1
|
Farooq M, Shah MY, Gani KM. Utilizing industrial wastewater sludge-derived biochar for enhancing strength and microstructure of soft soil- An infrastructure application of wastewater sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122577. [PMID: 39326079 DOI: 10.1016/j.jenvman.2024.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
This study proposes a waste-to-value approach; specifically focusing on the utilization of industrial wastewater sludge (IWS) derived pyrolytic biochar (PBC) as an alternative to conventional carbon positive soil stabilizing materials. The IWS was subjected to thermogravimetric analysis (TGA) in N2 environment which suggested the pyrolysis temperature of 450 °C for the synthesis of PBC. Five different dosages of PBC by weight were mixed with the soft soil (SS) and unconfined compressive strength (UCS) values were examined across the various curing periods. Test results confirmed that UCS and stiffness values of soil-PBC matrix increased 4-5 and 5-6 times to that of virgin soil respectively. The PBC increased the cation exchange capacity (CEC), point of zero charge (pHpzc), alkalinity, and water holding capacity of the soil thereby assisted to initiate pozzolanic reactions. Various spectroscopic techniques were performed to investigate the strength development mechanism. Free oxide of calcium (CaO) in PBC disturbed the laminated structure of soil, reacted with oxides of silica (SiO2) and other silicates of aluminum thereby densifying the soil-PBC structure. Further, leaching test was performed on soil-PBC matrices to evaluate the environmental viability of the PBC. The statistical significance of the test results was confirmed using the Analysis of Variance (ANOVA) technique. Overall, this study concludes that PBC has the potential to serve as an environmentally friendly alternative to conventional soil stabilizing materials.
Collapse
Affiliation(s)
- Muneeb Farooq
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, 190006, India.
| | - Mohammad Yousuf Shah
- Geotechnical Engineering, Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, 190006, India.
| | - Khalid Muzamil Gani
- Environmental Engineering, Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, 190006, India; Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
2
|
Deng Z, Ma Y, Zhu J, Zeng C, Mu R, Zhang Z. Ferrate (VI) oxidation of sulfamethoxazole enhanced by magnetized sludge-based biochar: Active sites regulation and degradation mechanism analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124681. [PMID: 39134167 DOI: 10.1016/j.envpol.2024.124681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/24/2024]
Abstract
Developing non radical systems for antibiotic degradation is crucial for addressing the inefficiency of conventional radical systems. In this study, novel magnetic-modified sludge biochar (MASBC) was synthesized to significantly enhance the oxidative degradation of sulfamethoxazole (SMX) by ferrate (Fe (VI)). In the Fe (VI)/MASBC system, 90.46% of SMX at a concentration of 10 μM and 49.34% of the total organic carbon (TOC) could be removed under optimal conditions of 100 μM of Fe (VI) and 0.40 g/L of MASBC within 10 min. Furthermore, the Fe (VI)/MASBC system was demonstrated with broad-spectrum removal capability towards sulfonamides in single or mixture. Quenching experiments, EPR analyses, and electrochemical experiments revealed that direct electron transfer (DET) and •O2- were mainly responsible for the removal of SMX, with functional groups (e.g., -OH, C=O) and Fe-O (redox of Fe (III)/Fe (II)) acting as the active sites, while the probe experiments showed that Fe (IV)/Fe (V) made a minor contribution to the degradation of SMX. Benefiting from the DET, the Fe (VI)/MASBC system exhibited a wide pH adaptation range (e.g., from 5.0 to 10.0) and strong anti-interference ability. The N atoms and their neighboring atoms in SMX were the prior degradation sites, with the cleavage of bond and ring opening. The degradation products showed low or non-toxicity according to ECOSAR program assessment. The removal of SMX remained within a reasonable range of 71.33%-90.46% over five consecutive cycles. Also, the Fe (VI)/MASBC system was demonstrated to be effectively applied for successful SMX removal in various water matrices, including ultrapure water, tap water, lake water, Yangtze River water, and wastewater. Therefore, this study offered new insights into the mechanism of Fe (VI) oxidation and would contribute to the efficient treatment of organic pollutants.
Collapse
Affiliation(s)
- Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chenyu Zeng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
3
|
Zhao Q, Cui J, Hou Y, Pei P. Effect of pyrolysis temperature on physicochemical characteristics and toxic elements for grub manure-derived biochar. RSC Adv 2024; 14:27883-27893. [PMID: 39224651 PMCID: PMC11367629 DOI: 10.1039/d4ra03778b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
While traditional solutions for disposing of animal manure are limited by their time-consuming nature and inefficiency, the pyrolysis of animal manure into biochar is considered a promising disposal option, offering high-value benefits. However, there are few research studies on the physicochemical properties and potential utilization pathway of grub manure-derived biochar (GB) prepared at different temperatures. In this study, grub manure (GM) was pyrolyzed at 450, 600 and 750 °C, and the effect of pyrolysis temperature on the characteristics and applications of GB was illustrated. The results showed that increasing pyrolysis temperature promoted the formation of an aromatic structure, enhanced the stability, and improved the surface pore structure of GB. The relationship between pyrolysis temperature and C/N-containing functional groups in GB was quantitatively analyzed. In the process of pyrolysis of GM to GB, carbonates first decomposed, and then, C[double bond, length as m-dash]O broke into C-O and finally condensed to form an aromatic ring structure at elevated pyrolysis temperature. Although GM was rich in organic matter and total N/P/K, the potentially toxic elements (PTEs) (Ni, Cu, Cd, Pb, Zn and As) in GM presented potential risk. The hazard of PTEs in GB was significantly decreased after GM was pyrolyzed. Overall, pyrolysis provided an opportunity for the sustainable management of GM, and GB is a multi-purpose and high-value product that could be applied in soil improvement, environmental remediation, and climate change mitigation for achieving sustainable development.
Collapse
Affiliation(s)
- Qingsong Zhao
- Department of Life Sciences, Changzhi University Changzhi China (+86) 0355-2178331
- Shanxi Province Engineering Research Center of Soil Microbial Remediation Technology China
| | - Jiayi Cui
- Department of Life Sciences, Changzhi University Changzhi China (+86) 0355-2178331
| | - Yuxin Hou
- Department of Life Sciences, Changzhi University Changzhi China (+86) 0355-2178331
| | - Penggang Pei
- Department of Life Sciences, Changzhi University Changzhi China (+86) 0355-2178331
- Shanxi Province Engineering Research Center of Soil Microbial Remediation Technology China
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute Tianjin China
| |
Collapse
|
4
|
Biney M, Gusiatin MZ. Biochar from Co-Pyrolyzed Municipal Sewage Sludge (MSS): Part 2: Biochar Characterization and Application in the Remediation of Heavy Metal-Contaminated Soils. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3850. [PMID: 39124513 PMCID: PMC11314058 DOI: 10.3390/ma17153850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The disposal of municipal sewage sludge (MSS) from wastewater treatment plants poses a major environmental challenge due to the presence of inorganic and organic pollutants. Co-pyrolysis, in which MSS is thermally decomposed in combination with biomass feedstocks, has proven to be a promising method to immobilize inorganic pollutants, reduce the content of organic pollutants, reduce the toxicity of biochar and improve biochar's physical and chemical properties. This part of the review systematically examines the effects of various co-substrates on the physical and chemical properties of MSS biochar. This review also addresses the effects of the pyrolysis conditions (temperature and mixing ratio) on the content and stability of the emerging pollutants in biochar. Finally, this review summarizes the results of recent studies to provide an overview of the current status of the application of MSS biochar from pyrolysis and co-pyrolysis for the remediation of HM-contaminated soils. This includes consideration of the soil and heavy metal types, experimental conditions, and the efficiency of HM immobilization. This review provides a comprehensive analysis of the potential of MSS biochar for environmental sustainability and offers insights into future research directions for optimizing biochar applications in soil remediation.
Collapse
Affiliation(s)
| | - Mariusz Z. Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Sloneczna Str. 45G, 10-709 Olsztyn, Poland;
| |
Collapse
|
5
|
Wei C, Liu L, Yi W, Yu R, Xu Y, Zeng S. Characteristics of nutrients and heavy metals release from sewage sludge biochar produced by industrial-scale pyrolysis in the aquatic environment and its potential as a slow-release fertilizer and adsorbent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121871. [PMID: 39018844 DOI: 10.1016/j.jenvman.2024.121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
To assess the application potential of sewage sludge biochar produced by industrial-scale pyrolysis (ISB), the release characteristics of nutrients (NH4+, PO43-, K, Ca, Mg and Fe) and heavy metals (Mn, Cu, Zn, Pb, Ni and Cr) were investigated. Their release amounts increased with decreasing initial pH and increasing solid-liquid ratios (RS-L) and temperature. The release types of NH4+, K, Mg, and Mn were diffusion/dissolution, while those of Cu, Zn, Pb, Ni, and Cr were diffusion/resorption. The release types of PO43- and Ca varied with initial pH and RS-L, respectively. The chemical actions played dominant roles in their release, while particle surface diffusion and liquid film diffusion determined the rates of diffusion and resorption phases, respectively. The release of NH4+, PO43-, K, Ca, Mg, Mn and Zn was a non-interfering, spontaneous (except PO43-), endothermic, and elevated randomness process. The release efficiency of NH4+, PO43- and K met the Chinese standard for slow-release fertilizers, while the total risk of ISB was low. The eutrophication and potential ecological risks of ISB were acceptable when the dose was less than 3 g L-1 and the initial pH was no lower than 3. In conclusion, ISB had potential as a slow-release fertilizer and adsorbent.
Collapse
Affiliation(s)
- Chunzhong Wei
- Guangxi Beitou Environmental Protection & Water Group Co., Ltd., Nanning, 530025, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541006, China.
| | - Wei Yi
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Ronghao Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541006, China
| | - Si Zeng
- Guangxi Beitou Environmental Protection & Water Group Co., Ltd., Nanning, 530025, China
| |
Collapse
|
6
|
Biney M, Gusiatin MZ. Biochar from Co-Pyrolyzed Municipal Sewage Sludge (MSS): Part 1: Evaluating Types of Co-Substrates and Co-Pyrolysis Conditions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3603. [PMID: 39063895 PMCID: PMC11278580 DOI: 10.3390/ma17143603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
With the increasing production of municipal sewage sludge (MSS) worldwide, the development of efficient and sustainable strategies for its management is crucial. Pyrolysis of MSS offers several benefits, including volume reduction, pathogen elimination, and energy recovery through the production of biochar, syngas, and bio-oil. However, the process can be limited by the composition of the MSS, which can affect the quality of the biochar. Co-pyrolysis has emerged as a promising solution for the sustainable management of MSS, reducing the toxicity of biochar and improving its physical and chemical properties to expand its potential applications. This review discusses the status of MSS as a feedstock for biochar production. It describes the types and properties of various co-substrates grouped according to European biochar certification requirements, including those from forestry and wood processing, agriculture, food processing residues, recycling, anaerobic digestion, and other sources. In addition, the review addresses the optimization of co-pyrolysis conditions, including the type of furnace, mixing ratio of MSS and co-substrate, co-pyrolysis temperature, residence time, heating rate, type of inert gas, and flow rate. This overview shows the potential of different biomass types for the upgrading of MSS biochar and provides a basis for research into new co-substrates. This approach not only mitigates the environmental impact of MSS but also contributes to the wider goal of achieving a circular economy in MSS management.
Collapse
Affiliation(s)
| | - Mariusz Z. Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Sloneczna Str. 45G, 10-709 Olsztyn, Poland;
| |
Collapse
|
7
|
Murtaza G, Ahmed Z, Usman M, Iqbal R, Zulfiqar F, Tariq A, Ditta A. Physicochemical properties and performance of non-woody derived biochars for the sustainable removal of aquatic pollutants: A systematic review. CHEMOSPHERE 2024; 359:142368. [PMID: 38763397 DOI: 10.1016/j.chemosphere.2024.142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/14/2023] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Biochar is a carbon-rich material produced from the partial combustion of different biomass residues. It can be used as a promising material for adsorbing pollutants from soil and water and promoting environmental sustainability. Extensive research has been conducted on biochars prepared from different feedstocks used for pollutant removal. However, a comprehensive review of biochar derived from non-woody feedstocks (NWF) and its physiochemical attributes, adsorption capacities, and performance in removing heavy metals, antibiotics, and organic pollutants from water systems needs to be included. This review revealed that the biochars derived from NWF and their adsorption efficiency varied greatly according to pyrolysis temperatures. However, biochars (NWF) pyrolyzed at higher temperatures (400-800 °C) manifested excellent physiochemical and structural attributes as well as significant removal effectiveness against antibiotics, heavy metals, and organic compounds from contaminated water. This review further highlighted why biochars prepared from NWF are most valuable/beneficial for water treatment. What preparatory conditions (pyrolysis temperature, residence time, heating rate, and gas flow rate) are necessary to design a desirable biochar containing superior physiochemical and structural properties, and adsorption efficiency for aquatic pollutants? The findings of this review will provide new research directions in the field of water decontamination through the application of NWF-derived adsorbents.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China; Xinjiang Institute of Ecology & Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China; College of Life Science, Shenyang Normal University, Shenyang, 110034, China.
| | - Muhammad Usman
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang District, Shanghai, 200240, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Akash Tariq
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China; Xinjiang Institute of Ecology & Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), 18000, Khyber Pakhtunkhwa, Pakistan; School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
8
|
Zhou J, Li M, Han X, Wang B, Zhang C, Cheng Z, Shen Z, Ogugua PC, Zhou C, Pan X, Yang F, Yuan T. Environmental sustainability practice of sewage sludge and low-rank coal co-pyrolysis: A comparative life cycle assessment study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172255. [PMID: 38599412 DOI: 10.1016/j.scitotenv.2024.172255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
This study attempts to bridge the current research gaps related to the environmental burdens of low-rank coal (LRC) and sewage sludge (SS) co-pyrolysis potentially. The life cycle assessment (LCA), energy recovery and sensitivity analysis were investigated for different proportions of LRC and SS (co-)pyrolysis. The results showed that the LRC/SS pyrolysis mitigated the environmental burden with an average improvement of 43 % across 18 impact categories compared with SS pyrolysis. The best net values of energy and carbon credits were identified in SL-4 with -3.36 kWh/kg biochar and -1.10 CO2-eq/kg biochar, respectively. This study firstly proposed an optimal LRC/SS co-feed proportion at 3 to 7, which achieves the acceptable environmental burden and satisfactory energy recovery. Moreover, sensitivity analysis demonstrated this proportion is robust and adaptable. LRC/SS co-pyrolysis is a promising and sustainable alternative for SS disposal, which could meet the imperative of carbon emission mitigation and resource recycling.
Collapse
Affiliation(s)
- Jinyang Zhou
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingyue Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xue Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Beili Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chen Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhiwen Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Zhemin Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Paul Chinonso Ogugua
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chao Zhou
- Wuhuan Engineering Co. Ltd., Wuhan 430223, China.
| | - Xiaolei Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fan Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Yang S, Dong Z, Zhu B, Yan X, Huang J, Xie X, Chang Z, Tian S, Ning P. Feasibility and solidification mechanism study of self-sustaining smoldering remediation for copper and lead-contaminated soil. ENVIRONMENTAL RESEARCH 2024; 250:118498. [PMID: 38382665 DOI: 10.1016/j.envres.2024.118498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Soil heavy metal pollution is an important issue that affects human health and ecological well-being. In-situ thermal treatment techniques, such as self-sustaining smoldering combustion (SSS), have been widely studied for the treatment of organic pollutants. However, the lack of fuel in heavy metal-contaminated soil has hindered its application. In this study, we used corn straw as fuel to investigate the feasibility of SSS remediation for copper and lead in heavy metal-contaminated soil, as well as to explore the remediation mechanism. The results of the study showed that SSS increased soil pH, electrical conductivity (EC), total phosphorus (TP), total potassium (TK), rapidly available phosphorus (AP), and available potassium (AK), while decreasing total nitrogen (TN), alkali-hydrolyzed nitrogen (AN), and cation exchange capacity (CEC). The oxidation state of copper (Cu) increased from 10% to 21%-40%, and the residual state of lead (Pb) increased from 18% to 51%-73%. The Toxicity characteristic leaching procedure (TCLP) of Cu decreased by a maximum of 81.08%, and the extracted state of Diethylenetriaminepentaacetic acid (DTPA) decreased by 67.63%; the TCLP of Pb decreased by a maximum of 81.87%, and DTPA decreased by a maximum of 85.68%. The study indicates that SSS using corn straw as fuel successfully achieved remediation of heavy metal-contaminated soil. However, SSS does not reduce the content of copper and lead; it only changes their forms in the soil. The main reasons for the fixation of copper and lead during the SSS process are the adsorption of biochar, complexation with -OH functional groups, binding with π electrons, and the formation of crystalline compounds. This research provides a reference for the application of SSS in heavy metal-contaminated soil and has potential practical implications.
Collapse
Affiliation(s)
- Shunfu Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Zejing Dong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Bin Zhu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Ximing Yan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China.
| | - Xin Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Zhaofeng Chang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| |
Collapse
|
10
|
Ghandali MV, Safarzadeh S, Ghasemi-Fasaei R, Zeinali S. Heavy metals immobilization and bioavailability in multi-metal contaminated soil under ryegrass cultivation as affected by ZnO and MnO 2 nanoparticle-modified biochar. Sci Rep 2024; 14:10684. [PMID: 38724636 PMCID: PMC11082237 DOI: 10.1038/s41598-024-61270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Pollution by heavy metals (HMs) has become a global problem for agriculture and the environment. In this study, the effects of pristine biochar and biochar modified with manganese dioxide (BC@MnO2) and zinc oxide (BC@ZnO) nanoparticles on the immobilization and bioavailability of Pb, Cd, Zn, and Ni in soil under ryegrass (Lolium perenne L.) cultivation were investigated. The results of SEM-EDX, FTIR, and XRD showed that ZnO and MnO2 nanoparticles were successfully loaded onto biochar. The results showed that BC, BC@MnO2 and BC@ZnO treatments significantly increased shoots and roots dry weight of ryegrass compared to the control. The maximum dry weight of root and shoot (1.365 g pot-1 and 4.163 g pot-1, respectively) was reached at 1% BC@MnO2. The HMs uptake by ryegrass roots and shoots decreased significantly after addition of amendments. The lowest Pb, Cd, Zn and Ni uptake in the plant shoot (13.176, 24.92, 32.407, and 53.88 µg pot-1, respectively) was obtained in the 1% BC@MnO2 treatment. Modified biochar was more successful in reducing HMs uptake by ryegrass and improving plant growth than pristine biochar and can therefore be used as an efficient and cost effective amendment for the remediation of HMs contaminated soils. The lowest HMs translocation (TF) and bioconcentration factors were related to the 1% BC@MnO2 treatment. Therefore, BC@MnO2 was the most successful treatment for HMs immobilization in soil. Also, a comparison of the TF values of plant showed that ryegrass had a good ability to accumulate all studied HMs in its roots, and it is a suitable plant for HMs phytostabilization.
Collapse
Affiliation(s)
| | - Sedigheh Safarzadeh
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
11
|
Bakari Z, Fichera M, El Ghadraoui A, Renai L, Giurlani W, Santianni D, Fibbi D, Bruzzoniti MC, Del Bubba M. Biochar from co-pyrolysis of biological sludge and woody waste followed by chemical and thermal activation: end-of-waste procedure for sludge management and biochar sorption efficiency for anionic and cationic dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35249-35265. [PMID: 38720130 PMCID: PMC11136814 DOI: 10.1007/s11356-024-33577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Nine biochars were produced by co-pyrolysis of sawdust and biological sludge following the "design of experiment" approach. Two kinds of sludge (both deriving from the treatment of mixed industrial-municipal wastewater) and two types of woody waste were selected as categorical predicting variables, while contact time, pyrolysis temperature, and sludge percentage were used as quantitative variables. Biochars were analysed for their product characteristics and environmental compatibility based on the European Standards (EN 12915-1:2009) for materials intended for water treatment (i.e. ash content, water leachable polycyclic aromatic hydrocarbons (PAHs) and elements), as well as for specific surface area (SSA), using them as response variables of a multivariate partial least square multiple regression, whose results provided interesting insights on the relationships between pyrolysis conditions and biochar characteristics. Biochars produced with sludge and/or providing the highest SSA values (258-370 m2 g-1) were selected to undergo a sustainable chemical treatment using a by-product of the gasification of woody biomass, complying in all cases with European Standards and achieving therefore the end-of-waste status for sewage sludge. The biochar deriving from the highest percentage of sludge (30% by weight) and with the highest SSA (390 m2 g-1) was thermally activated achieving SSA of 460 m2 g-1 and then tested for the sorption of direct yellow 50 and methylene blue in ultrapure water and real wastewater, compared to a commercial activated carbon (AC). The biochar showed Langmuir sorption maxima (Qm) 2-9 times lower than AC, thus highlighting promising sorption performances. Qm for methylene blue in wastewater (28 mg‧g-1) was confirmed by column breakthrough experiments.
Collapse
Affiliation(s)
- Zaineb Bakari
- Department of Chemistry "U. Schiff", University of Florence, Via Della Lastruccia 3, 50019, Florence, Sesto Fiorentino, Italy
- Laboratory of Environmental Engineering and Ecotechnology (LR16ES19), National Engineering School of Sfax, Route de La Soukra Km 4, 3038, Sfax, Tunisia
| | - Michelangelo Fichera
- Department of Chemistry "U. Schiff", University of Florence, Via Della Lastruccia 3, 50019, Florence, Sesto Fiorentino, Italy
| | - Ayoub El Ghadraoui
- Department of Chemistry "U. Schiff", University of Florence, Via Della Lastruccia 3, 50019, Florence, Sesto Fiorentino, Italy
| | - Lapo Renai
- Department of Chemistry "U. Schiff", University of Florence, Via Della Lastruccia 3, 50019, Florence, Sesto Fiorentino, Italy
| | - Walter Giurlani
- Department of Chemistry "U. Schiff", University of Florence, Via Della Lastruccia 3, 50019, Florence, Sesto Fiorentino, Italy
| | | | - Donatella Fibbi
- Gestione Impianti di Depurazione Acque (G.I.D.A.) S.P.A, Via di Baciacavallo 36, 59100, Prato, Italy
| | | | - Massimo Del Bubba
- Department of Chemistry "U. Schiff", University of Florence, Via Della Lastruccia 3, 50019, Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
12
|
Xu W, Xie X, Li Q, Yang X, Ren J, Shi Y, Liu D, Shaheen SM, Rinklebe J. Biochar co-pyrolyzed from peanut shells and maize straw improved soil biochemical properties, rice yield, and reduced cadmium mobilization and accumulation by rice: Biogeochemical investigations. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133486. [PMID: 38244456 DOI: 10.1016/j.jhazmat.2024.133486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/02/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Biochar is an eco-friendly amendment for the remediation of soils contaminated with cadmium (Cd). However, little attention has been paid to the influence and underlying mechanisms of the co-pyrolyzed biochar on the bioavailability and uptake of Cd in paddy soils. The current study explored the effects of biochar co-pyrolyzed from peanut shells (P) and maize straw (M) at different mixing ratios (1:0, 1:1, 1:2, 1:3, 0:1, 2:1 and 3:1, w/w), on the bacterial community and Cd fractionation in paddy soil, and its uptake by rice plant. Biochar addition, particularly P1M3 (P/M 1:3), significantly elevated soil pH and cation exchange capacity, transferred the mobile Cd to the residual fraction, and reduced Cd availability in the rhizosphere soil. P1M3 application decreased the concentration of Cd in different rice tissues (root, stem, leaf, and grain) by 30.0%- 49.4%, compared to the control. Also, P1M3 enhanced the microbial diversity indices and relative abundance of iron-oxidizing bacteria in the rhizosphere soil. Moreover, P1M3 was more effective in promoting the formation of iron plaque, increasing the Cd sequestration by iron plaque than other treatments. Consequently, the highest yield and lowest Cd accumulation in rice were observed following P1M3 application. This study revealed the feasibility of applying P1M3 for facilitating paddy soils contaminated with Cd.
Collapse
Affiliation(s)
- Weijie Xu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Xiaocui Xie
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Qi Li
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Renmin Road 58, Haikou 570228, China
| | - Jiajia Ren
- Agriculture and Rural of Jiaxing, Jiaxing 323500, China
| | - Yanping Shi
- Agriculture and Rural of Jiaxing, Jiaxing 323500, China
| | - Dan Liu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
13
|
Fan Z, Zhou X, Lu Q, Gao ZF, Deng S, Peng Z, Han W, Chen X. Synthesis of sewage sludge biochar in molten salt environment for advanced wastewater treatment: Performance enhancement, carbon footprint and environmental impact reduction. WATER RESEARCH 2024; 250:121072. [PMID: 38150858 DOI: 10.1016/j.watres.2023.121072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023]
Abstract
Sewage sludge (SS) pyrolysis to produce biochar is a vital approach for treating and utilizing SS, while reducing the carbon footprint of SS disposal. However, the high inorganic content in SS results in low carbon content and underdeveloped pore structure of biochar prepared under inert atmospheres. There is a significant risk of secondary pollutant emissions, including CO2, SO2, and NOx. In this study, we propose an innovative approach that utilizes excess molten salts, specifically a Li-Na-K molten carbonate (MC) and a Li-Na-K molten chloride (MCH), to create a medium-temperature liquid phase reaction environment (500 °C) for SS pyrolysis. This environment promotes the functional enhancement of biochar (SSB-MC and SSB-MCH) and in-situ absorption of secondary pollutants. The pore structure of SSB-MC and SSB-MCH are greatly optimized. Thanks to the dissolution of calcium-silicon-aluminum-based minerals by molten salt, the carbon content is also significantly increased. The increased specific surface area and surface-enriched functional groups (O, N, P, etc.) of SSB-MC result in greatly enhanced adsorption performance for Rhodamine B (27.9 to 89.1 mg g-1). SSB-MCH, due to the increased iron and phosphorus doping, also exhibits enhanced Fenton oxidation capability. Life cycle assessments demonstrate that the molten salt processes effectively reduce the carbon footprint, energy consumption, and environmental impact.
Collapse
Affiliation(s)
- Zeyu Fan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China.
| | - Xian Zhou
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Qi Lu
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Zhuo Fan Gao
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Shanshan Deng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Ziling Peng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Wei Han
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Xia Chen
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| |
Collapse
|
14
|
O'Boyle M, Mohamed BA, Li LY. Co-pyrolysis of sewage sludge and biomass waste into biofuels and biochar: A comprehensive feasibility study using a circular economy approach. CHEMOSPHERE 2024; 350:141074. [PMID: 38160959 DOI: 10.1016/j.chemosphere.2023.141074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Enormous annual sewage sludge (SS) volumes pose global environmental challenges owing to contamination and significant greenhouse gas emissions. Here, we investigated the economic viability of co-pyrolyzing SS and biomass waste to produce biofuels (bio-oil and gas) and biochar. Net present worth (NPW) analysis, the sale product break-even price, and sludge handling price (SHP) were used to determine the profitability of co-pyrolysis compared with SS pyrolysis alone and conventional treatment methods. In this study, the sale prices of biochar based on quality (i.e., stability, carbon sequestration effectiveness, and heavy metal content) were estimated to be 2.24, 1.44, and 0.98 CAD/kg for high-, medium-, and low-grade biochar. The bio-oil prices, estimated based on the higher heating values of bio-oil and diesel, ranged from 0.80 to 1.22 CAD/kg. Sawdust (SD) and wheat straw (WS) were the chosen co-pyrolysis feedstocks, with four mixing ratios (20, 40, 60, and 80 wt%). Economically, SD (40 wt% mixing ratio) co-pyrolysis achieved the best performance, with a maximum NPW of 8.71 million CAD. SD single and co-pyrolysis were the only profitable scenarios. Moreover, SS single pyrolysis and WS co-pyrolysis exhibited higher profitability than conventional SS treatment methods, with SHPs of 65 and 40 CAD/1000 kg dry sludge, respectively. Sensitivity analysis highlighted the dependence of economic performance on biochar and bio-oil market value. This study offers the first economic analysis of this approach and enhances our understanding of the potential of co-pyrolysis for biofuel and biochar production, providing innovative solutions for the environmental challenges of SS disposal.
Collapse
Affiliation(s)
- Marnie O'Boyle
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza, 12613, Egypt
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
15
|
Li Y, Kang M, Wang Y, Bai X, Ye Z. Modulatory Role of Biochar Properties and Environmental Risk of Heavy Metals by Co-Pyrolysis of Fenton Sludge and Biochemical Sludge. TOXICS 2024; 12:57. [PMID: 38251013 PMCID: PMC10820068 DOI: 10.3390/toxics12010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Recent studies have reported that Fenton sludge and biochemical sludge contain high concentrations of toxic substances and heavy metals (HMs), whereas improper treatment can pose serious threats to environmental safety. Pyrolysis is considered an efficient technology to replace conventional sludge treatment. This study investigated the pyrolysis and kinetic processes of Fenton sludge and biochemical sludge, revealed the physicochemical properties of sludge biochar, and highlighted the role of co-pyrolysis in sludge immobilization of HMs and environmental risks. Results showed that Fenton sludge and biochemical sludge underwent three stages of weight loss during individual pyrolysis and co-pyrolysis, especially co-pyrolysis, which increased the rate of sludge pyrolysis and reduced the decomposition temperature. The kinetic reaction indicated that the activation energies of Fenton sludge, biochemical sludge, and mixed sludge were 11.59 kJ/mol, 8.50 kJ/mol, and 7.11 kJ/mol, respectively. Notably, co-pyrolysis reduced the activation energy of reactions and changed the specific surface area and functional group properties of the biochar produced from sludge. Meanwhile, co-pyrolysis effectively immobilized Cu, Pb, and Zn, increased the proportion of metals in oxidizable and residual states, and mitigated the environmental risks of HMs in sludge. This study provided new insights into the co-pyrolysis properties of sludge biochar and the risk assessment of HMs.
Collapse
Affiliation(s)
- Yujian Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuting Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zhengfang Ye
- Key Laboratory of Water and Sediment Sciences, Department of Environmental Engineering, Peking University, Ministry of Education, Beijing 100871, China
| |
Collapse
|