1
|
Chokwe TB, Themba N, Mahlambi PN, Mngadi SV, Sibali LL. Poly- and per-fluoroalkyl substances (PFAS) in the African environments: progress, challenges, and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65993-66008. [PMID: 39636544 DOI: 10.1007/s11356-024-35727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Per- or poly-fluoroalkyl substances (PFAS) are a group of anthropogenic compounds that are used in a variety of industrial processes and consumer products with their ubiquitous presence in the environment recently gaining relevant attention. Progress and milestones on PFAS contamination within multiple environments from African continent are highlighted in this review. Identification and quantitation of PFAS within African environments is important to the public at large because of their toxicity and possible ecotoxicological risk. Two most studied classes of PFAS are perfluoro carboxylic acid (PFCA) (i.e., perfluorooctanoic acid (PFOA)) and perfluoro sulfonic acid (PFSA) (i.e., perfluoro sulfonic acid (PFOS)) with many more classes of PFAS been created by industry. Within the African continent, studies reported PFAS in water, sediments, soils, fish, dust, breastmilk, infant formulae, dust, atmosphere, marine species and wildlife. Southern Africa contributed more studies on the presence of PFAS in the environment with Central Africa contributing the least. Despite growing awareness of PFAS contamination in Africa, the number of studies, studied compounds, and concentration levels vary significantly across regions and matrices. While some countries in Southern and Western Africa have made progress in PFAS research, the overall disparity in research output highlights the urgency for increased attention, resources, and concerted efforts to comprehensively address PFAS contamination. This review also revealed PFAS contamination within freshwater environments, with non-existent data from marine water environments. Collaboration among scientists, policymakers, industry players as well as regional and international communities are essential to mitigate the impact of PFAS in the African environment.
Collapse
Affiliation(s)
- Tlou B Chokwe
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Christiaan de Wet Road, Florida, Johannesburg, 1709, South Africa.
- Infrastructure Department, Scientific Services Unit, Capricorn District Municipality, 24 Thabo Mbeki Street, Polokwane, 0699, South Africa.
| | - Nomathemba Themba
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Christiaan de Wet Road, Florida, Johannesburg, 1709, South Africa
| | - Precious N Mahlambi
- Department of Chemistry, University of KwaZulu-Natal, King Edward Avenue, Scottville, Pietermaritzburg, 3201, South Africa
| | - Sihle V Mngadi
- Scientific Services Department, Umgeni Waters, 310 Burger Street, Pietermaritzburg, 3201, South Africa
| | - Linda L Sibali
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Christiaan de Wet Road, Florida, Johannesburg, 1709, South Africa
| |
Collapse
|
2
|
Miiro A, Odume ON, Nyakairu GW, Odongo S, Matovu H, Drago Kato C, Špánik I, Sillanpaä M, Mubiru E, Ssebugere P. Per- and poly-fluoroalkyl substances in aquatic ecosystems and wastewater treatment works in Africa: Occurrence, ecological implications, and future perspectives. CHEMOSPHERE 2024; 367:143590. [PMID: 39433094 DOI: 10.1016/j.chemosphere.2024.143590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
The increasing levels of industrialization and urbanization have led to the generation of significant amounts of wastewater and waste products, often containing chemicals like per- and poly-fluoroalkyl substances (PFASs) commonly found in consumer products. PFASs are known for their persistence, ubiquity, and ecotoxicological impacts, raising concerns about potential harm to ecosystems. This paper reports the occurrence and evaluates the ecological risks of PFASs in aquatic ecosystems and wastewater treatment works (WWTWs) across Africa. We reviewed 32 papers published in the period 2009-2024 and identified a total of 35 PFAS compounds in surface waters, wastewater, sediments, fish, crocodiles, and invertebrates. Much of the reported studies came from South Africa, followed by Kenya and Nigeria. PFAS concentrations in Africa were <0.7-390.0 ng L-1 in surface waters, 0.05-772 ng g-1 dw in sediments, and <0.2-832 ng L-1 in wastewater, while the highest levels in fish and invertebrates were 460.7 and 35.5 ng g-1 ww, respectively. The PFAS levels were in the same range of data as those reported globally. However, the high concentrations of PFASs in sediments and wastewater suggest areas of point contamination and a growing risk to aquatic ecosystems from effluent discharges. Calculated risk quotients suggested that, in Africa, organisms in river systems face greater risks due to exposure to PFASs compared to those in lakes, while marine organisms might face higher risks compared to freshwater organisms. Future studies should focus on PFAS contamination sources, especially WWTWs, as emerging sources of PFASs in aquatic systems.
Collapse
Affiliation(s)
- Ashirafu Miiro
- Institute for Water Research, Rhodes University, P.O Box 94, Makhanda, South Africa; Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | | | | | - Silver Odongo
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Henry Matovu
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Charles Drago Kato
- School of Biosecurity, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Ivan Špánik
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37, Bratislava, Slovakia
| | - Mika Sillanpaä
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O Box 17011, Doornfontein, 2028, South Africa; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Uni-versity, Chennai, Tamil Nadu, 602105, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India; Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093, Kuwait, Kuwait
| | - Edward Mubiru
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Patrick Ssebugere
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda.
| |
Collapse
|
3
|
Ramasamy Chandrasekaran P, Chinnadurai J, Lim YC, Chen CW, Tsai PC, Huang PC, Gavahian M, Andaluri G, Dong CD, Lin YC, Ponnusamy VK. Advances in perfluoro-alkylated compounds (PFAS) detection in seafood and marine environments: A comprehensive review on analytical techniques and global regulations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:424. [PMID: 39316302 DOI: 10.1007/s10653-024-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/25/2024] [Indexed: 09/25/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are persistent organic pollutants that severely threaten the environment and human health due to their distinct chemical composition, extensive production, widespread distribution, bioaccumulation in nature, and long-term persistence. This review focuses on the occurrence and sources of PFAS in seafood, with a particular emphasis on advanced detection methods viz. nanoparticle-based, biosensor-based, and metal-organic frameworks-based, and mass spectrometric techniques. The challenges associated with these advanced detection technologies are also discussed. Recent research and regulatory updates about PFAS, including hazardous and potential health effects, epidemiological studies, and various risk assessment models, have been reviewed. In addition, the need for global monitoring programs and regulations on PFAS are critically reviewed by underscoring their crucial role in protecting human health and the environment. Further, approaches for reducing PFAS in seafood are highlighted with future innovative remediation directions. Although advanced PFAS analytical methods are available, selectivity, sample preparation, and sensitivity are still significant challenges associated with detection of PFAS in seafood matrices. Moreover, crucial research gaps and solutions to essential concerns are critically explored in this review.
Collapse
Affiliation(s)
- Prasath Ramasamy Chandrasekaran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Jeganathan Chinnadurai
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli, 350, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
- Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University (NSYSU), Kaohsiung, Taiwan.
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan.
| |
Collapse
|
4
|
Fujii Y, Kato Y, Miyatake M, Akeda S, Nagata S, Ando J, Kido K, Ohta C, Koga N, Harada KH, Haraguchi K. Levels and spatial profile of per- and polyfluoroalkyl substances in edible shrimp products from Japan and neighboring countries; a potential source of dietary exposure to humans. ENVIRONMENT INTERNATIONAL 2024; 189:108685. [PMID: 38823154 DOI: 10.1016/j.envint.2024.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 06/03/2024]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) is of great concern for human health because of their persistence and potentially adverse effects. Dietary intake, particularly through aquatic products, is a significant route of human exposure to PFAS. We analyzed perfluoroalkyl sulfonic acid (PFSA with carbon numbers from 6 to 8 and 10 (C6-C8, C10)) and perfluorooctanesulfonamide (FOSA), and perfluoroalkyl carboxylic acid (PFCA with carbon numbers from 6 to 15 (C6-C15)) in 30 retail packs of edible shrimps, which included seven species from eight coastal areas of Japan and neighboring countries. The most prevalent compounds were perfluorooctane sulfonate (PFOS, C8) and perfluoroundecanoic acid (PFUnDA, C11), accounting for 46 % of total PFAS. The concentrations ranged from 6.5 to 44 ng/g dry weight (dw) (equivalent to 1.5 to 10 ng/g wet weight (ww)) and varied according to species and location. For example, Alaskan pink shrimp (Pandalus eous) from the Hokuriku coast, Japan contained high levels of long-chain PFCAs (38 ng/g dw (equivalent to 8.7 ng/g ww)), while red rice prawn (Metapenaeopsis barbata) from Yamaguchi, Japan contained a high concentration of PFOS (29 ng/g dw (equivalent to 6.7 ng/g ww)). We also observed regional differences in the PFAS levels with higher concentrations of long-chain PFCAs in Japanese coastal waters than in the South China Sea. The PFAS profiles in shrimp were consistent with those in the diet and serum of Japanese consumers, suggesting that consumption of seafood such as shrimp may be an important source of exposure. The estimated daily intake of sum of all PFAS from shrimp from Japanese coastal water was 0.43 ng/kg body weight/day in average, which could reach the weekly tolerable values (4.4 ng/kg body weight /week) for the sum of the four PFSA set by the EFSA for heavy consumers. The high concentration of PFAS in shrimp warrants further investigation.
Collapse
Affiliation(s)
- Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan.
| | - Yoshihisa Kato
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193, Japan
| | - Masayuki Miyatake
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193, Japan
| | - Syunpei Akeda
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193, Japan
| | - Sigeru Nagata
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| | - Junpei Ando
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| | - Katsumi Kido
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| | - Chiho Ohta
- Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
| | - Nobuyuki Koga
- Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Koichi Haraguchi
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| |
Collapse
|
5
|
Chukwuka AV, Adeogun AO. Predicting the dynamics of per- and polyfluoroalkyl substances in coastal regions of Africa: vulnerability index and adverse ecological pathways from remote-sensed variables. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:573. [PMID: 38780819 DOI: 10.1007/s10661-024-12723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
This study aimed to predict the dynamics of per- and polyfluoroalkyl substance (PFAS) contamination and ecological vulnerability within coastal regions of Africa utilizing time-averaged remote-sensed data patterns from 2020 to 2023. The analysis identified PFAS contamination hotspots along the coast of Africa, particularly in western Africa around Nigeria and in areas spanning Equatorial Guinea and Guinea-Bissau, with risk influenced by eastward wind patterns, overland runoff, and elevated aerosol optical depth (AOD) values. Regional trends indicated that variations in solar energy absorption and surface air temperature could influence PFAS dynamics in North Africa, South Africa, East Africa, and West Africa. In North Africa, intermediate overland runoff and lower sea-surface temperatures were observed. In South Africa, there were intermediate runoff levels and warmer sea-surface temperatures. East Africa experienced intermediate runoff as well. In West Africa, there was increased susceptibility to high overland runoff and aerosol-related PFAS contamination. From the weighted vulnerability index, significant disparities in environmental conditions across African coastal regions revealed that North Africa had relatively lower vulnerability, while West Africa had the highest susceptibility to per- and polyfluoroalkyl substance (PFAS) contamination. This study emphasizes the necessity for region-specific vulnerability index models and targeted mitigation strategies to address diverse ecological and health risks from PFAS contamination along the African coast. Regional and international collaboration, spearheaded by organizations such as the AU and ECOWAS, is essential, with tailored policies aligned with the SDGs, Agenda 2063, and NEPAD crucial for effective environmental management, urging policymakers to prioritize cooperation and resource sharing for comprehensive sustainability goals.
Collapse
Affiliation(s)
- Azubuike Victor Chukwuka
- Environmental Quality Control Department, National Environmental Standards and Regulations Enforcement Agency (NESREA), Osogbo, Nigeria.
| | - Aina O Adeogun
- Hydrobiology and Fisheries Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Adeogun AO, Chukwuka AV, Ibor OR, Asimakopoulos AG, Zhang J, Arukwe A. Occurrence, bioaccumulation and trophic dynamics of per- and polyfluoroalkyl substances in two tropical freshwater lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123575. [PMID: 38365077 DOI: 10.1016/j.envpol.2024.123575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
We have investigated the occurrence, distribution, and biomagnification of per- and polyfluoroalkyl substances (PFAS) in two tropical lakes (Asejire and Eleyele) of Southwestern Nigeria, with contrasting urban intensities. Over an 8-month period, we sampled sediment and fish species (Clarias gariepinus: CIG; Oreochromis niloticus: ON; Coptodon guineensis: CG; Sarotherodon melanotheron: SM) across trophic levels, and analyzed various PFAS congeners, in addition to a select group of toxicological responses. While herbivores (SM) and benthic omnivores (CIG) at Asejire exhibited elevated levels of PFBS and PFOS, the pelagic omnivores (ON) showed a dominance of PFOS, PFDA, PFHxDA and EtFOSE in the muscle. At the Eleyele urban lake, PFAS patterns was dominated by PFBS, EtFOSE, PFPeS, PFOcDA and PFOS in the herbivores (SM, CG), EtFOSE, PFOS and PFBS in the pelagic omnivore (ON) and benthic omnivore (ClG). The estimated biomagnification factor (BMF) analysis for both lakes indicated trophic level increase of PFOS, PFUnA and PFDA at the suburban lake, while PFOS and EtFOSE biomagnified at the urban lake. We detected the occurrence of diSAMPAP and 9CL-PF3ONS, novel compounds not commonly reported, in PFAS studies at both lakes. The studied toxicological responses varied across trophic groups in both lakes with probable modulations by environmental conditions, trophic structure, and relative PFAS exposures in the lakes. The present study documents, for the first time in Nigeria, or any other African country, the role of urbanization on contaminant load into the environment and their implications for contaminant dynamics within the ecosystem and for aquatic food safety.
Collapse
Affiliation(s)
- Aina O Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Nigeria
| | - Oju R Ibor
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | | | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
7
|
Sardenne F, Le Loc'h F, Bodin N, Mve-Beh JH, Munaron JM, Mbega JD, Nzigou AR, Sadio O, Budzinski H, Leboulanger C. Persistent organic pollutants and trace metals in selected marine organisms from the Akanda National Park, Gabon (Central Africa). MARINE POLLUTION BULLETIN 2024; 199:116009. [PMID: 38217912 DOI: 10.1016/j.marpolbul.2023.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
Akanda National Park (ANP) is composed of mangrove ecosystems bordering Libreville, Gabon's capital. The contamination of aquatic resources from the ANP by persistent organic pollutants (POPs) and trace metals (TMs) was never evaluated. To provide a basis for their monitoring in the ANP, five species (two fish, two mollusks, and one crustacean) were analyzed from three sampling sites in 2017. Contamination levels for POPs and TMs were below maximum acceptable limits for seafood, including Cd and Pb. No DDT was found in any sample. Inter-specific differences were more obvious than the differences among sites, although the results may be biased by an unbalanced sampling design. The oyster Crassostrea gasar was the most contaminated species, making this species a good candidate to assess environmental contamination in the area. The studied species also contained essential elements, such as Fe, Zn and Mn at interesting levels in a nutritional point of view.
Collapse
Affiliation(s)
- Fany Sardenne
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, F-29280 Plouzané, France.
| | - François Le Loc'h
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, F-29280 Plouzané, France
| | - Nathalie Bodin
- Sustainable Ocean Seychelles, BeauBelle, Mahé, Seychelles
| | - Jean-Hervé Mve-Beh
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, F-29280 Plouzané, France; Institut de Recherches Agronomiques et Forestières, CENAREST (Laboratoire d'Hydrobiologie et d'Ichtyologie), BP 2246 Libreville, Gabon
| | | | - Jean-Daniel Mbega
- Institut de Recherches Agronomiques et Forestières, CENAREST (Laboratoire d'Hydrobiologie et d'Ichtyologie), BP 2246 Libreville, Gabon
| | | | - Oumar Sadio
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, Dakar, Sénégal
| | | | | |
Collapse
|
8
|
Zhu RG, Pan CG, Peng FJ, Zhou CY, Hu JJ, Yu K. Parabens and their metabolite in a marine benthic-dominated food web from the Beibu gulf, South China Sea: Occurrence, trophic transfer and health risk assessment. WATER RESEARCH 2024; 248:120841. [PMID: 37952329 DOI: 10.1016/j.watres.2023.120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Parabens are of particular concern due to their ubiquity in aquatic environments and endocrine-disrupting effects. However, information on their bioaccumulation and trophic magnification is limited. In the present study, we performed a comprehensive survey to investigate the occurrence, bioaccumulation and trophic magnification of parabens and their metabolite 4-hydroxybenzoic acid (4-HB) in a marine food web from the Beibu Gulf, South China Sea. Results showed that methylparaben (MeP) and 4-HB were the predominant target pollutants in marine organisms, with their concentrations being in the range of 0.18-13.77 and 13.48-222.24 ng/g wet weight, respectively. The bioaccumulation factors (BAFs) for target analytes were all lower than 5000, suggesting negligible bioaccumulation. However, the biota-sediment accumulation factors (BSAFs) for MeP and 4-HB were 4.51 and 3.21, respectively, which indicates significant bioaccumulation from the sediment. Furthermore, the estimated trophic magnification factor (TMF) was 2.88 for MeP, suggesting its biomagnification along the food web. In contrast, a lower TMF of 0.45 was found for 4-HB, suggesting trophic dilution along the food web. The hazard quotients (HQs) for parabens were far less than 1 in all organisms, suggesting low risks for humans through consuming marine organisms from the Beibu Gulf. This study provides substantial data on the fate and trophic transfer of parabens in a subtropical marine ecosystem.
Collapse
Affiliation(s)
- Rong-Gui Zhu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Chao-Yang Zhou
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Jun-Jie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
9
|
Xu S, Zhang C, Zhou Y, Chen F, Chen F, Wang W, Tang H, Gao Y, Meng L. Occurrence and transport of novel and legacy poly- and perfluoroalkyl substances in coastal rivers along the Laizhou Bay, northern China. MARINE POLLUTION BULLETIN 2024; 198:115909. [PMID: 38096694 DOI: 10.1016/j.marpolbul.2023.115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The pollution profiles of 25 legacy and emerging poly- and perfluoroalkyl substances (PFASs) in the estuaries along the Laizhou Bay, northern China were investigated to better understand the new structure of PFASs under international regulations and to estimate the mass loadings of PFASs in coastal rivers. About 39.87 kg/d of PFASs were discharged into the Laizhou Bay by the Xiaoqing, Mi and Zhimai Rivers. Total PFAS concentrations in the Xiaoqing River decreased notably in recent years, but were still greater than the levels in 2011. Contribution of replacement substances exhibited an increasing trend in recent years. However, the long-chain chemicals were still the larger contributors of PFASs. Perfluoromethoxypropionic acid (PFMPA) was first detected with high concentrations ranging from 165.3 to 586.3 ng/L in the Xiaoqing River. The results of this study provided baseline data for ecological risk assessment, environmental management and corresponding development of pollution treatment technology.
Collapse
Affiliation(s)
- Sisi Xu
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Cunliang Zhang
- Shandong Provincial Eco-environment Monitoring Center, Jinan 250101, Shandong, China
| | - Yuanhang Zhou
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Fanghui Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, Shandong, China.
| | - Wenlei Wang
- Shandong Provincial Eco-environment Monitoring Center, Jinan 250101, Shandong, China.
| | - Hua Tang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Yan Gao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Lun Meng
- Shandong Shike Modern Agriculture Investment Co., Ltd, Heze 274000, Shandong, China
| |
Collapse
|