (SOM), total nitrogen (TN), and dissolved organic carbon (DOC) content in CV and BB and activity of extracellular enzymes in SV and CV treatments were higher than those in other treatments. Fungal diversity declined in SV and CV but did not affect soil multifunctionality, indicating that bacterial communities contributed more to soil multifunctionality than fungal communities. The abundance of Firmicutes, Rhizobiales, and Micrococcales in SV and CV treatments increased and was negatively correlated with soil pH but positively correlated with soil multifunctionality, suggesting that the decrease in soil pH contributed to increases in the abundance of functional bacteria. In the bacteria-fungi co-occurrence network, the relative abundance of key ecological modules negatively correlated with soil multifunctionality and was low in SV, CV, BB, and RS treatments, and this was associated with reductions in soil pH and increases in the content of SOM and nitrate nitrogen (NO3--N). Overall, we found that SV and CV are more beneficial for soil multifunctionality, and this was driven by the decrease in soil pH and the increase in SOM, TN, NO3--N, and C- and N-cycling functional bacteria.
Collapse
Affiliation(s)
- Yu Feng
- College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China;
| | - Hua Chen
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.C.); (L.F.); (M.Y.); (Z.W.)
| | - Libo Fu
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.C.); (L.F.); (M.Y.); (Z.W.)
| | - Mei Yin
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.C.); (L.F.); (M.Y.); (Z.W.)
| | - Zhiyuan Wang
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.C.); (L.F.); (M.Y.); (Z.W.)
| | - Yongmei Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650500, China
| | - Weidong Cao
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Zhang X, Ji Z, Yang X, Huang J, Zhang Y, Zhou H, Qu Y, Zhan J. Deciphering the spatial distribution and function profiles of soil bacterial community in Liao River estuarine wetland, Northeast China. MARINE POLLUTION BULLETIN 2024; 199:115984. [PMID: 38176162 DOI: 10.1016/j.marpolbul.2023.115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
Soil microbes play vital roles in estuarine wetlands. Understanding the soil bacterial community structure and function profiles is essential to reveal the ecological functions of microbes in estuarine wetlands. Herein, soil samples were collected from Liao River estuarine wetland, Northeast China, along the river to the estuarine mouth, and soil bacterial communities were explored. Results showed that soil physiochemical properties, bacterial community structure and functions exhibited distinct variations influenced by geographical location. Bacterial phyla in soils were dominated by Proteobacteria and Bacteroidetes, while Gillisia and Woeseia were the predominant genera. Soil pH, electrical conductivity and nitrogen-related nutrients were the important factors affecting bacterial community structure. Based on PICRUSt prediction, the genes related to metabolism of nitrogen, sulfur and methane showed spatial distribution patterns, and the abundances of most biomarker genes increased as the distance from estuarine mouth extended. These findings could enrich the understanding of soil microbiome in estuarine wetlands.
Collapse
Affiliation(s)
- Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Zhe Ji
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xiaojing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Jingyi Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Yiwen Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Yuanyuan Qu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
9
|
Aqeel M, Khalid N, Noman A, Ran J, Manan A, Hou Q, Dong L, Sun Y, Deng Y, Lee SS, Hu W, Deng J. Interplay between edaphic and climatic factors unravels plant and microbial diversity along an altitudinal gradient. ENVIRONMENTAL RESEARCH 2024; 242:117711. [PMID: 37995997 DOI: 10.1016/j.envres.2023.117711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Altitude influences biodiversity and physiochemical soil attributes in terrestrial ecosystems. It is of immense importance to know the patterns of how interactions among climatic and edaphic factors influence plant and microbial diversity in various ecosystems, particularly along the gradients. We hypothesize that altitudinal variation determines the distribution of plant and microbial species as well as their interactions. To test the hypothesis, different sites with variable altitudes were selected. Analyses of edaphic factors revealed significant (p < 0.001) effects of the altitude. Soil ammonium and nitrate were strongly affected by it contrary to potassium (K), soil organic matter and carbon. The response patterns of individual taxonomic groups differed across the altitudinal gradient. Plant species and soil fungal diversity increased with increasing altitude, while soil archaeal and bacterial diversity decreased with increasing altitude. Plant species richness showed significant positive and negative interactions with edaphic and climatic factors. Fungal species richness was also significantly influenced by the soil ammonium, nitrate, available phosphorus, available potassium, electrical conductivity, and the pH of the soil, but showed non-significant interactions with other edaphic factors. Similarly, soil variables had limited impact on soil bacterial and archaeal species richness along the altitude gradient. Proteobacteria, Ascomycota, and Thaumarchaeota dominate soil bacterial, fungal, and archaeal communities, with relative abundance of 27.4%, 70.56%, and 81.55%, respectively. Additionally, Cynodon dactylon is most abundant plant species, comprising 22.33% of the recorded plant taxa in various study sites. RDA revealed that these communities influenced by certain edaphic and climatic factors, e.g., Actinobacteria strongly respond to MAT, EC, and C/N ratio, Ascomycota and Basidiomycota show strong associations with EC and MAP, respectively. Thaumarcheota are linked to pH, and OM, while Cyperus rotundus are sensitive to AI and EC. In conclusion, the observed variations in microbial as well as plant species richness and changes in soil properties at different elevations provide valuable insights into the factors determining ecosystem stability and multifunctionality in different regions.
Collapse
Affiliation(s)
- Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, 730000, Lanzhou, PR China
| | - Noreen Khalid
- Department of Botany, Government College Women University Sialkot, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Jinzhi Ran
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, 730000, Lanzhou, PR China
| | - Abdul Manan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, 730000, Lanzhou, PR China
| | - Qingqing Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, 730000, Lanzhou, PR China
| | - Longwei Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, 730000, Lanzhou, PR China
| | - Ying Sun
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, 730000, Lanzhou, PR China
| | - Yan Deng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, 730000, Lanzhou, PR China
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Weigang Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, 730000, Lanzhou, PR China.
| | - Jianming Deng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, 730000, Lanzhou, PR China.
| |
Collapse
|
10
|
Reyes-Ardila WL, Rugeles-Silva PA, Duque-Zapata JD, Vélez-Martínez GA, Tarazona Pulido L, Cardona Tobar KM, Díaz Gallo SA, Muñoz Flórez JE, Díaz-Ariza LA, López-Alvarez D. Exploring Genomics and Microbial Ecology: Analysis of Bidens pilosa L. Genetic Structure and Soil Microbiome Diversity by RAD-Seq and Metabarcoding. PLANTS (BASEL, SWITZERLAND) 2024; 13:221. [PMID: 38256774 PMCID: PMC10818919 DOI: 10.3390/plants13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Bidens pilosa L., native to South America and commonly used for medicinal purposes, has been understudied at molecular and genomic levels and in its relationship with soil microorganisms. In this study, restriction site-associated DNA markers (RADseq) techniques were implemented to analyze genetic diversity and population structure, and metabarcoding to examine microbial composition in soils from Palmira, Sibundoy, and Bogotá, Colombia. A total of 2,984,123 loci and 3485 single nucleotide polymorphisms (SNPs) were identified, revealing a genetic variation of 12% between populations and 88% within individuals, and distributing the population into three main genetic groups, FST = 0.115 (p < 0.001) and FIT = 0.013 (p > 0.05). In the soil analysis, significant correlations were found between effective cation exchange capacity (ECEC) and apparent density, soil texture, and levels of Mg and Fe, as well as negative correlations between ECEC and Mg, and Mg, Fe, and Ca. Proteobacteria and Ascomycota emerged as the predominant bacterial and fungal phyla, respectively. Analyses of alpha, beta, and multifactorial diversity highlight the influence of ecological and environmental factors on these microbial communities, revealing specific patterns of clustering and association between bacteria and fungi in the studied locations.
Collapse
Affiliation(s)
- Wendy Lorena Reyes-Ardila
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Paula Andrea Rugeles-Silva
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Juan Diego Duque-Zapata
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Glever Alexander Vélez-Martínez
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Lina Tarazona Pulido
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Karen Melissa Cardona Tobar
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Sergio Alberto Díaz Gallo
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Jaime Eduardo Muñoz Flórez
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
| | - Lucia Ana Díaz-Ariza
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Diana López-Alvarez
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
| |
Collapse
|
11
|
Algethami JS, Irshad MK, Javed W, Alhamami MAM, Ibrahim M. Iron-modified biochar improves plant physiology, soil nutritional status and mitigates Pb and Cd-hazard in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1221434. [PMID: 37662164 PMCID: PMC10470012 DOI: 10.3389/fpls.2023.1221434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023]
Abstract
Environmental quality and food safety is threatened by contamination of lead (Pb) and cadmium (Cd) heavy metals in agricultural soils. Therefore, it is necessary to develop effective techniques for remediation of such soils. In this study, we prepared iron-modified biochar (Fe-BC) which combines the unique characteristics of pristine biochar (BC) and iron. The current study investigated the effect of pristine and iron modified biochar (Fe-BC) on the nutritional values of soil and on the reduction of Pb and Cd toxicity in wheat plants (Triticum aestivum L.). The findings of present study exhibited that 2% Fe-BC treatments significantly increased the dry weights of roots, shoots, husk and grains by 148.2, 53.2, 64.2 and 148%, respectively compared to control plants. The 2% Fe-BC treatment also enhanced photosynthesis rate, transpiration rate, stomatal conductance, intercellular CO2, chlorophyll a and b contents, by 43.2, 88.4, 24.9, 32.5, 21.4, and 26.7%, respectively. Moreover, 2% Fe-BC treatment suppressed the oxidative stress in wheat plants by increasing superoxide dismutase (SOD) and catalase (CAT) by 62.4 and 69.2%, respectively. The results showed that 2% Fe-BC treatment significantly lowered Cd levels in wheat roots, shoots, husk, and grains by 23.7, 44.5, 33.2, and 76.3%. Whereas, Pb concentrations in wheat roots, shoots, husk, and grains decreased by 46.4, 49.4, 53.6, and 68.3%, respectively. Post-harvest soil analysis showed that soil treatment with 2% Fe-BC increased soil urease, CAT and acid phosphatase enzyme activities by 48.4, 74.4 and 117.3%, respectively. Similarly, 2% Fe-BC treatment significantly improved nutrients availability in the soil as the available N, P, K, and Fe contents increased by 22, 25, 7.3, and 13.3%, respectively. Fe-BC is a viable solution for the remediation of hazardous Cd and Pb contaminated soils, and improvement of soil fertility status.
Collapse
Affiliation(s)
- Jari S. Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Saudi Arabia
| | - Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Wasim Javed
- Punjab Bioenergy Institute (PBI), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mohsen A. M. Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
12
|
Huang S, Yu J, Hou D, Yue H, Zhang D, Li Y, Lyu J, Jin L, Jin N. Response of soil microbial community diversity to continuous cucumber cropping in facilities along the Yellow River irrigation area. PLoS One 2023; 18:e0289772. [PMID: 37566624 PMCID: PMC10420343 DOI: 10.1371/journal.pone.0289772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Cucumber is an important cash crop; however, continuous cropping obstacles readily occur within the intensive production processes of facility horticulture. This study aimed to determine the effects of continuous cropping on soil quality and the microbial community in the rhizosphere soil of cucumbers. Rhizosphere soil of cucumber planted continuously for 4, 8, and 12 years was investigated, and soil that was not continuously planted was used as the control. Soil physicochemical properties, enzyme activity, microbial diversity, and richness were determined. The results showed that with the increase in continuous cropping years (0, 4, 8, and 12 years), soil total salt content continuously increased, while the pH value significantly decreased. Compared with the control, soil organic matter, alkali-hydrolyzed nitrogen, available phosphorus, available potassium, and nitrate nitrogen contents increased significantly after 4 and 8 years of continuous cropping. Spearman correlation analysis showed that pH was negatively correlated with sucrase or sucrose and available phosphorus was positively correlated with alkaline phosphatase. Compared with the control, the diversity and abundance of bacterial and fungal communities in cucumber rhizosphere soil decreased after 4 and 12 years of continuous cropping. Continuous cropping led to a significant increase in the richness of the dominant phylum of cucumber rhizosphere soil. Principal coordinates analysis showed that, compared with the control, the soil microbial community structure was significantly separated after 4, 8, and 12 years of continuous cropping, and the microbial community structure was most similar after 4 and 8 years of continuous cropping. In addition, redundancy analysis showed that pH was the main driver of soil microbial dominance. In conclusion, continuous cropping of cucumber along the Yellow River irrigation area has led to the deterioration of soil nutrients and microbial communities in that region. This experiment provides a theoretical foundation for addressing the challenges associated with continuous cropping in cucumber cultivation.
Collapse
Affiliation(s)
- Shuchao Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Dong Hou
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Dongqin Zhang
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Li
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|