1
|
Ciborowski B, Vacher M. Photodissociation of Cr(CO) 4 bpy $$ \mathrm{Cr}{\left(\mathrm{CO}\right)}_4\mathrm{bpy} $$ : A Non-Adiabatic Dynamics Investigation. J Comput Chem 2025; 46:e70021. [PMID: 39797556 PMCID: PMC11724321 DOI: 10.1002/jcc.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
Carbonyl complexes ofd 6 $$ {d}^6 $$ metals with an α-diimine ligand exhibit both emission and ligand-selective photodissociation from MLCT states. Studying this photodissociative mechanism is challenging for experimental approaches due to an ultrafast femtosecond timescale and spectral overlap of multiple photoproducts. The photochemistry of a prototypical systemCr(CO) 4 bpy $$ \mathrm{Cr}{\left(\mathrm{CO}\right)}_4\mathrm{bpy} $$ is investigated with non-adiabatic dynamic simulations. Obtained 86 fs lifetime of the brightS 3 $$ {S}_3 $$ state and 13% quantum yield are in good agreement with experimental data. The present simulations suggest a ballistic mechanism of photodissociation, which is irrespective of the occupied electronic state. This is in contrast to the previously established mechanism of competitive intersystem crossing and dissociation. Selectivity of axial photodissociation is shown to be caused by the absence of an avoided crossing in the equatorial direction.
Collapse
|
2
|
Kämmerer L, Kämmerer G, Gruber M, Grunwald J, Lojewski T, Mercadier L, Le Guyader L, Carley R, Carinan C, Gerasimova N, Hickin D, Van Kuiken BE, Mercurio G, Teichmann M, Kuppusamy SK, Scherz A, Ruben M, Sokolowski-Tinten K, Eschenlohr A, Ollefs K, Schmitz-Antoniak C, Tuczek F, Kratzer P, Bovensiepen U, Wende H. Femtosecond Spin-State Switching Dynamics of Fe(II) Complexes Condensed in Thin Films. ACS NANO 2024; 18:34596-34605. [PMID: 39663771 DOI: 10.1021/acsnano.4c05123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The tailoring of spin-crossover films has made significant progress over the past decade, mostly motivated by the prospect in technological applications. In contrast to spin-crossover complexes in solution, the investigation of the ultrafast switching in spin-crossover films has remained scarce. Combining the progress in molecule synthesis and film growth with the opportunities at X-ray free-electron lasers, we study the photoinduced spin-state switching dynamics of a molecular film at room temperature. The subpicosecond switching from the S = 0 low-spin ground state to the S = 2 high-spin state is monitored by analyzing the transient evolution of the Fe L3 X-ray absorption edge fine structure, i.e. element-specifically at the switching center of the Fe(II) complex. Our measurements show the involvement of an intermediate state in the switching. At large excitation fluences, the fraction of high-spin molecules saturates at ≈50%, which is likely due to molecule-molecule interaction within the film.
Collapse
Affiliation(s)
- Lea Kämmerer
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Gérald Kämmerer
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Manuel Gruber
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Jan Grunwald
- Institute for Inorganic Chemistry, Christian-Albrechts-University, Kiel 24098, Germany
| | - Tobias Lojewski
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | | | | | | | | | | | | | | | | | | | - Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | | | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Strasbourg Cedex 67083, France
| | - Klaus Sokolowski-Tinten
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Andrea Eschenlohr
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Katharina Ollefs
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Carolin Schmitz-Antoniak
- Faculty of Engineering and Natural Sciences, Technical University of Applied Science Wildau, Wildau 15745, Germany
| | - Felix Tuczek
- Institute for Inorganic Chemistry, Christian-Albrechts-University, Kiel 24098, Germany
| | - Peter Kratzer
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Uwe Bovensiepen
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Heiko Wende
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| |
Collapse
|
3
|
Zeng C, Li Y, Chen T, Wu W, Chen Z. Unraveling the Mechanisms of the Formations and Transformations of Metal-Ligand Charge Transfer States in [Ru(tpy) 2] 2+*: Consequences of Jahn-Teller Conical Intersections and the Pseudo-Jahn-Teller Effect. J Phys Chem A 2024; 128:9846-9860. [PMID: 39513928 DOI: 10.1021/acs.jpca.4c04424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This work investigates Jahn-Teller conical intersections (CoIns) and the pseudo-Jahn-Teller effect on the formations and transformations of the low-lying singlet metal-ligand charge transfer (1MLCT) excited states during the ultrafast evolution process of photoexcited [Ru(tpy)2]2+* (tpy = 2,2':6',2″-terpyridine). Longuet-Higgins' geometric phase analyses indicate that the potential energy surface (PES) crossing between charge transfer states 1MLCT1 and 1MLCT2 is a CoIn, originating from the change in diabatic Hamiltonian matrix elements around the CoIn. Moreover, an E⊗(b1 + b2) Jahn-Teller distortion can occur around the Franck-Condon and minimal energy CoIn (MECI) configurations, causing the molecule to distort spontaneously from the high-symmetry D2d configuration to C2v symmetry configurations that are close to it. Furthermore, the pseudo-Jahn-Teller effect can cause the molecule to distort further from C2v to C1 geometries since the former is a second-order saddle point on the whole dimensional PES but the latter is a true minimum. Eight minima in total are symmetrically distributed around the MECI. These minima are connected by the interligand electron transfer, the charge transfer, and the butterfly-like conformational inversion reactions, all of which have extremely small energy barriers.
Collapse
Affiliation(s)
- Chenyu Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yaqi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Tengwei Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenhua Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
4
|
Zeng C, Li Y, Zheng H, Ren M, Wu W, Chen Z. Nature of ultrafast dynamics in the lowest-lying singlet excited state of [Ru(bpy) 3] 2. Phys Chem Chem Phys 2024; 26:6524-6531. [PMID: 38329237 DOI: 10.1039/d3cp03806h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
This work presents mechanisms to rationalize the nature of ultrafast photochemical and photophysical processes on the first singlet metal-ligand charge transfer state (1MLCT1) of the [Ru(bpy)3]2+ complex. The 1MLCT1 state is the lowest-lying singlet excited state and the most important intermediate in the early evolution of photoexcited [Ru(bpy)3]2+*. The results obtained from simple but interpretable theoretical models show that the 1MLCT1 state can be very quickly formed via both direct photo-excitation and internal conversions and then can efficiently relax to its equilibrium geometry in ca. 5 fs. The interligand electron transfer (ILET) on the potential energy surface of the 1MLCT1 state is also extremely fast, with a rate constant of ca. 1.38 × 1013 s-1. The ultrafast ILET implies that the excited electron can dynamically delocalize over the three bpy ligands, despite the fact that the excited electron may be localized on either one of the three ligands at the equilibrium geometries of the three symmetric equivalent minima. Since rapid ILET essentially suggests delocalization, the long-standing controversy in inorganic photophysics-whether the excited electron is localized or delocalized-may therefore be calmed down to some extent.
Collapse
Affiliation(s)
- Chenyu Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Yaqi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Hangjing Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Mingxing Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Wei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Zhenhua Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
5
|
Hernández‐Castillo D, Nau REP, Schmid M, Tschierlei S, Rau S, González L. Mehrere Triplett-Metall-zentrierte Jahn-Teller-Isomere bestimmen die temperaturabhängigen Lumineszenzlebensdauern in [Ru(bpy) 3] 2. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202308803. [PMID: 38529088 PMCID: PMC10962581 DOI: 10.1002/ange.202308803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 03/27/2024]
Abstract
AbstractEin genaues Verständnis der Faktoren, welche die Lumineszenzlebensdauer von Übergangsmetallverbindungen bestimmen, ist für Anwendungen in der Photokatalyse und der photodynamischen Therapie von entscheidender Bedeutung. Die im Falle von [Ru(bpy)3]2+ (bpy=2,2’‐Bipyridin) allgemein akzeptierte Theorie besagt, dass die Emissionslebensdauer durch Optimierung der Energiebarriere zwischen dem emittierenden Triplett‐Zustand des Metall‐Liganden‐Ladungstransfers (3MLCT) und dem thermisch aktivierten Triplett‐Zustand des Metall‐Zentrums (3MC), oder der Energielücke zwischen beiden Zuständen gesteuert werden kann. Hier zeigen wir, dass dies nicht allgemeingültig ist. Darüber hinaus demonstrieren wir, dass die Betrachtung eines einzelnen Relaxationspfades, der vom energetisch niedrigsten Minimum aus bestimmt wird, zu falschen Vorhersagen der temperaturabhängigen Emissionslebensdauer führt. Stattdessen erhalten wir eine ausgezeichnete Übereinstimmung mit den experimentellen temperaturabhängigen Lebensdauern, wenn ein erweitertes kinetisches Modell herangezogen wird, welches alle Pfade im Zusammenhang mit mehreren Jahn–Teller‐Isomeren und ihren effektiven Reaktionsbarrieren beinhaltet. Diese Konzepte sind für das Design weiterer lumineszierender Übergangsmetallkomplexe mit individuell angepassten Emissionslebensdauern auf der Grundlage theoretischer Vorhersagen unerlässlich.
Collapse
Affiliation(s)
- David Hernández‐Castillo
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
- Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Straße 421090ViennaAustria
| | - Roland E. P. Nau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marie‐Ann Schmid
- Technische Universität BraunschweigDepartment of Energy Conversion, Institute of Physical and Theoretical ChemistryRebenring 3138106BraunschweigGermany
| | - Stefanie Tschierlei
- Technische Universität BraunschweigDepartment of Energy Conversion, Institute of Physical and Theoretical ChemistryRebenring 3138106BraunschweigGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
- Vienna Research Platform Accelerating Photoreaction DiscoveryUniversity of ViennaWähringer Straße 171090ViennaAustria
| |
Collapse
|
6
|
Hernández‐Castillo D, Nau REP, Schmid M, Tschierlei S, Rau S, González L. Multiple Triplet Metal-Centered Jahn-Teller Isomers Determine Temperature-Dependent Luminescence Lifetimes in [Ru(bpy) 3 ] 2. Angew Chem Int Ed Engl 2023; 62:e202308803. [PMID: 37433755 PMCID: PMC10962642 DOI: 10.1002/anie.202308803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Understanding the factors that determine the luminescence lifetime of transition metal compounds is key for applications in photocatalysis and photodynamic therapy. Here we show that for[ Ru ( bpy ) 3 ] 2 + ${[{\rm{Ru}}({\rm{bpy}})_{\rm{3}} ]^{{\rm{2 + }}} }$ (bpy = 2,2'-bipyridine), the generally accepted idea that emission lifetimes can be controlled optimizing the energy barrier from the emissive triplet metal-to-ligand charge-transfer (3 MLCT) state to the thermally-activated triplet metal-centered (3 MC) state or the energy gap between both states is a misconception. Further, we demonstrate that considering a single relaxation pathway determined from the minimum that is lowest in energy leads to wrong temperature-dependent emission lifetimes predictions. Instead, we obtain excellent agreement with experimental temperature-dependent lifetimes when an extended kinetic model that includes all the pathways related to multiple Jahn-Teller isomers and their effective reaction barriers is employed. These concepts are essential to correctly design other luminescent transition metal complexes with tailored emission lifetimes based on theoretical predictions.
Collapse
Affiliation(s)
- David Hernández‐Castillo
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
- Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Straße 421090ViennaAustria
| | - Roland E. P. Nau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marie‐Ann Schmid
- Technische Universität BraunschweigDepartment of Energy Conversion, Institute of Physical and Theoretical ChemistryRebenring 3138106BraunschweigGermany
| | - Stefanie Tschierlei
- Technische Universität BraunschweigDepartment of Energy Conversion, Institute of Physical and Theoretical ChemistryRebenring 3138106BraunschweigGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
- Vienna Research Platform Accelerating Photoreaction DiscoveryUniversity of ViennaWähringer Straße 171090ViennaAustria
| |
Collapse
|
7
|
Lee A, Son M, Deegbey M, Woodhouse MD, Hart SM, Beissel HF, Cesana PT, Jakubikova E, McCusker JK, Schlau-Cohen GS. Observation of parallel intersystem crossing and charge transfer-state dynamics in [Fe(bpy) 3] 2+ from ultrafast 2D electronic spectroscopy. Chem Sci 2023; 14:13140-13150. [PMID: 38023502 PMCID: PMC10664481 DOI: 10.1039/d3sc02613b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023] Open
Abstract
Transition metal-based charge-transfer complexes represent a broad class of inorganic compounds with diverse photochemical applications. Charge-transfer complexes based on earth-abundant elements have been of increasing interest, particularly the canonical [Fe(bpy)3]2+. Photoexcitation into the singlet metal-ligand charge transfer (1MLCT) state is followed by relaxation first to the ligand-field manifold and then to the ground state. While these dynamics have been well-studied, processes within the MLCT manifold that facilitate and/or compete with relaxation have been more elusive. We applied ultrafast two-dimensional electronic spectroscopy (2DES) to disentangle the dynamics immediately following MLCT excitation of this compound. First, dynamics ascribed to relaxation out of the initially formed 1MLCT state was found to correlate with the inertial response time of the solvent. Second, the additional dimension of the 2D spectra revealed a peak consistent with a ∼20 fs 1MLCT → 3MLCT intersystem crossing process. These two observations indicate that the complex simultaneously undergoes intersystem crossing and direct conversion to ligand-field state(s). Resolution of these parallel pathways in this prototypical earth-abundant complex highlights the ability of 2DES to deconvolve the otherwise obscured excited-state dynamics of charge-transfer complexes.
Collapse
Affiliation(s)
- Angela Lee
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Minjung Son
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Mawuli Deegbey
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| | - Matthew D Woodhouse
- Department of Chemistry, Michigan State University East Lansing MI 48824 USA
| | - Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Hayden F Beissel
- Department of Chemistry, Michigan State University East Lansing MI 48824 USA
| | - Paul T Cesana
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| | - James K McCusker
- Department of Chemistry, Michigan State University East Lansing MI 48824 USA
| | | |
Collapse
|
8
|
Perrella F, Li X, Petrone A, Rega N. Nature of the Ultrafast Interligands Electron Transfers in Dye-Sensitized Solar Cells. JACS AU 2023; 3:70-79. [PMID: 36711100 PMCID: PMC9875239 DOI: 10.1021/jacsau.2c00556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 05/14/2023]
Abstract
Charge-transfer dynamics and interligand electron transfer (ILET) phenomena play a pivotal role in dye-sensitizers, mostly represented by the Ru-based polypyridyl complexes, for TiO2 and ZnO-based solar cells. Starting from metal-to-ligand charge-transfer (MLCT) excited states, charge dynamics and ILET can influence the overall device efficiency. In this letter, we focus on N34- dye ( [Ru(dcbpy)2(NCS)2]4-, dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) to provide a first direct observation with high time resolution (<20 fs) of the ultrafast electron exchange between bpy-like ligands. ILET is observed in water solution after photoexcitation in the ∼400 nm MLCT band, and assessment of its ultrafast time-scale is here given through a real-time electronic dynamics simulation on the basis of state-of-the-art electronic structure methods. Indirect effects of water at finite temperature are also disentangled by investigating the system in a symmetric gas-phase structure. As main result, remarkably, the ILET mechanism appears to be based upon a purely electronic evolution among the dense, experimentally accessible, MLCT excited states manifold at ∼400 nm, which rules out nuclear-electronic couplings and proves further the importance of the dense electronic manifold in improving the efficiency of dye sensitizers in solar cell devices.
Collapse
Affiliation(s)
- Fulvio Perrella
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
| | - Xiaosong Li
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alessio Petrone
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed.
6, via Cintia, 80126 Napoli, Italy
| | - Nadia Rega
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed.
6, via Cintia, 80126 Napoli, Italy
- CRIB,
Centro Interdipartimentale di Ricerca sui Biomateriali, Piazzale Tecchio 80, I-80125 Napoli, Italy
| |
Collapse
|
9
|
Perrella F, Petrone A, Rega N. Understanding Charge Dynamics in Dense Electronic Manifolds in Complex Environments. J Chem Theory Comput 2023; 19:626-639. [PMID: 36602443 PMCID: PMC9878732 DOI: 10.1021/acs.jctc.2c00794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 01/06/2023]
Abstract
Photoinduced charge transfer (CT) excited states and their relaxation mechanisms can be highly interdependent on the environment effects and the consequent changes in the electronic density. Providing a molecular interpretation of the ultrafast (subpicosecond) interplay between initial photoexcited states in such dense electronic manifolds in condensed phase is crucial for improving and understanding such phenomena. Real-time time-dependent density functional theory is here the method of choice to observe the charge density, explicitly propagated in an ultrafast time domain, along with all time-dependent properties that can be easily extracted from it. A designed protocol of analysis for real-time electronic dynamics to be applied to time evolving electronic density related properties to characterize both in time and in space CT dynamics in complex systems is here introduced and validated, proposing easy to be read cross-correlation maps. As case studies to test such tools, we present the photoinduced charge-transfer electronic dynamics of 5-benzyluracil, a mimic of nucleic acid/protein interactions, and the metal-to-ligand charge-transfer electronic dynamics in water solution of [Ru(dcbpy)2(NCS)2]4-, dcbpy = (4,4'-dicarboxy-2,2'-bipyridine), or "N34-", a dye sensitizer for solar cells. Electrostatic and explicit ab initio treatment of solvent molecules have been compared in the latter case, revealing the importance of the accurate modeling of mutual solute-solvent polarization on CT kinetics. We observed that explicit quantum mechanical treatment of solvent slowed down the charge carriers mobilities with respect to the gas-phase. When all water molecules were modeled instead as simpler embedded point charges, the electronic dynamics appeared enhanced, with a reduced hole-electron distance and higher mean velocities due to the close fixed charges and an artificially increased polarization effect. Such analysis tools and the presented case studies can help to unveil the influence of the electronic manifold, as well as of the finite temperature-induced structural distortions and the environment on the ultrafast charge motions.
Collapse
Affiliation(s)
- Fulvio Perrella
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
| | - Alessio Petrone
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138, Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli, Italia
| | - Nadia Rega
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138, Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli, Italia
- CRIB,
Centro Interdipartimentale di Ricerca sui Biomateriali, Piazzale Tecchio 80, I-80125, Napoli, Italy
| |
Collapse
|
10
|
Šrut A, Mai S, Sazanovich IV, Heyda J, Vlček A, González L, Záliš S. Nonadiabatic excited-state dynamics of ReCl(CO) 3(bpy) in two different solvents. Phys Chem Chem Phys 2022; 24:25864-25877. [PMID: 36279148 DOI: 10.1039/d2cp02981b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present a study of excited-states relaxation of the complex ReCl(CO)3(bpy) (bpy = 2,2-bipyridine) using a nonadiabatic TD-DFT dynamics on spin-mixed potential energy surfaces in explicit acetonitrile (ACN) and dimethylsulfoxide (DMSO) solutions up to 800 fs. ReCl(CO)3(bpy) belongs to a group of important photosensitizers which show ultrafast biexponential subpicosecond fluorescence decay kinetics. The choice of solvents was motivated by the different excited-state relaxation dynamics observed in subpicosecond time-resolved IR (TRIR) experiments. Simulations of intersystem crossing (ISC) showed the development of spin-mixed states in both solvents. Transformation of time-dependent populations of spin-mixed states enabled to monitor the temporal evolution of individual singlet and triplet states, fitting of bi-exponential decay kinetics, and simulating the time-resolved fluorescence spectra that show only minor differences between the two solvents. Analysis of structural relaxation and solvent reorganization employing time-resolved proximal distribution functions pointed to the factors influencing the fluorescence decay time constants. Nonadiabatic dynamics simulations of time-evolution of electronic, molecular, and solvent structures emerge as a powerful technique to interpret time-resolved spectroscopic data and ultrafast photochemical reactivity.
Collapse
Affiliation(s)
- Adam Šrut
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague, Czech Republic.
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic.
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, UK
| | - Jan Heyda
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague, Czech Republic.
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic.
| | - Antonín Vlček
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague, Czech Republic.
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague, Czech Republic.
| |
Collapse
|
11
|
Cebrían C, Pastore M, Monari A, Assfeld X, Gros PC, Haacke S. Ultrafast Spectroscopy of Fe(II) Complexes Designed for Solar Energy Conversion: Current Status and Open Questions. Chemphyschem 2022; 23:e202100659. [DOI: 10.1002/cphc.202100659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | | | - Stefan Haacke
- University of Strasbourg: Universite de Strasbourg IPCMS 23, rue du Loess 67034 Strasbourg FRANCE
| |
Collapse
|
12
|
Pižl M, Hunter BM, Sazanovich IV, Towrie M, Gray HB, Záliš S, Vlček A. Excitation-Wavelength-Dependent Photophysics of d 8d 8 Di-isocyanide Complexes. Inorg Chem 2021; 61:2745-2759. [PMID: 34905688 DOI: 10.1021/acs.inorgchem.1c02645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binuclear Rh(I) and Ir(I) TMB (2,5-dimethyl-2,5-diisocyanohexane) and dimen (1,8-diisocyanomenthane) complexes possess dσ*pσ and dπpσ singlet and triplet excited states that can be selectively excited in the visible and UV spectral regions. Using perturbational spin-orbit TDDFT, we unraveled the detailed character and spin mixing of these electronic transitions and found that delocalization of pσ and dπ orbitals over C≡N- groups makes C≡N stretching vibrations sensitive reporters of electron density and structural changes upon electronic excitation. Picosecond time-resolved infrared spectra measured after visible light, 375 nm, and 316 nm excitation revealed excitation-wavelength-dependent deactivation cascades. Visible light irradiation prepares the 1dσ*pσ state that, after one or two (sub)picosecond relaxation steps, undergoes 70-1300 ps intersystem crossing to 3dσ*pσ, which is faster for the more flexible dimen complexes. UV-excited 1,3dπpσ states decay with (sub)picosecond kinetics through a manifold of high-lying triplet and mixed-spin states to 3dσ*pσ with lifetimes in the range of 6-19 ps (316 nm) and 19-43 ps (375 nm, Ir only), bypassing 1dσ*pσ. Most excited-state conversion and some relaxation steps are accompanied by direct decay to the ground state that is especially pronounced for the most flexible long/eclipsed Rh(dimen) conformer.
Collapse
Affiliation(s)
- Martin Pižl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic.,Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Bryan M Hunter
- Rowland Institute at Harvard, Cambridge, Massachusetts 02142, United States
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic
| | - Antonín Vlček
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic.,Department of Chemistry, Queen Mary University of London, E1 4NS London, U.K
| |
Collapse
|
13
|
Perrella F, Petrone A, Rega N. Direct observation of the solvent organization and nuclear vibrations of [Ru(dcbpy) 2(NCS) 2] 4-, [dcbpy = (4,4'-dicarboxy-2,2'-bipyridine)], via ab initio molecular dynamics. Phys Chem Chem Phys 2021; 23:22885-22896. [PMID: 34668499 DOI: 10.1039/d1cp03151a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Environmental effects can drastically influence the optical properties and photoreactivity of molecules, particularly in the presence of polar and/or protic solvents. In this work we investigate a negatively charged Ru(II) complex, [Ru(dcbpy)2(NCS)2]4- [dcbpy = (4,4'-dicarboxy-2,2'-bipyridine)], in water solution, since this system belongs to a broader class of transition-metal compounds undergoing upon photo-excitation rapid and complex charge transfer (CT) dynamics, which can be dictated by structural rearrangement and solvent environment. Ab initio molecular dynamics (AIMD) relying on a hybrid quantum/molecular mechanics scheme is used to probe the equilibrium microsolvation around the metal complex in terms of radial distribution functions of the main solvation sites and solvent effects on the overall equilibrium structure. Then, using our AIMD-based generalized normal mode approach, we investigate how the ligand vibrational spectroscopic features are affected by water solvation, also contributing to the interpretation of experimental Infra-Red spectra. Two solvation sites are found for the ligands: the sulfur and the oxygen sites can interact on average with ∼4 and ∼3 water molecules, respectively, where a stronger interaction of the oxygen sites is highlighted. On average an overall dynamic distortion of the C2 symmetric gas-phase structure was found to be induced by water solvation. Vibrational analysis reproduced experimental values for ligand symmetric and asymmetric stretchings, linking the observed shifts with respect to the gas-phase to a complex solvent distribution around the system. This is the groundwork for future excited-state nuclear and electronic dynamics to monitor non-equilibrium processes of CT excitation in complex environments, such as exciton migration in photovoltaic technologies.
Collapse
Affiliation(s)
- Fulvio Perrella
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy.
| | - Alessio Petrone
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy. .,Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138, Napoli, Italy
| | - Nadia Rega
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy. .,Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138, Napoli, Italy.,CRIB, Centro Interdipartimentale di Ricerca sui Biomateriali, Piazzale Tecchio 80, I-80125, Napoli, Italy
| |
Collapse
|
14
|
Farrow GA, Quick M, Kovalenko SA, Wu G, Sadler A, Chekulaev D, Chauvet AAP, Weinstein JA, Ernsting NP. On the intersystem crossing rate in a Platinum(II) donor-bridge-acceptor triad. Phys Chem Chem Phys 2021; 23:21652-21663. [PMID: 34580688 DOI: 10.1039/d1cp03471e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rates of ultrafast intersystem crossing in acceptor-bridge-donor molecules centered on Pt(II) acetylides are investigated. Specifically, a Pt(II) trans-acetylide triad NAP--Pt--Ph-CH2-PTZ [1], with acceptor 4-ethynyl-N-octyl-1,8-naphthalimide (NAP) and donor phenothiazine (PTZ), is examined in detail. We have previously shown that optical excitation in [1] leads to a manifold of singlet charge-transfer states, S*, which evolve via a triplet charge-transfer manifold into a triplet state 3NAP centered on the acceptor ligand and partly to a charge-separated state 3CSS (NAP--Pt-PTZ+). A complex cascade of electron transfer processes was observed, but intersystem crossing (ISC) rates were not explicitly resolved due to lack of spin selectivity of most ultrafast spectroscopies. Here we revisit the question of ISC with a combination and complementary analysis of (i) transient absorption, (ii) ultrafast broadband fluorescence upconversion, FLUP, which is only sensitive to emissive states, and (iii) femtosecond stimulated Raman spectroscopy, FSR. Raman resonance conditions allow us to observe S* and 3NAP exclusively by FSR, through vibrations which are pertinent only to these two states. This combination of methods enabled us to extract the intersystem crossing rates that were not previously accessible. Multiple timescales (1.6 ps to ∼20 ps) are associated with the rise of triplet species, which can now be assigned conclusively to multiple ISC pathways from a manifold of hot charge-transfer singlet states. The analysis is consistent with previous transient infrared spectroscopy data. A similar rate of ISC, up to 20 ps, is observed in the trans-acetylide NAP--Pt--Ph [2] which maintains two acetylide groups across the platinum center but lacks a donor unit, whilst removal of one acetylide group in mono-acetylide NAP--Pt-Cl [3] leads to >10-fold deceleration of the intersystem crossing process. Our work provides insight on the intersystem crossing dynamics of the organo-metallic complexes, and identifies a general method based on complementary ultrafast spectroscopies to disentangle complex spin, electronic and vibrational processes following photoexcitation.
Collapse
Affiliation(s)
- G A Farrow
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - M Quick
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - S A Kovalenko
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - G Wu
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - A Sadler
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - D Chekulaev
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - A A P Chauvet
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - J A Weinstein
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - N P Ernsting
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
15
|
Mewes L, Ingle RA, Al Haddad A, Chergui M. Broadband visible two-dimensional spectroscopy of molecular dyes. J Chem Phys 2021; 155:034201. [PMID: 34293898 DOI: 10.1063/5.0053554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional Fourier transform spectroscopy is a promising technique to study ultrafast molecular dynamics. Similar to transient absorption spectroscopy, a more complete picture of the dynamics requires broadband laser pulses to observe transient changes over a large enough bandwidth, exceeding the inhomogeneous width of electronic transitions, as well as the separation between the electronic or vibronic transitions of interest. Here, we present visible broadband 2D spectra of a series of dye molecules and report vibrational coherences with frequencies up to ∼1400 cm-1 that were obtained after improvements to our existing two-dimensional Fourier transform setup [Al Haddad et al., Opt. Lett. 40, 312-315 (2015)]. The experiment uses white light from a hollow core fiber, allowing us to acquire 2D spectra with a bandwidth of 200 nm, in a range between 500 and 800 nm, and with a temporal resolution of 10-15 fs. 2D spectra of nile blue, rhodamine 800, terylene diimide, and pinacyanol iodide show vibronic spectral features with at least one vibrational mode and reveal information about structural motion via coherent oscillations of the 2D signals during the population time. For the case of pinacyanol iodide, these observations are complemented by its Raman spectrum, as well as the calculated Raman activity at the ground- and excited-state geometry.
Collapse
Affiliation(s)
- Lars Mewes
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Rebecca A Ingle
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Andre Al Haddad
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Niedzwiedzki DM. Photophysical properties of N719 and Z907 dyes, benchmark sensitizers for dye-sensitized solar cells, at room and low temperature. Phys Chem Chem Phys 2021; 23:6182-6189. [PMID: 33687384 DOI: 10.1039/d0cp06629j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two benchmark sensitizers used for dye-sensitized solar cells, ruthenium polypyridyl N719 and Z907 dyes were investigated with spectroscopic methods as steady-state absorption, time-gated phosphorescence and femto-/nanosecond time-resolved transient absorption at room temperature and at 160 K. Aim of this study was to perform comprehensive photophysical study of dye excited singlet and triplet metal-to-ligand charge transfer (MLCT) states including states lifetimes, dependency on temperature and dye concentration and obtain detailed information on the excitation decay pathway. Transient absorption and phosphorescence decay data provided a clearer picture of the dynamics of the excited MLCT states. Based on data analysis, the excitation decay pathway consists of rapid intersystem crossing to the triplet MLCT state that undergoes state solvation and vibrational relaxation. It was demonstrated that the lifetime of the fully relaxed triplet MLCT is also strongly dependent on dye concentration for both molecules, providing a viable explanation for a large inconsistency seen in previous studies.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA. and Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
17
|
Sundaram GA, Vaithinathan K, Anbalagan K. New monomeric mixed-ligand complex of iron(III)-3-chloropyridine: Synthesis, structure, luminescence, electrochemical and magnetic properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Heindl M, Hongyan J, Hua SA, Oelschlegel M, Meyer F, Schwarzer D, González L. Excited-State Dynamics of [Ru( S-Sbpy)(bpy) 2] 2+ to Form Long-Lived Localized Triplet States. Inorg Chem 2021; 60:1672-1682. [PMID: 33434007 PMCID: PMC7880568 DOI: 10.1021/acs.inorgchem.0c03163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The
novel photosensitizer [Ru(S–Sbpy)(bpy)2]2+ harbors two distinct sets of excited states
in the UV/Vis region of the absorption spectrum located on either
bpy or S–Sbpy ligands. Here, we address the question
of whether following excitation into these two types of states could
lead to the formation of different long-lived excited states from
where energy transfer to a reactive species could occur. Femtosecond
transient absorption spectroscopy identifies the formation of the
final state within 80 fs for both excitation wavelengths. The recorded
spectra hint at very similar dynamics following excitation toward
either the parent or sulfur-decorated bpy ligands, indicating ultrafast
interconversion into a unique excited-state species regardless of
the initial state. Non-adiabatic surface hopping dynamics simulations
show that ultrafast spin–orbit-mediated mixing of the states
within less than 50 fs strongly increases the localization of the
excited electron at the S–Sbpy ligand. Extensive
structural relaxation within this sulfurated ligand is possible, via
S–S bond cleavage that results in triplet state energies that
are lower than those in the analogue [Ru(bpy)3]2+. This structural relaxation upon localization of the charge on S–Sbpy is found to be the reason for the formation of
a single long-lived species independent of the excitation wavelength. We investigate selective excitation in
two types of ligands
present in [Ru(S−Sbpy)(bpy)2]2+. Femtosecond transient absorption spectroscopy identifies the formation
of the same final state within 80 fs for both excitation wavelengths.
Surface hopping simulations reveal ultrafast mixing of singlet and
triplet states within less than 50 fs. Energy lowering due to S−S
bond cleavage is identified as the driving factor for convergence
to a single final state.
Collapse
Affiliation(s)
- Moritz Heindl
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Jiang Hongyan
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Shao-An Hua
- Institute of Inorganic Chemistry, University of Göttingen, D-37077 Göttingen, Germany
| | - Manuel Oelschlegel
- Institute of Inorganic Chemistry, University of Göttingen, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, D-37077 Göttingen, Germany
| | - Dirk Schwarzer
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria.,Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
19
|
Abstract
Coordination compounds, characterized by fascinating and tunable electronic properties, are capable of binding easily to proteins, polymers, wires and DNA. Upon irradiation, these molecular systems develop functions finding applications in solar cells, photocatalysis, luminescent and conformational probes, electron transfer triggers and diagnostic or therapeutic tools. The control of these functions is activated by the light wavelength, the metal/ligand cooperation and the environment within the first picoseconds (ps). After a brief summary of the theoretical background, this perspective reviews case studies, from 1st row to 3rd row transition metal complexes, that illustrate how spin-orbit, vibronic coupling and quantum effects drive the photophysics of this class of molecules at the early stage of the photoinduced elementary processes within the fs-ps time scale range.
Collapse
Affiliation(s)
- Chantal Daniel
- Laboratoire de Chimie Quantique, Université de Strasbourg, CNRS UMR7177, Institut Le Bel, 4 Rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|
20
|
Melnikov AA, Pozdnyakov IP, Chekalin SV, Glebov EM. Direct measurement of ultrafast intersystem crossing time for the PtIVBr62− complex. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Moll J, Wang C, Päpcke A, Förster C, Resch‐Genger U, Lochbrunner S, Heinze K. Green-Light Activation of Push-Pull Ruthenium(II) Complexes. Chemistry 2020; 26:6820-6832. [PMID: 32162414 PMCID: PMC7318647 DOI: 10.1002/chem.202000871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/09/2020] [Indexed: 11/07/2022]
Abstract
Synthesis, characterization, electrochemistry, and photophysics of homo- and heteroleptic ruthenium(II) complexes [Ru(cpmp)2 ]2+ (22+ ) and [Ru(cpmp)(ddpd)]2+ (32+ ) bearing the tridentate ligands 6,2''-carboxypyridyl-2,2'-methylamine-pyridyl-pyridine (cpmp) and N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine (ddpd) are reported. The complexes possess one (32+ ) or two (22+ ) electron-deficient dipyridyl ketone fragments as electron-accepting sites enabling intraligand charge transfer (ILCT), ligand-to-ligand charge transfer (LL'CT) and low-energy metal-to-ligand charge transfer (MLCT) absorptions. The latter peak around 544 nm (green light). Complex 22+ shows 3 MLCT phosphorescence in the red to near-infrared spectral region at room temperature in deaerated acetonitrile solution with an emission quantum yield of 1.3 % and a 3 MLCT lifetime of 477 ns, whereas 32+ is much less luminescent. This different behavior is ascribed to the energy gap law and the shape of the parasitic excited 3 MC state potential energy surface. This study highlights the importance of the excited-state energies and geometries for the actual excited-state dynamics. Aromatic and aliphatic amines reductively quench the excited state of 22+ paving the way to photocatalytic applications using low-energy green light as exemplified with the green-light-sensitized thiol-ene click reaction.
Collapse
Affiliation(s)
- Johannnes Moll
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Cui Wang
- Division 1.2 BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard Willstätter-Straße 1112489BerlinGermany
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Ayla Päpcke
- Institute for Physics and Department of Life, Light and MatterUniversity of Rostock18051RostockGermany
| | - Christoph Förster
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Ute Resch‐Genger
- Division 1.2 BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard Willstätter-Straße 1112489BerlinGermany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and MatterUniversity of Rostock18051RostockGermany
| | - Katja Heinze
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
22
|
Valadan M, Pomarico E, Della Ventura B, Gesuele F, Velotta R, Amoresano A, Pinto G, Chergui M, Improta R, Altucci C. A multi-scale time-resolved study of photoactivated dynamics in 5-benzyl uracil, a model for DNA/protein interactions. Phys Chem Chem Phys 2019; 21:26301-26310. [PMID: 31686060 DOI: 10.1039/c9cp03839f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We combine fluorescence up-conversion and time correlated single photon counting experiments to investigate the 5-benzyl uracil excited state dynamics in methanol from 100 fs up to several ns. This molecule has been proposed as a model for DNA/protein interactions. Our results show emission bands at about 310 and 350 nm that exhibit bi-exponential sub-ps decays. Calculations, including solvent effects by a mixed discrete-continuum model, indicate that the Franck Condon region is characterized by significant coupling between the excited states of the benzyl and the uracil moieties, mirrored by the short-lived emission at 310 nm. Two main ground state recovery pathways are identified, both contributing to the 350 nm emission. The first 'photophysical' decay path involves a ππ* excited state localized on the uracil and is connected to the ground electronic state by an easily accessible crossing with S0, accounting for the short lifetime component. Simulations indicate that a possible second pathway is characterized by exciplex formation, with partial benzene → uracil charge transfer character, that may lead instead to photocyclization. The relevance of our results is discussed in view of the photoactivated dynamics of DNA/protein complexes, with implications on their interaction mechanisms.
Collapse
Affiliation(s)
- Mohammadhassan Valadan
- Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, 80126, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vibronic coherence evolution in multidimensional ultrafast photochemical processes. Nat Commun 2019; 10:5621. [PMID: 31819052 PMCID: PMC6901526 DOI: 10.1038/s41467-019-13503-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
The complex choreography of electronic, vibrational, and vibronic couplings used by photoexcited molecules to transfer energy efficiently is remarkable, but an unambiguous description of the temporally evolving vibronic states governing these processes has proven experimentally elusive. We use multidimensional electronic-vibrational spectroscopy to identify specific time-dependent excited state vibronic couplings involving multiple electronic states, high-frequency vibrations, and low-frequency vibrations which participate in ultrafast intersystem crossing and subsequent relaxation of a photoexcited transition metal complex. We discover an excited state vibronic mechanism driving long-lived charge separation consisting of an initial electronically-localized vibrational wavepacket which triggers delocalization onto two charge transfer states after propagating for ~600 femtoseconds. Electronic delocalization consequently occurs through nonadiabatic internal conversion driven by a 50 cm-1 coupling resulting in vibronic coherence transfer lasting for ~1 picosecond. This study showcases the power of multidimensional electronic-vibrational spectroscopy to elucidate complex, non-equilibrium energy and charge transfer mechanisms involving multiple molecular coordinates.
Collapse
|
24
|
Abstract
After presenting the basic theoretical models of excitation energy transfer and charge transfer, I describe some of the novel experimental methods used to probe them. Finally, I discuss recent results concerning ultrafast energy and charge transfer in biological systems, in chemical systems and in photovoltaics based on sensitized transition metal oxides.
Collapse
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Lausanne Centre for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
25
|
Fang YG, Peng LY, Liu XY, Fang WH, Cui G. QM/MM nonadiabatic dynamics simulation on ultrafast excited-state relaxation in osmium(II) compounds in solution. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Liu L, Agathangelou D, Roland T, Crégut O, Duchanois T, Beley M, Léonard J, Gros P, Haacke S. High sensitivity fluorescence up-conversion spectroscopy of 3MLCT emission of metal-organic complexes. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201920509009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We demonstrate the implementation of a broadband fluorescence up-conversion set-up with high signal-to-noise ratio and dynamic range allowing for the detection of weak luminescence from triplet states in Fe(II) NHC complexes. Based on the experimentally determined radiative rates and the emission spectra, these states have dominant MLCT character.
Collapse
|
27
|
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Bräm O, Cannizzo A, Chergui M. Ultrafast Broadband Fluorescence Up-conversion Study of the Electronic Relaxation of Metalloporphyrins. J Phys Chem A 2019; 123:1461-1468. [DOI: 10.1021/acs.jpca.9b00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olivier Bräm
- Laboratoire de Spectroscopie Ultrarapide, ISIC and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| | - Andrea Cannizzo
- Laboratoire de Spectroscopie Ultrarapide, ISIC and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide, ISIC and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| |
Collapse
|
29
|
Nazari M, Bösch CD, Rondi A, Francés-Monerris A, Marazzi M, Lognon E, Gazzetto M, Langenegger SM, Häner R, Feurer T, Monari A, Cannizzo A. Ultrafast dynamics in polycyclic aromatic hydrocarbons: the key case of conical intersections at higher excited states and their role in the photophysics of phenanthrene monomer. Phys Chem Chem Phys 2019; 21:16981-16988. [DOI: 10.1039/c9cp03147b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proper interpretation of phenanthrene's and similar PAHs’ photocycle relies on two higher excited state relaxations due to the simultaneous presence of non-adiabatic and adiabatic transitions.
Collapse
Affiliation(s)
- M. Nazari
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - C. D. Bösch
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - A. Rondi
- Institute of Applied Physics
- University of Bern
- Switzerland
| | | | - M. Marazzi
- Université de Lorraine & CNRS
- Nancy
- France
- Department of Analytical Chemistry
- Physical Chemistry and Chemical Engineering
| | - E. Lognon
- Université de Lorraine & CNRS
- Nancy
- France
| | - M. Gazzetto
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - S. M. Langenegger
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - R. Häner
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - T. Feurer
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - A. Monari
- Université de Lorraine & CNRS
- Nancy
- France
| | - A. Cannizzo
- Institute of Applied Physics
- University of Bern
- Switzerland
| |
Collapse
|
30
|
Gaynor JD, Petrone A, Li X, Khalil M. Mapping Vibronic Couplings in a Solar Cell Dye with Polarization-Selective Two-Dimensional Electronic-Vibrational Spectroscopy. J Phys Chem Lett 2018; 9:6289-6295. [PMID: 30339410 DOI: 10.1021/acs.jpclett.8b02752] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study uses polarization-selective two-dimensional electronic-vibrational (2D EV) spectroscopy to map intramolecular charge transfer in the well-known solar cell dye, [Ru(dcbpy)2(NCS)2]4- (N34-), dissolved in water. A static snapshot of the vibronic couplings present in aqueous N34- is reported. At least three different initially excited singlet metal-to-ligand charge-transfer (MLCT) states are observed to be coupled to vibrational modes probed in the lowest energy triplet MLCT state, emphasizing the role of vibronic coupling in intersystem crossing. Angles between electronic and vibrational transition dipole moments are extracted from spectrally isolated 2D EV peaks and compared with calculations to develop a microscopic description for how vibrations participate with 1MLCT states in charge transfer and intersystem crossing. These results suggest that 1MLCT states with significant electron density in the electron-donating plane formed by the Ru-(NCS)2 will participate strongly in charge transfer through these vibronically coupled degrees of freedom.
Collapse
Affiliation(s)
- James D Gaynor
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Alessio Petrone
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Xiaosong Li
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Munira Khalil
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| |
Collapse
|
31
|
Bircher MP, Liberatore E, Browning NJ, Brickel S, Hofmann C, Patoz A, Unke OT, Zimmermann T, Chergui M, Hamm P, Keller U, Meuwly M, Woerner HJ, Vaníček J, Rothlisberger U. Nonadiabatic effects in electronic and nuclear dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061510. [PMID: 29376108 PMCID: PMC5760266 DOI: 10.1063/1.4996816] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/19/2017] [Indexed: 05/25/2023]
Abstract
Due to their very nature, ultrafast phenomena are often accompanied by the occurrence of nonadiabatic effects. From a theoretical perspective, the treatment of nonadiabatic processes makes it necessary to go beyond the (quasi) static picture provided by the time-independent Schrödinger equation within the Born-Oppenheimer approximation and to find ways to tackle instead the full time-dependent electronic and nuclear quantum problem. In this review, we give an overview of different nonadiabatic processes that manifest themselves in electronic and nuclear dynamics ranging from the nonadiabatic phenomena taking place during tunnel ionization of atoms in strong laser fields to the radiationless relaxation through conical intersections and the nonadiabatic coupling of vibrational modes and discuss the computational approaches that have been developed to describe such phenomena. These methods range from the full solution of the combined nuclear-electronic quantum problem to a hierarchy of semiclassical approaches and even purely classical frameworks. The power of these simulation tools is illustrated by representative applications and the direct confrontation with experimental measurements performed in the National Centre of Competence for Molecular Ultrafast Science and Technology.
Collapse
Affiliation(s)
- Martin P Bircher
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Elisa Liberatore
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nicholas J Browning
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | - Aurélien Patoz
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Oliver T Unke
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Tomáš Zimmermann
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zürich, Switzerland
| | - Ursula Keller
- Physics Department, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Hans-Jakob Woerner
- Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Conservation of vibrational coherence in ultrafast electronic relaxation: The case of diplatinum complexes in solution. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Baldini E, Palmieri T, Rossi T, Oppermann M, Pomarico E, Auböck G, Chergui M. Interfacial Electron Injection Probed by a Substrate-Specific Excitonic Signature. J Am Chem Soc 2017; 139:11584-11589. [PMID: 28762734 DOI: 10.1021/jacs.7b06322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ultrafast interfacial electron transfer in sensitized solar cells has mostly been probed by visible-to-terahertz radiation, which is sensitive to the free carriers in the conduction band of the semiconductor substrate. Here, we demonstrate the use of deep-ultraviolet continuum pulses to probe the interfacial electron transfer, by detecting a specific excitonic transition in both N719-sensitized anatase TiO2 and wurtzite ZnO nanoparticles. Our results are compared to those obtained on bare nanoparticles upon above-gap excitation. We show that the signal upon electron injection from the N719 dye into TiO2 is dominated by long-range Coulomb screening of the final states of the excitonic transitions, whereas in sensitized ZnO it is dominated by phase-space filling. The present approach offers a possible route to detecting interfacial electron transfer in a broad class of systems, including other transition metal oxides or sensitizers.
Collapse
Affiliation(s)
- Edoardo Baldini
- Laboratory of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Tania Palmieri
- Laboratory of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Thomas Rossi
- Laboratory of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Malte Oppermann
- Laboratory of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Enrico Pomarico
- Laboratory of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Gerald Auböck
- Laboratory of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Majed Chergui
- Laboratory of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Atkins AJ, González L. Trajectory Surface-Hopping Dynamics Including Intersystem Crossing in [Ru(bpy) 3] 2. J Phys Chem Lett 2017; 8:3840-3845. [PMID: 28766339 DOI: 10.1021/acs.jpclett.7b01479] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Surface-hopping dynamics coupled to linear response TDDFT and explicit nonadiabatic and spin-orbit couplings have been used to model the ultrafast intersystem crossing (ISC) dynamics in [Ru(bpy)3]2+. Simulations using an ensemble of trajectories starting from the singlet metal-to-ligand charge transfer (1MLCT) band show that the manifold of 3MLCT triplet states is first populated from high-lying singlet states within 26 ± 3 fs. ISC competes with an intricate internal conversion relaxation process within the singlet manifold to the lowest singlet state. Normal-mode analysis and principal component analysis, combined with further dynamical simulations where the nuclei are frozen, unequivocally demonstrate that it is not only the high density of states and the large spin-orbit couplings of the system that promote ISC. Instead, geometrical relaxation involving the nitrogen atoms is required to allow for state mixing and efficient triplet population transfer.
Collapse
Affiliation(s)
- Andrew J Atkins
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna , Währinger Straße 17, A-1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna , Währinger Straße 17, A-1090 Vienna, Austria
| |
Collapse
|
35
|
|
36
|
Chergui M, Collet E. Photoinduced Structural Dynamics of Molecular Systems Mapped by Time-Resolved X-ray Methods. Chem Rev 2017; 117:11025-11065. [DOI: 10.1021/acs.chemrev.6b00831] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Majed Chergui
- Laboratoire
de Spectroscopie Ultrarapide (LSU), ISIC, and Lausanne Centre for
Ultrafast Science (LACUS), Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Eric Collet
- Univ Rennes 1, CNRS, Institut de Physique de Rennes, UMR 6251, UBL, Rennes F-35042, France
| |
Collapse
|
37
|
Reinhard M, Auböck G, Besley NA, Clark IP, Greetham GM, Hanson-Heine MWD, Horvath R, Murphy TS, Penfold TJ, Towrie M, George MW, Chergui M. Photoaquation Mechanism of Hexacyanoferrate(II) Ions: Ultrafast 2D UV and Transient Visible and IR Spectroscopies. J Am Chem Soc 2017; 139:7335-7347. [DOI: 10.1021/jacs.7b02769] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marco Reinhard
- Ecole polytechnique Fédérale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, and Lausanne Centre
for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland
| | - Gerald Auböck
- Ecole polytechnique Fédérale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, and Lausanne Centre
for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland
| | - Nicholas A. Besley
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Ian P. Clark
- Central
Laser Facility, Research Complex at Harwell Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | | | - Raphael Horvath
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Thomas S. Murphy
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Thomas J. Penfold
- School
of Chemistry, Newcastle University, Newcastle upon Tyne NE1
7RU, United Kingdom
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Michael W. George
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Department
of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China
| | - Majed Chergui
- Ecole polytechnique Fédérale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, and Lausanne Centre
for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Hofbeck T, Lam YC, Kalbáč M, Záliš S, Vlček A, Yersin H. Thermally Tunable Dual Emission of the d(8)-d(8) Dimer [Pt2(μ-P2O5(BF2)2)4](4). Inorg Chem 2016; 55:2441-9. [PMID: 26909653 DOI: 10.1021/acs.inorgchem.5b02839] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High-resolution fluorescence, phosphorescence, as well as related excitation spectra, and, in particular, the emission decay behavior of solid [Bu4N]4[Pt2(μ-P2O5(BF2)2)4], abbreviated Pt(pop-BF2), have been investigated over a wide temperature range, 1.3-310 K. We focus on the lowest excited states that result from dσ*pσ (5dz(2)-6pz) excitations, i.e., the singlet state S1 (of (1)A2u symmetry in D4h) and the lowest triplet T1, which splits into spin-orbit substates A1u((3)A2u) and Eu((3)A2u). After optical excitation, an unusually slow intersystem crossing (ISC) is observed. As a consequence, the compound shows efficient dual emission, consisting of blue fluorescence and green phosphorescence with an overall emission quantum yield of ∼ 100% over the investigated temperature range. Our investigation sheds light on this extraordinary dual emission behavior, which is unique for a heavy-atom transition metal compound. Direct ISC processes in Pt(pop-BF2) are largely forbidden due to spin-, symmetry-, and Franck-Condon overlap-restrictions and, therefore, the ISC time is as long as 29 ns for T < 100 K. With temperature increase, two different thermally activated pathways, albeit still relatively slow, are promoted by spin-vibronic and vibronic mechanisms, respectively. Thus, distinct temperature dependence of the ISC processes results and, as a consequence, also of the fluorescence/phosphorescence intensity ratio. The phosphorescence lifetime also is temperature-dependent, reflecting the relative population of the triplet T1 substates Eu and A1u. The highly resolved phosphorescence shows a ∼ 220 cm(-1) red shift below 10 K, attributable to zero-field splitting of 40 cm(-1) plus a promoting vibration of 180 cm(-1).
Collapse
Affiliation(s)
- Thomas Hofbeck
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg , Universitätstrasse 31, D-93040 Regensburg, Germany
| | - Yan Choi Lam
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Martin Kalbáč
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Antonín Vlček
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , Dolejškova 3, CZ-182 23 Prague, Czech Republic.,School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | - Hartmut Yersin
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg , Universitätstrasse 31, D-93040 Regensburg, Germany
| |
Collapse
|
39
|
Ramos LD, Sampaio RN, de Assis FF, de Oliveira KT, Homem-de-Mello P, Patrocinio AOT, Frin KPM. Contrasting photophysical properties of rhenium(i) tricarbonyl complexes having carbazole groups attached to the polypyridine ligand. Dalton Trans 2016; 45:11688-98. [DOI: 10.1039/c6dt01112h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fac-[Re(CO)3(cbz2phen)(L)]0/+1 complexes showed a remarkable presence of the ILCTcbz2phen fluorescence in addition to the usually observed 3MLCTRe→cbz2phen. In PMMA films the emission is completely turned into a triplet excited state manifold.
Collapse
Affiliation(s)
- L. D. Ramos
- Universidade Federal do ABC - UFABC
- Santo Andre
- 09210-170 Brazil
| | - R. N. Sampaio
- Universidade Federal de Uberlândia – UFU
- Uberlândia
- 38400-902 Brazil
| | - F. F. de Assis
- Universidade Federal de São Carlos – UFSCar
- São Carlos
- 13565-905 Brazil
| | - K. T. de Oliveira
- Universidade Federal de São Carlos – UFSCar
- São Carlos
- 13565-905 Brazil
| | | | | | - K. P. M. Frin
- Universidade Federal do ABC - UFABC
- Santo Andre
- 09210-170 Brazil
| |
Collapse
|
40
|
Messina F, Pomarico E, Silatani M, Baranoff E, Chergui M. Ligand-centred fluorescence and electronic relaxation cascade at vibrational time scales in transition-metal complexes. J Phys Chem Lett 2015; 6:4475-4480. [PMID: 26509329 DOI: 10.1021/acs.jpclett.5b02146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using femtosecond-resolved photoluminescence up-conversion, we report the observation of the fluorescence of the high-lying ligand-centered (LC) electronic state upon 266 nm excitation of an iridium complex, Ir(ppy)3, with a lifetime of 70 ± 10 fs. It is accompanied by a simultaneous emission of all lower-lying electronic states, except the lowest triplet metal-to-ligand charge-transfer ((3)MLCT) state that shows a rise on the same time scale. Thus, we observe the departure, the intermediate steps, and the arrival of the relaxation cascade spanning ∼1.6 eV from the (1)LC state to the lowest (3)MLCT state, which then yields the long-lived luminescence of the molecule. This represents the first measurement of the total relaxation time over an entire cascade of electronic states in a polyatomic molecule. We find that the relaxation cascade proceeds in ≤10 fs, which is faster than some of the highest-frequency modes of the system. We invoke the participation of the latter modes in conical intersections and their overdamping to low-frequency intramolecular modes. On the basis of literature, we also conclude that this behavior is not specific to transition-metal complexes but also applies to organic molecules.
Collapse
Affiliation(s)
- Fabrizio Messina
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC, FSB , CH-1015 Lausanne, Switzerland
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo , Via Archirafi 36, 90123 Palermo, Italy
| | - Enrico Pomarico
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC, FSB , CH-1015 Lausanne, Switzerland
| | - Mahsa Silatani
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC, FSB , CH-1015 Lausanne, Switzerland
| | - Etienne Baranoff
- School of Chemistry, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC, FSB , CH-1015 Lausanne, Switzerland
| |
Collapse
|
41
|
On the mechanism of vibrational control of light-induced charge transfer in donor–bridge–acceptor assemblies. Nat Chem 2015; 7:689-95. [DOI: 10.1038/nchem.2327] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/15/2015] [Indexed: 11/08/2022]
|
42
|
Kvapilová H, Sattler W, Sattler A, Sazanovich IV, Clark IP, Towrie M, Gray HB, Záliš S, Vlček A. Electronic Excited States of Tungsten(0) Arylisocyanides. Inorg Chem 2015; 54:8518-28. [PMID: 26267759 DOI: 10.1021/acs.inorgchem.5b01203] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
W(CNAryl)6 complexes containing 2,6-diisopropylphenyl isocyanide (CNdipp) are powerful photoreductants with strongly emissive long-lived excited states. These properties are enhanced upon appending another aryl ring, e.g., W(CNdippPh(OMe2))6; CNdippPh(OMe2) = 4-(3,5-dimethoxyphenyl)-2,6-diisopropylphenylisocyanide (Sattler et al. J. Am. Chem. Soc. 2015, 137, 1198-1205). Electronic transitions and low-lying excited states of these complexes were investigated by time-dependent density functional theory (TDDFT); the lowest triplet state was characterized by time-resolved infrared spectroscopy (TRIR) supported by density functional theory (DFT). The intense absorption band of W(CNdipp)6 at 460 nm and that of W(CNdippPh(OMe2))6 at 500 nm originate from transitions of mixed ππ*(C≡N-C)/MLCT(W → Aryl) character, whereby W is depopulated by ca. 0.4 e(-) and the electron-density changes are predominantly localized along two equatorial molecular axes. The red shift and intensity rise on going from W(CNdipp)6 to W(CNdippPh(OMe2))6 are attributable to more extensive delocalization of the MLCT component. The complexes also exhibit absorptions in the 300-320 nm region, owing to W → C≡N MLCT transitions. Electronic absorptions in the spectrum of W(CNXy)6 (Xy = 2,6-dimethylphenyl), a complex with orthogonal aryl orientation, have similar characteristics, although shifted to higher energies. The relaxed lowest W(CNAryl)6 triplet state combines ππ* excitation of a trans pair of C≡N-C moieties with MLCT (0.21 e(-)) and ligand-to-ligand charge transfer (LLCT, 0.24-0.27 e(-)) from the other four CNAryl ligands to the axial aryl and, less, to C≡N groups; the spin density is localized along a single Aryl-N≡C-W-C≡N-Aryl axis. Delocalization of excited electron density on outer aryl rings in W(CNdippPh(OMe2))6 likely promotes photoinduced electron-transfer reactions to acceptor molecules. TRIR spectra show an intense broad bleach due to ν(C≡N), a prominent transient upshifted by 60-65 cm(-1), and a weak down-shifted feature due to antisymmetric C≡N stretch along the axis of high spin density. The TRIR spectral pattern remains unchanged on the femtosecond-nanosecond time scale, indicating that intersystem crossing and electron-density localization are ultrafast (<100 fs).
Collapse
Affiliation(s)
- Hana Kvapilová
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences , Dolejškova 3, CZ-182 23 Prague, Czech Republic.,Department of Inorganic Chemistry, University of Chemistry and Technology, Prague , Technická 5, CZ-166 28 Prague, Czech Republic
| | - Wesley Sattler
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Aaron Sattler
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Harry B Gray
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences , Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Antonín Vlček
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences , Dolejškova 3, CZ-182 23 Prague, Czech Republic.,Queen Mary University of London , School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
43
|
Chergui M. Empirical rules of molecular photophysics in the light of ultrafast spectroscopy. PURE APPL CHEM 2015. [DOI: 10.1515/pac-2014-0939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe advent of ultrafast laser spectroscopy has allowed entirely new possibilities for the investigation of the ultrafast photophysics of inorganic metal-based molecular complexes. In this review we show different regimes where non-Kasha behavior shows up. We also demonstrate that while ultrafast intersystem crossing is a common observation in metal complexes, the ISC rates do not scale with the magnitude of the spin-orbit coupling constant. Structural dynamics and density of states play a crucial role in such ultrafast ISC processes, which are not limited to molecules containing heavy atoms.
Collapse
Affiliation(s)
- Majed Chergui
- 1Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Frei F, Rondi A, Espa D, Mercuri ML, Pilia L, Serpe A, Odeh A, Van Mourik F, Chergui M, Feurer T, Deplano P, Vlček A, Cannizzo A. Ultrafast electronic and vibrational relaxations in mixed-ligand dithione-dithiolato Ni, Pd, and Pt complexes. Dalton Trans 2015; 43:17666-76. [PMID: 25154705 DOI: 10.1039/c4dt01955e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ultrafast excited-state dynamics of planar Pt, Pd, and Ni dithione-dithiolato complexes were investigated by transient absorption spectroscopy on the femtosecond-picosecond timescale. All studied complexes show a common photobehaviour, although individual kinetics parameters and quantum yields vary with the metal, the dithione ligand and, namely the solvent (DMF, MeCN). Laser pulse irradiation at 800 nm populates the lowest singlet excited state of a dithiolato → dithione charge transfer character, (1)LL'CT. The optically excited state undergoes a solvation-driven sub-picosecond electronic relaxation that enhances the dithione/dithiolato charge separation. The (1)LL'CT state decays with a 1.9-4.5 ps lifetime by two simultaneous pathways: intersystem crossing (ISC) to the lowest triplet state (3)LL'CT and non-radiative decay to the ground state. ISC occurs on a ∼6 ps timescale, virtually independent of the metal, whereas the rate of the non-radiative decay to the ground state decreases on going from Ni (2 ps) to Pd (3 ps) and Pt (∼10 ps). (3)LL'CT is initially formed as a vibrationally excited state. Its equilibration (cooling) takes place on a picosecond timescale and is accompanied by a competitive decay to the ground state. Equilibrated (3)LL'CT is populated with a quantum yield of less than 50%, depending on the metal: Pt > Pd > Ni. (3)LL'CT is long-lived for Pt and Pd (≫500 ps) and short-lived for Ni (∼15 ps). Some of the investigated complexes also exhibit spectral changes due to vibrational cooling of the singlet (2-3 ps, depending on the solvent). Rotational diffusion occurs with lifetimes in the 120-200 ps range. Changing the dithione (Bz2pipdt/(i)Pr2pipdt) as well as dithiolate/diselenolate (dmit/dsit) ligands has only small effects on the photobehavior. It is proposed that the investigated dithione-dithiolato complexes could act as photooxidants (*E(o) ≈ +1.2 V vs. NHE) utilizing their lowest excited singlet ((1)LL'CT), provided that the excited-state electron transfer is ultrafast, competitive with the picosecond decay. On the other hand, the efficiency of any triplet-based processes would be severely limited by the low quantum yield of the triplet population.
Collapse
Affiliation(s)
- Franziska Frei
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The properties of transition metal complexes are interesting not only for their potential applications in solar energy conversion, OLEDs, molecular electronics, biology, photochemistry, etc. but also for their fascinating photophysical properties that call for a rethinking of fundamental concepts. With the advent of ultrafast spectroscopy over 25 years ago and, more particularly, with improvements in the past 10-15 years, a new area of study was opened that has led to insightful observations of the intramolecular relaxation processes such as internal conversion (IC), intersystem crossing (ISC), and intramolecular vibrational redistribution (IVR). Indeed, ultrafast optical spectroscopic tools, such as fluorescence up-conversion, show that in many cases, intramolecular relaxation processes can be extremely fast and even shorter than time scales of vibrations. In addition, more and more examples are appearing showing that ultrafast ISC rates do not scale with the magnitude of the metal spin-orbit coupling constant, that is, that there is no heavy-atom effect on ultrafast time scales. It appears that the structural dynamics of the system and the density of states play a crucial role therein. While optical spectroscopy delivers an insightful picture of electronic relaxation processes involving valence orbitals, the photophysics of metal complexes involves excitations that may be centered on the metal (called metal-centered or MC) or the ligand (called ligand-centered or LC) or involve a transition from one to the other or vice versa (called MLCT or LMCT). These excitations call for an element-specific probe of the photophysics, which is achieved by X-ray absorption spectroscopy. In this case, transitions from core orbitals to valence orbitals or higher allow probing the electronic structure changes induced by the optical excitation of the valence orbitals, while also delivering information about the geometrical rearrangement of the neighbor atoms around the atom of interest. With the emergence of new instruments such as X-ray free electron lasers (XFELs), it is now possible to perform ultrafast laser pump/X-ray emission probe experiments. In this case, one probes the density of occupied states. These core-level spectroscopies and other emerging ones, such as photoelectron spectroscopy of solutions, are delivering a hitherto unseen degree of detail into the photophysics of metal-based molecular complexes. In this Account, we will give examples of applications of the various methods listed above to address specific photophysical processes.
Collapse
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie
Ultrarapide, ISIC, Faculté des Sciences de Base, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Cheema H, Younts R, Ogbose L, Gautam B, Gundogdu K, El-Shafei A. A femtosecond study of the anomaly in electron injection for dye-sensitized solar cells: the influence of isomerization employing Ru(ii) sensitizers with anthracene and phenanthrene ancillary ligands. Phys Chem Chem Phys 2015; 17:2750-6. [DOI: 10.1039/c4cp04741a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HD-7 is prone to ISC and shows a continuous increase in the triplet TA signal, whereas HD-8 shows enhanced singlet injection, followed by decay in the TA signal.
Collapse
Affiliation(s)
- Hammad Cheema
- Polymer and Color Chemistry Program
- North Carolina State University
- Raleigh
- USA
| | - Robert Younts
- Physics Department
- North Carolina State University
- Raleigh
- USA
| | | | - Bhoj Gautam
- Physics Department
- North Carolina State University
- Raleigh
- USA
| | - Kenan Gundogdu
- Physics Department
- North Carolina State University
- Raleigh
- USA
| | - Ahmed El-Shafei
- Polymer and Color Chemistry Program
- North Carolina State University
- Raleigh
- USA
| |
Collapse
|
47
|
Yu LH, Xi JY, Lo KC, Antrobus LJ, Phillips DL, Chan WK. Transient Absorption of N719 and its Electron Transfer Kinetics on ZnO Nanoparticles Surface. J Inorg Organomet Polym Mater 2014. [DOI: 10.1007/s10904-014-0096-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
49
|
Nalbach P, Achner AJA, Frey M, Grosser M, Bressler C, Thorwart M. Hydration shell effects in the relaxation dynamics of photoexcited Fe-II complexes in water. J Chem Phys 2014; 141:044304. [DOI: 10.1063/1.4890528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Freitag L, González L. Theoretical spectroscopy and photodynamics of a ruthenium nitrosyl complex. Inorg Chem 2014; 53:6415-26. [PMID: 24745977 DOI: 10.1021/ic500283y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Photoactive transition-metal nitrosyl complexes are particularly interesting as potential drugs that deliver nitric oxide (NO) upon UV-light irradiation to be used, e.g., in photodynamic therapy. It is well-recognized that quantum-chemical calculations can guide the rational design and synthesis of molecules with specific functions. In this contribution, it is shown how electronic structure calculations and dynamical simulations can provide a unique insight into the photodissociation mechanism of NO. Exemplarily, [Ru(PaPy3)(NO)](2+) is investigated in detail, as a prototype of a particularly promising class of photoactive metal nitrosyl complexes. The ability of time-dependent density functional theory (TD-DFT) to obtain reliable excited-state energies compared with more sophisticated multiconfigurational spin-corrected calculations is evaluated. Moreover, a TD-DFT-based trajectory surface-hopping molecular dynamics study is employed to reveal the details of the radiationless decay of the molecule via internal conversion and intersystem crossing. Calculations show that the ground state of [Ru(PaPy3)(NO)](2+) includes a significant admixture of the Ru(III)(NO)(0) electronic configuration, in contrast to the previously postulated Ru(II)(NO)(+) structure of similar metal nitrosyls. Moreover, the lowest singlet and triplet excited states populate the antibonding metal d → πNO* orbitals, favoring NO dissociation. Molecular dynamics show that intersystem crossing is ultrafast (<10 fs) and dissociation is initiated in less than 50 fs. The competing relaxation to the lowest S1 singlet state takes place in less than 100 fs and thus competes with NO dissociation, which mostly takes place in the higher-lying excited triplet states. All of these processes are accompanied by bending of the NO ligand, which is not confined to any particular state.
Collapse
Affiliation(s)
- Leon Freitag
- Institut für theoretische Chemie, Universität Wien , Währinger Straße 17, 1090 Vienna, Austria
| | | |
Collapse
|