1
|
Di X, Zeng X, Zhang X, Tang T, Zhao Z, Wang W, Liu Z, Jin L, Ji X, Shao X. Nitrogen-phosphorus codoped biochar prepared from tannic acid for degradation of trace antibiotics in wastewater. ENVIRONMENTAL RESEARCH 2024; 266:120589. [PMID: 39672491 DOI: 10.1016/j.envres.2024.120589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
This study was designed to develop a one-step pyrolysis process that could efficiently activate peroxymonosulfate (PMS) and degrade tetracycline hydrochloride (TCH) by producing N, and P codoped carbon materials (NPTC3-800). Furthermore, it exhibited a high specific surface area (658 cm2 g-1), a larger pore volume (0.3 cm3 g-1), and a certain content of heteroatoms (nitrogen and phosphorus). PMS-activated NPTC3-800 attained a TCH removal efficiency of over 90% within 40 min, with an observed rate constant (kobs) of 0.0307 min-1. Similarly, the materials exhibited strong resistance to ionic interferences and showed broad applicability across various water bodies. Mobility experiments were conducted to further assess the stability of catalyst (92%, 40 h). Non-radical oxidation pathways, particularly including the singlet oxygen (1O2), were evidenced to play dominant roles in TCH degradation, as demonstrated by electron paramagnetic resonance (EPR) observations and experiments with free radical quenching. Theoretical calculations demonstrated that the N and P codoped domains substantially improve TCH removal compared to pure biochar. Finally, the proposed degradation pathways for TCH were identified, and the resulting degradation products demonstrated reduced biological toxicity.
Collapse
Affiliation(s)
- Xixi Di
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Xia Zeng
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Xiaoyu Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Tian Tang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Zuoping Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Wei Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Zhifeng Liu
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China.
| | - Xiaohui Ji
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Xianzhao Shao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China.
| |
Collapse
|
2
|
Liang H, Liu T, Li R, Li R, Zhu Y, Fang F. Highly Efficient Activation of Peroxymonosulphate by Co and Cu Co-Doped Sawdust Biochar for Ultra-Fast Removal of Bisphenol A. Molecules 2024; 29:5296. [PMID: 39598685 PMCID: PMC11596690 DOI: 10.3390/molecules29225296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
The rapid, efficient, and thorough degradation of Bisphenol A (BPA) is challenging. In this study, we prepared an effective peroxymonosulphate (PMS) activation catalyst derived from sawdust containing calcium carbonate. The Co and Cu co-doped sawdust biochar (CoO/CuO@CBC) catalyst could activate PMS quickly, and the degradation rate of BPA reached 99.3% in 5 min, while the rate constant was approximately 30 times higher than in the CBC/PMS and CoCuOx/PMS systems. Moreover, the interaction between CoO, CuO, and CBC endows the CoO/CuO@CBC catalyst with excellent catalytic performance under different conditions, such as initial pH, temperature, water matrix, inorganic anions, and humic acid, which maintained fast PMS activation via the cyclic transformation of Cu and Co for BPA degradation. The results demonstrated that both the radical (•O2- and •SO4-) and non-radical (1O2) pathways participate in the degradation of BPA in the CoO/CuO@CBC/PMS system. The efficient and stable degradation over a wide range of pH, temperature, and aqueous matrices indicates the potential application of the CoO/CuO@CBC catalyst.
Collapse
Affiliation(s)
- Hui Liang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Tongjin Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Ruijuan Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Rumei Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Yuxiao Zhu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| | - Feng Fang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.); (T.L.); (R.L.); (R.L.); (Y.Z.)
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
| |
Collapse
|
3
|
Gao B, Tan J, Wang R, Zeng Q, Wen Y, Zhang Q, Wang J, Zeng Q. Intensive investigation of the synergistic effects between electrocatalysis and peroxymonosulfate activation for efficient organic elimination. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135719. [PMID: 39241363 DOI: 10.1016/j.jhazmat.2024.135719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/19/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Hybrid systems combined eletrocatalysis and Fenton-like process attract a lot of attention due their outstanding performance and unique mechanism. Here, we proposed an efficient, cost-effective, and versatile electrochemical activation (ECA) system for efficient water purification, and intensively studied the synergistic effects between electrocatalysis and peroxymonosulfate (PMS)-based advanced oxidation. The ECA system achieved complete removal of 20 ppm tetracycline hydrochloride (TCH) in 15 min, with a rate constant of 0.338 min-1. Its performance was assessed across various operational parameters (PMS dosage, pH, applied voltage, electrode interval, temperature, co-existed ions, biomass, different oxidants), demonstrating its broad applicability and stability. Excellent degradation and mineralization for other 12 kinds of refractory organic pollutants were also achieved. The outstanding performance can be attributed to the synergistic effect in the system, in which electrocatalytic reduction of dissolved oxygen generated H2O2 and O2•-, boosting the number of reactive species, such as 1O2, by interacting with PMS. Furthermore, the presence of organic matter promotes electron transfer, amplifying the system's degradation capability. These findings not only highlight the ECA system's effectiveness in organic pollutant removal but also offer insights into the underlying degradation mechanisms, paving the way for future advancements in water purification technologies.
Collapse
Affiliation(s)
- Beibei Gao
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Jin Tan
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Rongzhong Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qingming Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qingyan Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Jiachen Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
4
|
Núñez-de la Rosa Y, Broterson YB, Ballesteros-Ballesteros VA, Durango LGC, Toledo JLN, Forim MR, de Souza FL, Hammer P, Aquino JM. Oxidation of imidacloprid insecticide through PMS activation using CuFe 2O 4 nanoparticles: Role of process parameters and surface modifications. CHEMOSPHERE 2024; 362:142558. [PMID: 38851513 DOI: 10.1016/j.chemosphere.2024.142558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
The contamination of water bodies by synthetic organic compounds coupled with climate change and the growing demand for water supply calls for new approaches to water management and treatment. To tackle the decontamination issue, the activation of peroxymonosulfate (PMS) using copper magnetic ferrite (CuMF) nanoparticles prepared under distinct synthesis conditions was assessed to oxidize imidacloprid (IMD) insecticide. After optimization of some operational variables, such as CuMF load (62.5-250 mg L-1), PMS concentration (250-1000 μM), and solution pH (3-10), IMD was completely oxidized in 2 h without interferences from leached metal ions. Such performance was also achieved when using tap water but was inhibited by a simulated municipal wastewater due to scavenging effects promoted by inorganic and organic species. Although there was evidence of the presence of sulfate radicals and singlet oxygen oxidizing species, only four intermediate compounds were detected by liquid chromatography coupled to mass spectrometry analysis, mainly due to hydroxyl addition reactions. Concerning the changes in surface properties of CuMF after use, no morphological or structural changes were observed except a small increase in the charge transfer resistance. Based on the changes of terminal surface groups, PMS activation occurred on Fe sites.
Collapse
Affiliation(s)
- Yeison Núñez-de la Rosa
- Federal University of São Carlos (UFSCar), Department of Chemistry, 13565-905, São Carlos, SP, Brazil; Fundación Universitaria Los Libertadores, Faculty of Engineering and Basic Sciences, 111221, Bogotá, Colombia
| | - Yoisel B Broterson
- Federal University of São Carlos (UFSCar), Department of Chemistry, 13565-905, São Carlos, SP, Brazil
| | | | | | - Jorge Luis Nisperuza Toledo
- Fundación Universitaria Los Libertadores, Faculty of Engineering and Basic Sciences, 111221, Bogotá, Colombia
| | - Moacir Rossi Forim
- Federal University of São Carlos (UFSCar), Department of Chemistry, 13565-905, São Carlos, SP, Brazil
| | - Fernanda Lourdes de Souza
- São Paulo University, Institute of Chemistry of São Carlos, Department of Chemistry and Molecular Physics, Trabalhador São-Carlense Avenue, 400, CEP 13566-590, São Carlos, SP, Brazil
| | - Peter Hammer
- São Paulo State University (UNESP), Institute of Chemistry, Department of Physical Chemistry, 14800-900, Araraquara, SP, Brazil
| | - José M Aquino
- Federal University of São Carlos (UFSCar), Department of Chemistry, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Foroutan R, Mohammadi R, Razeghi J, Ahmadi M, Ramavandi B. Amendment of Sargassum oligocystum bio-char with MnFe 2O 4 and lanthanum MOF obtained from PET waste for fluoride removal: A comparative study. ENVIRONMENTAL RESEARCH 2024; 251:118641. [PMID: 38458588 DOI: 10.1016/j.envres.2024.118641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The use of biomass and waste to produce adsorbent reduces the cost of water treatment. The bio-char of Sargassum oligocystum (BCSO) was modified with MnFe2O4 magnetic particles and La-metal organic framework (MOF) to generate an efficient adsorbent (BCSO/MnFe2O4@La-MOF) for fluoride ions (F-) removal from aqueous solutions. The performance of BCSO/MnFe2O4@La-MOF was compared with BCSO/MnFe2O4 and BCSO. The characteristics of the adsorbents were investigated using various techniques, which revealed that the magnetic composites were well-synthesized and exhibited superparamagnetic properties. The maximum adsorption efficiencies (BCSO: 97.84%, BCSO/MnFe2O4: 97.85%, and BCSO/MnFe2O4@La-MOF: 99.36%) were achieved under specific conditions of pH 4, F- concentration of 10 mg/L, and adsorbent dosage of 3, 1.5, and 1 g/L for BCSO, BCSO/MnFe2O4, and BCSO/MnFe2O4@La-MOF, respectively. The results demonstrated that the experimental data adheres to a pseudo-second-order kinetic model. The enthalpy, entropy, and Gibbs free energy were determined to be negative; thus, the F- adsorption was exothermic and spontaneous in the range of 25-50 °C. The equilibrium data of the process exhibited conformity with the Langmuir model. The maximum adsorption capacities of F- ions were determined as 10.267 mg/g for BCSO, 14.903 mg/g for the BCSO/MnFe2O4, and 31.948 mg/g for BCSO/MnFe2O4@La-MOF. The KF and AT values for the F- adsorption were obtained at 21.03 mg/g (L/mg)1/n and 100 × 10+9 L/g, indicating the pronounced affinity of the BCSO/MnFe2O4@La-MOF towards F- than other samples. The significant potential of the BCSO/MnFe2O4@La-MOF magnetic composite for F- removal from industrial wastewater, makes it suitable for repeated utilization in the adsorption process.
Collapse
Affiliation(s)
- Rauf Foroutan
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Jafar Razeghi
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mehrshad Ahmadi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
6
|
Zhao X, Long M, Li Z, Zhang Z. A two dimensional Co(OH) 2 catalytic gravity-driven membrane for water purification: a green and facile fabrication strategy and excellent water decontamination performance. MATERIALS HORIZONS 2024; 11:1435-1447. [PMID: 38189551 DOI: 10.1039/d3mh01924a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Cobalt-based materials are reported to be the most efficient catalysts in sulfate radical advanced oxidation processes (SR-AOPs). A green and facile method was developed in this work to prepare uniform Co(OH)2 hexagonal nanosheets, which was void of any organic solvents via mere ambient temperature stirring. The obtained nanosheets were assembled into a catalytic gravity-driven membrane, through which the removal efficiency of a typical pharmaceutical contaminant, ranitidine (RNTD), could reach ∼100% within 20 min. Meanwhile, the catalytic membrane also demonstrated effective removal performance towards various pollutants. In order to augment the long-term stability of catalytic membranes, Co(OH)2/rGO composites were fabricated using the same strategy, and a Co(OH)2/rGO catalytic membrane was prepared correspondingly. The Co(OH)2/rGO membrane could maintain a ∼100% removal of RNTD over a constant reaction period lasting for up to 165 hours, which was approximately 11 times that of the sole Co(OH)2 membrane (15 h). Analysis of element chemical states, metal ion concentration in filtrates, and quenching experiments suggested that the combination with rGO could promote the electron transfer to accelerate the Co(II) regeneration, restrain the cobalt dissolution to alleviate the active site loss, and contribute to the production of 1O2via synergistic effects of oxygen-containing groups in rGO. Toxicity assessment was performed on RNTD and its degradation intermediates to confirm the reduction in ecotoxicity of the treated feed. Overall, this work not only offered guidance for the application of nanosheets in AOP membranes, but also had implications for the environmentally-friendly preparation protocol to obtain functional metal hydroxides.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Mei Long
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhixing Li
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Xie J, Pan X, Jiang C, Zhao L, Gong X, Liu Y. Enhanced conversion of superoxide radical to singlet oxygen in peroxymonosulfate activation by metal-organic frameworks derived heteroatoms dual-doped porous carbon catalyst. ENVIRONMENTAL RESEARCH 2023; 236:116745. [PMID: 37500040 DOI: 10.1016/j.envres.2023.116745] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The activation of persulfate technology using carbon-based materials doped with heteroatoms has been extensively researched for the elimination of refractory pollutants in wastewater. In this study, metal-organic frameworks were utilized as precursors to synthesize P, N dual-doped carbon material (PNC), which was employed to activate peroxymonosulfate (PMS) for the degradation of tetracycline hydrochloride (TCH). The results demonstrated a 90.2% removal efficiency of total organic carbon within 60 min. The significant increase of surface defects on the nitrogen self-doped porous carbon materials anchored with phosphorus promoted the conversion of superoxide radical to singlet oxygen during PMS activation, which was identified as the key active species of PNC/PMS system. Additionally, the enhanced direct electron transfer also facilitated the degradation of TCH. Consequently, TCH was successfully degraded into nontoxic and harmless inorganic small molecules. The findings of this research provide valuable insights into improving the performance of heteroatom-doped carbon materials for pollutant degradation by activating PMS and transforming the non-radical pathway. The results highlight the potential of metal-organic frameworks derived heteroatoms dual-doped porous carbon catalysts for the development of advanced treatment technologies in wastewater treatment.
Collapse
Affiliation(s)
- Jinling Xie
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
| | - Xiaofang Pan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
| | - Chenming Jiang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
| | - Li Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
| | - Xiaobo Gong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Special Waste Water Treatment of Sichuan Province Higher Education System, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, Sichuan, 610068, China.
| | - Yong Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Special Waste Water Treatment of Sichuan Province Higher Education System, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, Sichuan, 610068, China
| |
Collapse
|
8
|
Li Y, Xiao L, Zheng Z, Yan J, Sun L, Huang Z, Li X. A Review on Pulsed Laser Fabrication of Nanomaterials in Liquids for (Photo)catalytic Degradation of Organic Pollutants in the Water System. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2628. [PMID: 37836269 PMCID: PMC10574106 DOI: 10.3390/nano13192628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
The water pollution caused by the release of organic pollutants has attracted remarkable attention, and solutions for wastewater treatment are being developed. In particular, the photocatalytic removal of organic pollutants in water systems is a promising strategy to realize the self-cleaning of ecosystems under solar light irradiation. However, at present the semiconductor-based nanocatalysts can barely satisfy the industrial requirements because their wide bandgaps restrict the effective absorption of solar light, which needs an energy band modification to boost the visible light harvesting via surface engineering. As an innovative approach, pulsed laser heating in liquids has been utilized to fabricate the nanomaterials in catalysis; it demonstrates multi-controllable features, such as size, morphology, crystal structure, and even optical or electrical properties, with which photocatalytic performances can be precisely optimized. In this review, focusing on the powerful heating effect of pulsed laser irradiation in liquids, the functional nanomaterials fabricated by laser technology and their applications in the catalytic degradation of various organic pollutants are summarized. This review not only highlights the innovative works of pulsed laser-prepared nanomaterials for organic pollutant removal in water systems, such as the photocatalytic degradation of organic dyes and the catalytic reduction of toxic nitrophenol and nitrobenzene, it also critically discusses the specific challenges and outlooks of this field, including the weakness of the produced yields and the relevant automatic strategies for massive production.
Collapse
Affiliation(s)
- Yang Li
- College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Liangfen Xiao
- College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Zhong Zheng
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiujiang Yan
- College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Liang Sun
- Department of Basic Courses, Naval University of Engineering, Wuhan 430033, China
| | - Zhijie Huang
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangyou Li
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|