1
|
Lapshin NK, Trofimova MS. The role of interplay between the plant plasma membrane H +-ATPase and its lipid environment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 352:112343. [PMID: 39638092 DOI: 10.1016/j.plantsci.2024.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The mechanisms behind the regulation of plasma membrane (PM) P-type H+-ATPase in plant cells mediated by lipid-protein interactions and lateral heterogeneity of the plasma membrane are discussed. This review will focus on 1) the structural organization and mechanisms of the catalytic cycle of the enzyme, 2) phosphorylation as the primary mechanism of pump regulation; 3) the possible role of lateral heterogeneity of the plasma membrane in this process, as well as 4) the role of lipids in the H+-ATPase biosynthesis and its delivery to the plasma membrane. In addition, 5) the potential role of membrane lipids in the H+-ATPase co-localisation with secondary active transporters is speculated.
Collapse
Affiliation(s)
- Nikita K Lapshin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 35 Botanicheskaya St., Moscow 127276, Russia.
| | - Marina S Trofimova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 35 Botanicheskaya St., Moscow 127276, Russia
| |
Collapse
|
2
|
Sagarika P, Dobriyal N, Deepsika P, Vairagkar A, Das A, Sahi C. Specificity of Membrane-Associated J-Domain Protein, Caj1, in Amphotericin B Tolerance in Budding Yeast. Mol Microbiol 2024; 122:819-830. [PMID: 39289920 DOI: 10.1111/mmi.15318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Hsp70:J-domain protein (JDP) machineries play pivotal roles in maintaining cellular proteostasis and governing various aspects of fungal physiology. While Hsp70 is known for its involvement in conferring tolerance to diverse antifungal drugs, the specific contribution of JDPs remains unclear. In this study, we examined the sensitivity of cytosolic JDP deletion strains of budding yeast to amphotericin B (AmB), a polyene antifungal agent widely utilized in fungal disease treatment due to its ability to disrupt the fungal plasma membrane (PM). Deleting Caj1, a PM-associated class II JDP, heightened susceptibility to AmB, and the protection conferred by Caj1 against AmB necessitated both its N-terminal J-domain and C-terminal lipid binding domain. Moreover, Caj1 deficiency compromised PM integrity as evidenced by increased phosphate efflux and exacerbated AmB sensitivity, particularly at elevated temperatures. Notably, phytosphingosine (PHS) addition as well as overexpression of PMP3, a positive PM integrity regulator, significantly rescued AmB sensitivity of caj1Δ cells. Our results align with the notion that Caj1 associates with the PM and cooperates with Hsp70 to regulate PM proteostasis, thereby influencing PM integrity in budding yeast. Loss of Caj1 function at the PM compromises PM protein quality control, thereby rendering yeast cells more susceptible to AmB.
Collapse
Affiliation(s)
| | | | | | - Avanti Vairagkar
- Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Chandan Sahi
- Department of Biological Sciences, IISER, Bhopal, India
| |
Collapse
|
3
|
Jáger O, Szebenyi C, Abu Saleem TKS, Molnár A, Kovács V, Kiss K, Homa M, Vágó B, Kiss-Vetráb S, Varga M, Sinka R, Vágvölgyi C, Nagy G, Papp T. Functional characterization of two survival factor 1 genes in Mucor lusitanicus. Microbiol Spectr 2024; 12:e0110324. [PMID: 39189757 PMCID: PMC11448193 DOI: 10.1128/spectrum.01103-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/20/2024] [Indexed: 08/28/2024] Open
Abstract
Survival factor 1 (Svf1) protein has been described in some ascomycetous fungi where it was found to be contributing to several essential physiological processes, such as response to osmotic, oxidative and cold stresses, sphingolipid biosynthesis, morphogenesis, sporulation, antifungal resistance, and pathogenicity. It was also suggested that it can be a novel central regulator affecting the expression of various genes. In the present study, function of this protein and the encoding genes is described for the first time in a fungus (i.e., in Mucor lusitanicus) belonging to the order Mucorales. M. lusitanicus has two putative svf1 genes named svf1a and svf1b. Expression of both genes was proven. Although the expression of svf1a was affected by several environmental stresses and knocking out the gene affected adaptation to low temperatures and the sporulation ability, the main survival factor functions, such as participation in the maintenance of the viability, the response to oxidative and cold stresses, and the sphingolipid biosynthesis, could be associated with Svf1b, suggesting a central regulatory role to this protein. Interestingly, knockout of both genes affected the pathogenicity of the fungus in a Drosophila model. IMPORTANCE Mucor lusitanicus is a widely used model organism to study various biological processes in the basal fungal group Mucorales. Several members of this group can be agents of mucormycosis, an opportunistic fungal infection, which is associated with high mortality, rapid progression, and wide resistance to the commonly used antifungal agents. Svf1 proteins have so far only been identified in fungi, where they have been involved in pathogenicity and resistance to antifungal agents in many cases. Only a limited number of factors affecting the stress response, antifungal resistance, and virulence of Mucorales fungi have been revealed. Elucidating the function of a fungus-specific protein that may regulate these processes may bring us closer to understanding the pathogenesis of these fungi.
Collapse
Affiliation(s)
- Olivér Jáger
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Fungal Pathomechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Csilla Szebenyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Fungal Pathomechanisms Research Group, University of Szeged, Szeged, Hungary
| | | | - Anna Molnár
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Fungal Pathomechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Vanda Kovács
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Fungal Pathomechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Karina Kiss
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Fungal Pathomechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Mónika Homa
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Fungal Pathomechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Bernadett Vágó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Fungal Pathomechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Sándor Kiss-Vetráb
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Fungal Pathomechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Mónika Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Fungal Pathomechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Fungal Pathomechanisms Research Group, University of Szeged, Szeged, Hungary
- University of Szeged, Centre of Excellence for Interdisciplinary Research, Development and Innovation (SZTE IKIKK), Fungal Pathomechanisms Research Group, Szeged, Hungary
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Fungal Pathomechanisms Research Group, University of Szeged, Szeged, Hungary
- University of Szeged, Centre of Excellence for Interdisciplinary Research, Development and Innovation (SZTE IKIKK), Fungal Pathomechanisms Research Group, Szeged, Hungary
| |
Collapse
|
4
|
Su J, Xu Y, Lei M, Meng Y, Zhang S, Liu H, Zhu C, Chen J, Zhang T, Liu J, Lin Y, Yan Z, Li W, Wang J, Chen X, He M. A fatty acid elongase complex regulates cell membrane integrity and septin-dependent host infection by the rice blast fungus. MOLECULAR PLANT PATHOLOGY 2024; 25:e13494. [PMID: 39003585 PMCID: PMC11246601 DOI: 10.1111/mpp.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024]
Abstract
Very-long-chain fatty acids (VLCFAs) regulate biophysical properties of cell membranes to determine growth and development of eukaryotes, such as the pathogenesis of the rice blast fungus Magnaporthe oryzae. The fatty acid elongase Elo1 regulates pathogenesis of M. oryzae by modulating VLCFA biosynthesis. However, it remains unknown whether and how Elo1 associates with other factors to regulate VLCFA biosynthesis in fungal pathogens. Here, we identified Ifa38, Phs1 and Tsc13 as interacting proteins of Elo1 by proximity labelling in M. oryzae. Elo1 associated with Ifa38, Phs1 and Tsc13 on the endoplasmic reticulum (ER) membrane to control VLCFA biosynthesis. Targeted gene deletion mutants Δifa38, Δphs1 and Δtsc13 were all similarly impaired as Δelo1 in vegetative growth, conidial morphology, stress responses in ER, cell wall and membrane. These deletion mutants also displayed severe damage in cell membrane integrity and failed to organize the septin ring that is essential for penetration peg formation and pathogenicity. Our study demonstrates that M. oryzae employs a fatty acid elongase complex to regulate VLCFAs for maintaining or remodelling cell membrane structure, which is important for septin-mediated host penetration.
Collapse
Affiliation(s)
- Jia Su
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Youpin Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Mingliang Lei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yingying Meng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Siqi Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hongrui Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Caicun Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinhua Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tianxin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiawei Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunxiang Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhaorui Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Hang S, Lu H, Jiang Y. Marine-Derived Metabolites Act as Promising Antifungal Agents. Mar Drugs 2024; 22:180. [PMID: 38667797 PMCID: PMC11051449 DOI: 10.3390/md22040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of invasive fungal diseases (IFDs) is on the rise globally, particularly among immunocompromised patients, leading to significant morbidity and mortality. Current clinical antifungal agents, such as polyenes, azoles, and echinocandins, face increasing resistance from pathogenic fungi. Therefore, there is a pressing need for the development of novel antifungal drugs. Marine-derived secondary metabolites represent valuable resources that are characterized by varied chemical structures and pharmacological activities. While numerous compounds exhibiting promising antifungal activity have been identified, a comprehensive review elucidating their specific underlying mechanisms remains lacking. In this review, we have compiled a summary of antifungal compounds derived from marine organisms, highlighting their diverse mechanisms of action targeting various fungal cellular components, including the cell wall, cell membrane, mitochondria, chromosomes, drug efflux pumps, and several biological processes, including vesicular trafficking and the growth of hyphae and biofilms. This review is helpful for the subsequent development of antifungal drugs due to its summary of the antifungal mechanisms of secondary metabolites from marine organisms.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, 200092 Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, 200092 Shanghai, China
| |
Collapse
|
6
|
Bril’kov MS, Stenbakk V, Jakubec M, Vasskog T, Kristoffersen T, Cavanagh JP, Ericson JU, Isaksson J, Flaten GE. Bacterial extracellular vesicles: towards realistic models for bacterial membranes in molecular interaction studies by surface plasmon resonance. Front Mol Biosci 2023; 10:1277963. [PMID: 38152113 PMCID: PMC10751319 DOI: 10.3389/fmolb.2023.1277963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
One way to mitigate the ongoing antimicrobial resistance crisis is to discover and develop new classes of antibiotics. As all antibiotics at some point need to either cross or just interact with the bacterial membrane, there is a need for representative models of bacterial membranes and efficient methods to characterize the interactions with novel molecules -both to generate new knowledge and to screen compound libraries. Since the bacterial cell envelope is a complex assembly of lipids, lipopolysaccharides, membrane proteins and other components, constructing relevant synthetic liposome-based models of the membrane is both difficult and expensive. We here propose to let the bacteria do the hard work for us. Bacterial extracellular vesicles (bEVs) are naturally secreted by Gram-negative and Gram-positive bacteria, playing a role in communication between bacteria, as virulence factors, molecular transport or being a part of the antimicrobial resistance mechanism. bEVs consist of the bacterial outer membrane and thus inherit many components and properties of the native outer cell envelope. In this work, we have isolated and characterized bEVs from one Escherichia coli mutant and three clinical strains of the ESKAPE pathogens Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. The bEVs were shown to be representative models for the bacterial membrane in terms of lipid composition with speciesstrain specific variations. The bEVs were further used to probe the interactions between bEV and antimicrobial peptides (AMPs) as model compounds by Surface Plasmon Resonance (SPR) and provide proof-of-principle that bEVs can be used as an easily accessible and highly realistic model for the bacterial surface in interaction studies. This further enables direct monitoring of the effect induced by antibiotics, or the response to host-pathogen interactions.
Collapse
Affiliation(s)
- Maxim S. Bril’kov
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Victoria Stenbakk
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Martin Jakubec
- Chemical Synthesis and Analysis Research Group, Department of Chemistry, Faculty of Natural Sciences and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Terje Vasskog
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Tone Kristoffersen
- Chemical Synthesis and Analysis Research Group, Department of Chemistry, Faculty of Natural Sciences and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jorunn Pauline Cavanagh
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Johanna U. Ericson
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Johan Isaksson
- Chemical Synthesis and Analysis Research Group, Department of Chemistry, Faculty of Natural Sciences and Technology, UiT the Arctic University of Norway, Tromsø, Norway
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Gøril Eide Flaten
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Picolo F, Piégu B, Monget P. Genes encoding teleost orthologues of human signal transduction proteins remain duplicated or triplicated more frequently than the whole genome. Heliyon 2023; 9:e20217. [PMID: 37809565 PMCID: PMC10559978 DOI: 10.1016/j.heliyon.2023.e20217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Cell signalling involves a myriad of proteins, many of which belong to families of related proteins, and these proteins display a huge number of interactions. One of the events that has led to the creation of new genes is whole genome duplication (WGD), a phenomenon that has made some major innovations possible. In addition to the two WGDs that happened before gnathostome radiation, teleost genomes underwent one (the 3WGD group) or two (the 4WGD group) extra WGD after separation from the lineage leading to holostei. In the present work, we studied in 63 teleost species whether the orthologues of human genes involved in 47 signalling pathways (HGSP) remain more frequently duplicated, triplicated or in the singleton state compared with the whole genome. We found that these genes have remained duplicated and triplicated more frequently in teleost of the 3WGD and 4WGD groups, respectively. Moreover, by examining pairs of interacting gene products in terms of conserved copy numbers, we found a majority of the 1:1 and 1:2 proportions in the 3WGD group (between 54% and 60%) and of the 2:2 and 2:4 proportions in the 4WGD group (30%). In both groups, we observed the 0:n proportion at a mean of approximately 10%, and we found some pseudogenes in the concerned genomes. Finally, the proportions were very different between the studied pathways. The n:n (i.e. same) proportion concerned 20%-65% of the interactions, depending on the pathways, and the n:m (i.e. different) proportion concerned 34%-70% of the interactions. Among the n:n proportion, the 1:1 ratio is most represented (25.8%) and among the n:m ratios, the 1:2 is most represented (25.0%). We noted the absence of gene loss for the JAK-STAT, FoxO and glucagon pathways. Overall, these results show that the teleost gene orthologues of HGSP remain duplicated (3WGD) and triplicated (4WGD) more frequently than the whole genome, although some genes have been lost, and the proportions have not always been maintained.
Collapse
Affiliation(s)
- Floriane Picolo
- PRC, UMR85, INRAE, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| | - Benoît Piégu
- PRC, UMR85, INRAE, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| | - Philippe Monget
- PRC, UMR85, INRAE, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| |
Collapse
|
8
|
Shoma JF, Ernan B, Keiser G, Heiss C, Azadi P, Free SJ. Genetic Characterization of the Acidic and Neutral Glycosphingolipid Biosynthetic Pathways in Neurospora crassa. Microorganisms 2023; 11:2093. [PMID: 37630653 PMCID: PMC10457978 DOI: 10.3390/microorganisms11082093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Fungal glycosphingolipids (GSLs) are important membrane components which play a key role in vesicle trafficking. To assess the importance of GSLs in the fungal life cycle, we performed a mutant phenotypic study of the acidic and neutral GSL biosynthetic pathways in Neurospora crassa. GSL biosynthesis begins with two reactions leading up to the formation of dihydrosphingosine. The first of these reactions is catalyzed by serine palmitoyltransferase and generates 3-keto dihydrosphinganine. In N. crassa, this reaction is catalyzed by GSL-1 and GSL-2 and is required for viability. The second reaction is carried out by GSL-3, a 3-keto dihydrosphinoganine reductase to generate dihydrosphingosine, which is used for the synthesis of neutral and acidic GSLs. We found that deletion mutations in the acidic GSL pathway leading up to the formation of mannosylinositol-phosphoceramide are lethal, indicating that acidic GSLs are essential for viability in N. crassa. Once mannosylinositol-phosphoceramide is made, it is further modified by GSL-5, an inositol-phosphoceramide-B C26 hydroxylase, which adds a hydroxyl group to the amide-linked fatty acid. GSL-5 is not required for viability but gives a clear mutant phenotype affecting all stages of the life cycle. Our results show that the synthesis of mannosylinositol-phosphoceramide is required for viability and that the modification of the amide-linked fatty acid is important for acidic GSL functionality. We also examined the neutral GSL biosynthetic pathway and identified the presence of glucosylceramide. The deletion of neutral GSL biosynthetic genes affected hyphal morphology, vegetative growth rate, conidiation, and female development. Our results indicate that the synthesis of neutral GSLs is essential for normal growth and development of N. crassa.
Collapse
Affiliation(s)
- Jannatul F. Shoma
- Department of Biological Sciences, SUNY University at Buffalo, Cooke Hall Room 109, Buffalo, NY 14260, USA
| | - Ben Ernan
- Department of Biological Sciences, SUNY University at Buffalo, Cooke Hall Room 109, Buffalo, NY 14260, USA
| | - Griffin Keiser
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA (P.A.)
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA (P.A.)
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA (P.A.)
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Cooke Hall Room 109, Buffalo, NY 14260, USA
| |
Collapse
|
9
|
Utilization of n-alkane and roles of lipid transfer proteins in Yarrowia lipolytica. World J Microbiol Biotechnol 2023; 39:97. [PMID: 36781616 PMCID: PMC9925530 DOI: 10.1007/s11274-023-03541-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
Yarrowia lipolytica, a dimorphic yeast belonging to the Ascomycota, has potent abilities to utilize hydrophobic compounds, such as n-alkanes and fatty acids, as carbon and energy sources. Yarrowia lipolytica can synthesize and accumulate large amounts of lipids, making it a promising host to produce various lipids and convert n-alkanes to useful compounds. For advanced use of Y. lipolytica in these applications, it is necessary to understand the metabolism of these hydrophobic compounds in this yeast and the underlying molecular mechanisms. In this review, current knowledge on the n-alkane metabolism and how this is regulated in Y. lipolytica is summarized. Furthermore, recent studies revealed that lipid transfer proteins are involved in the utilization of n-alkanes and the regulation of cell morphology in response to n-alkanes. This review discusses the roles of membrane lipids in these processes in Y. lipolytica.
Collapse
|
10
|
Zahumenský J, Mota Fernandes C, Veselá P, Del Poeta M, Konopka JB, Malínský J. Microdomain Protein Nce102 Is a Local Sensor of Plasma Membrane Sphingolipid Balance. Microbiol Spectr 2022; 10:e0196122. [PMID: 35758748 PMCID: PMC9431316 DOI: 10.1128/spectrum.01961-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Sphingolipids are essential building blocks of eukaryotic membranes and important signaling molecules that are regulated tightly in response to environmental and physiological inputs. While their biosynthetic pathway has been well-described, the mechanisms that facilitate the perception of sphingolipid levels at the plasma membrane remain to be uncovered. In Saccharomyces cerevisiae, the Nce102 protein has been proposed to function as a sphingolipid sensor as it changes its plasma membrane distribution in response to sphingolipid biosynthesis inhibition. We show that Nce102 redistributes specifically in regions of increased sphingolipid demand, e.g., membranes of nascent buds. Furthermore, we report that the production of Nce102 increases following sphingolipid biosynthesis inhibition and that Nce102 is internalized when excess sphingolipid precursors are supplied. This finding suggests that the total amount of Nce102 in the plasma membrane is a measure of the current need for sphingolipids, whereas its local distribution marks sites of high sphingolipid demand. The physiological role of Nce102 in the regulation of sphingolipid synthesis is demonstrated by mass spectrometry analysis showing reduced levels of hydroxylated complex sphingolipids in response to heat stress in the nce102Δ deletion mutant. We also demonstrate that Nce102 behaves analogously in the widespread human fungal pathogen Candida albicans, suggesting a conserved principle of local sphingolipid control across species. IMPORTANCE Microorganisms are challenged constantly by their rapidly changing environment. To survive, they have developed diverse mechanisms to quickly perceive stressful situations and adapt to them appropriately. The primary site of both stress sensing and adaptation is the plasma membrane. We identified the yeast protein Nce102 as a marker of local sphingolipid levels and fluidity in the plasma membrane. Nce102 is an important structural and functional component of the membrane compartment Can1 (MCC), a plasma membrane microdomain stabilized by a large cytosolic hemitubular protein scaffold, the eisosome. The MCC/eisosomes are widely conserved among fungi and unicellular algae. To determine if Nce102 carries out similar functions in other organisms, we analyzed the human fungal pathogen Candida albicans and found that Nce102 responds to sphingolipid levels also in this organism, which has potential applications for the development of novel therapeutic approaches. The presented study represents a valuable model for how organisms regulate plasma membrane sphingolipids.
Collapse
Affiliation(s)
- Jakub Zahumenský
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Petra Veselá
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| | - James B. Konopka
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Jan Malínský
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
11
|
Sanz AB, Díez-Muñiz S, Moya J, Petryk Y, Nombela C, Rodríguez-Peña JM, Arroyo J. Systematic Identification of Essential Genes Required for Yeast Cell Wall Integrity: Involvement of the RSC Remodelling Complex. J Fungi (Basel) 2022; 8:jof8070718. [PMID: 35887473 PMCID: PMC9323250 DOI: 10.3390/jof8070718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Conditions altering the yeast cell wall lead to the activation of an adaptive transcriptional response mainly governed by the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway. Two high-throughput screenings were developed using the yTHC collection of yeast conditional mutant strains to systematically identify essential genes related to cell wall integrity, and those required for the transcriptional program elicited by cell wall stress. Depleted expression of 52 essential genes resulted in hypersensitivity to the dye Calcofluor white, with chromatin organization, Golgi vesicle transport, rRNA processing, and protein glycosylation processes, as the most highly representative functional groups. Via a flow cytometry-based quantitative assay using a CWI reporter plasmid, 97 strains exhibiting reduced gene-reporter expression levels upon stress were uncovered, highlighting genes associated with RNA metabolism, transcription/translation, protein degradation, and chromatin organization. This screening also led to the discovery of 41 strains displaying a basal increase in CWI-associated gene expression, including mainly putative cell wall-related genes. Interestingly, several members of the RSC chromatin remodelling complex were uncovered in both screenings. Notably, Rsc9 was necessary to regulate the gene expression of CWI-related genes both under stress and non-stress conditions, suggesting distinct requirements of the RSC complex for remodelling particular genes.
Collapse
|
12
|
Spolaor S, Rovetta M, Nobile MS, Cazzaniga P, Tisi R, Besozzi D. Modeling Calcium Signaling in S. cerevisiae Highlights the Role and Regulation of the Calmodulin-Calcineurin Pathway in Response to Hypotonic Shock. Front Mol Biosci 2022; 9:856030. [PMID: 35664674 PMCID: PMC9158465 DOI: 10.3389/fmolb.2022.856030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/04/2022] [Indexed: 01/17/2023] Open
Abstract
Calcium homeostasis and signaling processes in Saccharomyces cerevisiae, as well as in any eukaryotic organism, depend on various transporters and channels located on both the plasma and intracellular membranes. The activity of these proteins is regulated by a number of feedback mechanisms that act through the calmodulin-calcineurin pathway. When exposed to hypotonic shock (HTS), yeast cells respond with an increased cytosolic calcium transient, which seems to be conditioned by the opening of stretch-activated channels. To better understand the role of each channel and transporter involved in the generation and recovery of the calcium transient—and of their feedback regulations—we defined and analyzed a mathematical model of the calcium signaling response to HTS in yeast cells. The model was validated by comparing the simulation outcomes with calcium concentration variations before and during the HTS response, which were observed experimentally in both wild-type and mutant strains. Our results show that calcium normally enters the cell through the High Affinity Calcium influx System and mechanosensitive channels. The increase of the plasma membrane tension, caused by HTS, boosts the opening probability of mechanosensitive channels. This event causes a sudden calcium pulse that is rapidly dissipated by the activity of the vacuolar transporter Pmc1. According to model simulations, the role of another vacuolar transporter, Vcx1, is instead marginal, unless calcineurin is inhibited or removed. Our results also suggest that the mechanosensitive channels are subject to a calcium-dependent feedback inhibition, possibly involving calmodulin. Noteworthy, the model predictions are in accordance with literature results concerning some aspects of calcium homeostasis and signaling that were not specifically addressed within the model itself, suggesting that it actually depicts all the main cellular components and interactions that constitute the HTS calcium pathway, and thus can correctly reproduce the shaping of the calcium signature by calmodulin- and calcineurin-dependent complex regulations. The model predictions also allowed to provide an interpretation of different regulatory schemes involved in calcium handling in both wild-type and mutants yeast strains. The model could be easily extended to represent different calcium signals in other eukaryotic cells.
Collapse
Affiliation(s)
- Simone Spolaor
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Mattia Rovetta
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Marco S. Nobile
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre—B4, Milan, Italy
- SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
| | - Paolo Cazzaniga
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre—B4, Milan, Italy
- SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Renata Tisi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- *Correspondence: Renata Tisi, ; Daniela Besozzi,
| | - Daniela Besozzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre—B4, Milan, Italy
- SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
- *Correspondence: Renata Tisi, ; Daniela Besozzi,
| |
Collapse
|
13
|
Unmasking of CgYor1-Dependent Azole Resistance Mediated by Target of Rapamycin (TOR) and Calcineurin Signaling in Candida glabrata. mBio 2022; 13:e0354521. [PMID: 35038899 PMCID: PMC8764518 DOI: 10.1128/mbio.03545-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, 18 predicted membrane-localized ABC transporters of Candida glabrata were deleted individually to create a minilibrary of knockouts (KO). The transporter KOs were analyzed for their susceptibility toward antimycotic drugs. Although CgYOR1 has previously been reported to be upregulated in various azole-resistant clinical isolates of C. glabrata, deletion of this gene did not change the susceptibility to any of the tested azoles. Additionally, Cgyor1Δ showed no change in susceptibility toward oligomycin, which is otherwise a well-known substrate of Yor1 in other yeasts. The role of CgYor1 in azole susceptibility only became evident when the major transporter CgCDR1 gene was deleted. However, under nitrogen-depleted conditions, Cgyor1Δ demonstrated an azole-susceptible phenotype, independent of CgCdr1. Notably, Cgyor1Δ cells also showed increased susceptibility to target of rapamycin (TOR) and calcineurin inhibitors. Moreover, increased phytoceramide levels in Cgyor1Δ and the deletions of regulators downstream of TOR and the calcineurin signaling cascade (Cgypk1Δ, Cgypk2Δ, Cgckb1Δ, and Cgckb2Δ) in the Cgyor1Δ background and their associated fluconazole (FLC) susceptibility phenotypes confirmed their involvement. Collectively, our findings show that TOR and calcineurin signaling govern CgYor1-mediated azole susceptibility in C. glabrata. IMPORTANCE The increasing incidence of Candida glabrata infections in the last 40 years is a serious concern worldwide. These infections are usually associated with intrinsic azole resistance and increasing echinocandin resistance. Efflux pumps, especially ABC transporter upregulation, are one of the prominent mechanisms of azole resistance; however, only a few of them are characterized. In this study, we analyzed the mechanisms of azole resistance due to a multidrug resistance-associated protein (MRP) subfamily ABC transporter, CgYor1. We demonstrate for the first time that CgYor1 does not transport oligomycin but is involved in azole resistance. Under normal growing conditions its function is masked by major transporter CgCdr1; however, under nitrogen-depleted conditions, it displays its azole resistance function independently. Moreover, we propose that the azole susceptibility due to removal of CgYor1 is not due to its transport function but involves modulation of TOR and calcineurin cascades.
Collapse
|
14
|
Robinson BP, Hawbaker S, Chiang A, Jordahl EM, Anaokar S, Nikiforov A, Bowman RW, Ziegler P, McAtee CK, Patton-Vogt J, O’Donnell AF. Alpha-arrestins Aly1/Art6 and Aly2/Art3 regulate trafficking of the glycerophosphoinositol transporter Git1 and impact phospholipid homeostasis. Biol Cell 2022; 114:3-31. [PMID: 34562280 PMCID: PMC11583686 DOI: 10.1111/boc.202100007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND INFORMATION Phosphatidylinositol (PI) is an essential phospholipid, critical to membrane bilayers. The complete deacylation of PI by B-type phospholipases produces intracellular and extracellular glycerophosphoinositol (GPI). Extracellular GPI is transported into the cell via Git1, a member of the Major Facilitator Superfamily of transporters at the yeast plasma membrane. Internalized GPI is degraded to produce inositol, phosphate and glycerol, thereby contributing to these pools. GIT1 gene expression is controlled by nutrient balance, with phosphate or inositol starvation increasing GIT1 expression to stimulate GPI uptake. However, less is known about control of Git1 protein levels or localization. RESULTS We find that the α-arrestins, an important class of protein trafficking adaptor, regulate Git1 localization and this is dependent upon their interaction with the ubiquitin ligase Rsp5. Specifically, α-arrestin Aly2 stimulates Git1 trafficking to the vacuole under basal conditions, but in response to GPI-treatment, either Aly1 or Aly2 promote Git1 vacuole trafficking. Cell surface retention of Git1, as occurs in aly1∆ aly2∆ cells, is linked to impaired growth in the presence of exogenous GPI and results in increased uptake of radiolabeled GPI, suggesting that accumulation of GPI somehow causes cellular toxicity. Regulation of α-arrestin Aly1 by the protein phosphatase calcineurin improves steady-state and substrate-induced trafficking of Git1, however, calcineurin plays a larger role in Git1 trafficking beyond regulation of α-arrestins. Interestingly, loss of Aly1 and Aly2 increased phosphatidylinositol-3-phosphate on the limiting membrane of the vacuole, and this was further exacerbated by GPI addition, suggesting that the effect is partially linked to Git1. Loss of Aly1 and Aly2 leads to increased incorporation of inositol label from [3 H]-inositol-labelled GPI into PI, confirming that internalized GPI influences PI balance and indicating a role for the a-arrestins in this regulation. CONCLUSIONS The α-arrestins Aly1 and Aly2 are novel regulators of Git1 trafficking with previously unanticipated roles in controlling phospholipid distribution and balance. SIGNIFICANCE To our knowledge, this is the first example of α-arrestin regulation of phosphatidyliniositol-3-phosphate levels. In future studies it will be exciting to determine if other α-arrestins similarly alter PI and PIPs to change the cellular landscape.
Collapse
Affiliation(s)
| | - Sarah Hawbaker
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annette Chiang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric M. Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sanket Anaokar
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Alexiy Nikiforov
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ray W. Bowman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Philip Ziegler
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ceara K. McAtee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Allyson F. O’Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Hu D, Wei L, Liao W. Brassinosteroids in Plants: Crosstalk with Small-Molecule Compounds. Biomolecules 2021; 11:biom11121800. [PMID: 34944444 PMCID: PMC8698649 DOI: 10.3390/biom11121800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Brassinosteroids (BRs) are known as the sixth type of plant hormone participating in various physiological and biochemical activities and play an irreplaceable role in plants. Small-molecule compounds (SMCs) such as nitric oxide (NO), ethylene, hydrogen peroxide (H2O2), and hydrogen sulfide (H2S) are involved in plant growth and development as signaling messengers. Recently, the involvement of SMCs in BR-mediated growth and stress responses is gradually being discovered in plants, including seed germination, adventitious rooting, stem elongation, fruit ripening, and stress responses. The crosstalk between BRs and SMCs promotes plant development and alleviates stress damage by modulating the antioxidant system, photosynthetic capacity, and carbohydrate metabolism, as well as osmotic adjustment. In the present review, we try to explain the function of BRs and SMCs and their crosstalk in the growth, development, and stress resistance of plants.
Collapse
Affiliation(s)
| | | | - Weibiao Liao
- Correspondence: ; Tel.: +86-931-763-2155; Fax: +86-931-763-2155
| |
Collapse
|
16
|
Domnauer M, Zheng F, Li L, Zhang Y, Chang CE, Unruh JR, Conkright-Fincham J, McCroskey S, Florens L, Zhang Y, Seidel C, Fong B, Schilling B, Sharma R, Ramanathan A, Si K, Zhou C. Proteome plasticity in response to persistent environmental change. Mol Cell 2021; 81:3294-3309.e12. [PMID: 34293321 DOI: 10.1016/j.molcel.2021.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 01/17/2023]
Abstract
Temperature is a variable component of the environment, and all organisms must deal with or adapt to temperature change. Acute temperature change activates cellular stress responses, resulting in refolding or removal of damaged proteins. However, how organisms adapt to long-term temperature change remains largely unexplored. Here we report that budding yeast responds to long-term high temperature challenge by switching from chaperone induction to reduction of temperature-sensitive proteins and re-localizing a portion of its proteome. Surprisingly, we also find that many proteins adopt an alternative conformation. Using Fet3p as an example, we find that the temperature-dependent conformational difference is accompanied by distinct thermostability, subcellular localization, and, importantly, cellular functions. We postulate that, in addition to the known mechanisms of adaptation, conformational plasticity allows some polypeptides to acquire new biophysical properties and functions when environmental change endures.
Collapse
Affiliation(s)
- Matthew Domnauer
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90191, USA
| | - Fan Zheng
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Liying Li
- UCSF, 1550 Fourth St, RH490 San Francisco, CA 94158, USA
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Catherine E Chang
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | - Scott McCroskey
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Christopher Seidel
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Benjamin Fong
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90191, USA
| | - Rishi Sharma
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Arvind Ramanathan
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Institute for Stem Cell Science and Regenerative Medicine GKVK, Bengaluru, Karnataka 560065, India
| | - Kausik Si
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Chuankai Zhou
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90191, USA.
| |
Collapse
|
17
|
Choi JY, Hwang HJ, Cho WY, Choi JI, Lee PC. Differences in the Fatty Acid Profile, Morphology, and Tetraacetylphytosphingosine-Forming Capability Between Wild-Type and Mutant Wickerhamomyces ciferrii. Front Bioeng Biotechnol 2021; 9:662979. [PMID: 34178960 PMCID: PMC8220092 DOI: 10.3389/fbioe.2021.662979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
One tetraacetylphytosphingosine (TAPS)-producing Wickerhamomyces ciferrii mutant was obtained by exposing wild-type W. ciferrii to γ-ray irradiation. The mutant named 736 produced up to 9.1 g/L of TAPS (218.7 mg-TAPS/g-DCW) during batch fermentation in comparison with 1.7 g/L of TAPS (52.2 mg-TAPS/g-DCW) for the wild type. The highest production, 17.7 g/L of TAPS (259.6 mg-TAPS/g-DCW), was obtained during fed-batch fermentation by mutant 736. Fatty acid (FA) analysis revealed an altered cellular FA profile of mutant 736: decrease in C16:0 and C16:1 FA levels, and increase in C18:1 and C18:2 FA levels. Although a significant change in the cellular FA profile was observed, scanning electron micrographs showed that morphology of wild-type and mutant 736 cells was similar. Genetic alteration analysis of eight TAPS biosynthesis-related genes revealed that there are no mutations in these genes in mutant 736; however, mRNA expression analysis indicated 30% higher mRNA expression of TCS10 among the eight genes in mutant 736 than that in the wild-type. Collectively, these results imply that the enhancement of TAPS biosynthesis in mutant 736 may be a consequence of system-level genetic and physiological alterations of a complicated metabolic network. Reverse metabolic engineering based on system-level omics analysis of mutant 736 can make the mutant more suitable for commercial production of TAPS.
Collapse
Affiliation(s)
- Jun Young Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| | - Hee Jin Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| | - Woo Yeon Cho
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, South Korea
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
18
|
Hepowit NL, Macedo JKA, Young LEA, Liu K, Sun RC, MacGurn JA, Dickson RC. Enhancing lifespan of budding yeast by pharmacological lowering of amino acid pools. Aging (Albany NY) 2021; 13:7846-7871. [PMID: 33744865 PMCID: PMC8034917 DOI: 10.18632/aging.202849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/21/2021] [Indexed: 04/20/2023]
Abstract
The increasing prevalence of age-related diseases and resulting healthcare insecurity and emotional burden require novel treatment approaches. Several promising strategies seek to limit nutrients and promote healthy aging. Unfortunately, the human desire to consume food means this strategy is not practical for most people but pharmacological approaches might be a viable alternative. We previously showed that myriocin, which impairs sphingolipid synthesis, increases lifespan in Saccharomyces cerevisiae by modulating signaling pathways including the target of rapamycin complex 1 (TORC1). Since TORC1 senses cellular amino acids, we analyzed amino acid pools and identified 17 that are lowered by myriocin treatment. Studying the methionine transporter, Mup1, we found that newly synthesized Mup1 traffics to the plasma membrane and is stable for several hours but is inactive in drug-treated cells. Activity can be restored by adding phytosphingosine to culture medium thereby bypassing drug inhibition, thus confirming a sphingolipid requirement for Mup1 activity. Importantly, genetic analysis of myriocin-induced longevity revealed a requirement for the Gtr1/2 (mammalian Rags) and Vps34-Pib2 amino acid sensing pathways upstream of TORC1, consistent with a mechanism of action involving decreased amino acid availability. These studies demonstrate the feasibility of pharmacologically inducing a state resembling amino acid restriction to promote healthy aging.
Collapse
Affiliation(s)
- Nathaniel L. Hepowit
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Jessica K. A. Macedo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Lyndsay E. A. Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Ke Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan University, Chengdu 610000, Sichuan, P. R. China
| | - Ramon C. Sun
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Jason A. MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Robert C. Dickson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
19
|
Dalisay DS, Rogers EW, Molinski TF. Oceanapiside, a Marine Natural Product, Targets the Sphingolipid Pathway of Fluconazole-Resistant Candida glabrata. Mar Drugs 2021; 19:md19030126. [PMID: 33652774 PMCID: PMC7996939 DOI: 10.3390/md19030126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Oceanapiside (OPS), a marine natural product with a novel bifunctional sphingolipid structure, is fungicidal against fluconazole-resistant Candida glabrata at 10 μg/mL (15.4 μM). The fungicidal effect was observed at 3 to 4 h after exposure to cells. Cytological and morphological studies revealed that OPS affects the budding patterns of treated yeast cells with a significant increase in the number of cells with single small buds. In addition, this budding morphology was found to be sensitive in the presence of OPS. Moreover, the number of cells with single medium-sized buds and cells with single large buds were decreased significantly, indicating that fewer cells were transformed to these budding patterns, suggestive of inhibition of polarized growth. OPS was also observed to disrupt the organized actin assembly in C. glabrata, which correlates with inhibition of budding and polarized growth. It was also demonstrated that phytosphingosine (PHS) reversed the antifungal activity of oceanapiside. We quantified the amount of long chain-bases (LCBs) and phytoceramide from the crude extracts of treated cells using LC-ESI-MS. PHS concentration was elevated in extracts of cells treated with OPS when compared with cells treated with miconazole and amphotericin B. Elevated levels of PHS in OPS-treated cells confirms that OPS affects the pathway at a step downstream of PHS synthesis. These results also demonstrated that OPS has a mechanism of action different to those of miconazole and amphotericin B and interdicts fungal sphingolipid metabolism by specifically inhibiting the step converting PHS to phytoceramide.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; (D.S.D.); (E.W.R.)
- Center for Chemical Biology and Biotechnology (C2B2) and Department of Biology, College of Liberal Arts, Sciences and Education, University of San Agustin, Iloilo City 5000, Philippines
| | - Evan W. Rogers
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; (D.S.D.); (E.W.R.)
| | - Tadeusz F. Molinski
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; (D.S.D.); (E.W.R.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Correspondence: ; Tel.: +1-858-534-7115; Fax: +1-858-822-0368
| |
Collapse
|
20
|
Jain BK, Roland BP, Graham TR. Exofacial membrane composition and lipid metabolism regulates plasma membrane P4-ATPase substrate specificity. J Biol Chem 2020; 295:17997-18009. [PMID: 33060204 PMCID: PMC7939387 DOI: 10.1074/jbc.ra120.014794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/22/2020] [Indexed: 01/21/2023] Open
Abstract
The plasma membrane of a cell is characterized by an asymmetric distribution of lipid species across the exofacial and cytofacial aspects of the bilayer. Regulation of membrane asymmetry is a fundamental characteristic of membrane biology and is crucial for signal transduction, vesicle transport, and cell division. The type IV family of P-ATPases, or P4-ATPases, establishes membrane asymmetry by selection and transfer of a subset of membrane lipids from the lumenal or exofacial leaflet to the cytofacial aspect of the bilayer. It is unclear how P4-ATPases sort through the spectrum of membrane lipids to identify their desired substrate(s) and how the membrane environment modulates this activity. Therefore, we tested how the yeast plasma membrane P4-ATPase, Dnf2, responds to changes in membrane composition induced by perturbation of endogenous lipid biosynthetic pathways or exogenous application of lipid. The primary substrates of Dnf2 are glucosylceramide (GlcCer) and phosphatidylcholine (PC, or their lyso-lipid derivatives), and we find that these substrates compete with each other for transport. Acutely inhibiting sphingolipid synthesis using myriocin attenuates transport of exogenously applied GlcCer without perturbing PC transport. Deletion of genes controlling later steps of glycosphingolipid production also perturb GlcCer transport to a greater extent than PC transport. In contrast, perturbation of ergosterol biosynthesis reduces PC and GlcCer transport equivalently. Surprisingly, application of lipids that are poor transport substrates differentially affects PC and GlcCer transport by Dnf2, thus altering substrate preference. Our data indicate that Dnf2 exhibits exquisite sensitivity to the membrane composition, thus providing feedback onto the function of the P4-ATPases.
Collapse
Affiliation(s)
- Bhawik Kumar Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Bartholomew P Roland
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
21
|
Sphingolipidomics of drug resistant Candida auris clinical isolates reveal distinct sphingolipid species signatures. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158815. [PMID: 32942047 PMCID: PMC7695621 DOI: 10.1016/j.bbalip.2020.158815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
Independent studies from our group and others have provided evidence that sphingolipids (SLs) influence the antimycotic susceptibility of Candida species. We analyzed the molecular SL signatures of drug-resistant clinical isolates of Candida auris, which have emerged as a global threat over the last decade. This included Indian hospital isolates of C. auris, which were either resistant to fluconazole (FLCR) or amphotericin B (AmBR) or both drugs. Relative to Candida glabrata and Candida albicans strains, these C. auris isolates were susceptible to SL pathway inhibitors such as myriocin and aureobasidin A, suggesting that SL content may influence azole and AmB susceptibilities. Our analysis of SLs confirmed the presence of 140 SL species within nine major SL classes, namely the sphingoid bases, Cer, αOH-Cer, dhCer, PCer, αOH-PCer, αOH-GlcCer, GlcCer, and IPC. Other than for αOH-GlcCer, most of the SLs were found at higher concentrations in FLCR isolates as compared to the AmBR isolates. SLs were at intermediate levels in FLCR + AmBR isolates. The observed diversity of molecular species of SL classes based on fatty acyl composition was further reflected in their distinct specific imprint, suggesting their influence in drug resistance. Together, the presented data improves our understanding of the dynamics of SL structures, their synthesis, and link to the drug resistance in C. auris. Candida auris isolates are susceptible to sphingolipid inhibitors myriocin and aureobasidin A. The distribution of sphingolipid species is distinct among C. auris isolates resistant to different antifungals. Phytoceramides are the most abundant class of sphingolipid. Cer(d18:1/18:1) is the major of ceramide species in C. auris. d19:2 glucosylceramide backbone is typically in abundance in AmB resistant C. auris isolates.
Collapse
|
22
|
Cid NG, Puca G, Nudel CB, Nusblat AD. Genome analysis of sphingolipid metabolism-related genes in Tetrahymena thermophila and identification of a fatty acid 2-hydroxylase involved in the sexual stage of conjugation. Mol Microbiol 2020; 114:775-788. [PMID: 32713049 DOI: 10.1111/mmi.14578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/29/2022]
Abstract
Sphingolipids are bioactive lipids present in all eukaryotes. Tetrahymena thermophila is a ciliate that displays remarkable sphingolipid moieties, that is, the unusual phosphonate-linked headgroup ceramides, present in membranes. To date, no identification has been made in this organism of the functions or related genes implicated in sphingolipid metabolism. By gathering information from the T. thermophila genome database together with sphingolipid moieties and enzymatic activities reported in other Tetrahymena species, we were able to reconstruct the putative de novo sphingolipid metabolic pathway in T. thermophila. Orthologous genes of 11 enzymatic steps involved in the biosynthesis and degradation pathways were retrieved. No genes related to glycosphingolipid or phosphonosphingolipid headgroup transfer were found, suggesting that both conserved and innovative mechanisms are used in ciliate. The knockout of gene TTHERM_00463850 allowed to identify the gene encoding a putative fatty acid 2-hydroxylase, which is involved in the biosynthesis pathway. Knockout cells have shown several impairments in the sexual stage of conjugation since different mating types of knockout strains failed to form cell pairs and complete the conjugation process. This fatty acid 2-hydroxylase gene is the first gene of a sphingolipid metabolic pathway to be identified in ciliates and have a critical role in their sexual stage.
Collapse
Affiliation(s)
- Nicolas G Cid
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Gervasio Puca
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Clara B Nudel
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Alejandro D Nusblat
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| |
Collapse
|
23
|
Yeast Sphingolipid Phospholipase Gene ISC1 Regulates the Spindle Checkpoint by a CDC55-Dependent Mechanism. Mol Cell Biol 2020; 40:MCB.00340-19. [PMID: 32205408 DOI: 10.1128/mcb.00340-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
Defects in the spindle assembly checkpoint (SAC) can lead to aneuploidy and cancer. Sphingolipids have important roles in many cellular functions, including cell cycle regulation and apoptosis. However, the specific mechanisms and functions of sphingolipids in cell cycle regulation have not been elucidated. Using analysis of concordance for synthetic lethality for the yeast sphingolipid phospholipase ISC1, we identified two groups of genes. The first comprises genes involved in chromosome segregation and stability (CSM3, CTF4, YKE2, DCC1, and GIM4) as synthetically lethal with ISC1 The second group, to which ISC1 belongs, comprises genes involved in the spindle checkpoint (BUB1, MAD1, BIM1, and KAR3), and they all share the same synthetic lethality with the first group. We demonstrate that spindle checkpoint genes act upstream of Isc1, and their deletion phenocopies that of ISC1 Reciprocally, ISC1 deletion mutants were sensitive to benomyl, indicating a SAC defect. Similar to BUB1 deletion, ISC1 deletion prevents spindle elongation in hydroxyurea-treated cells. Mechanistically, PP2A-Cdc55 ceramide-activated phosphatase was found to act downstream of Isc1, thus coupling the spindle checkpoint genes and Isc1 to CDC55-mediated nuclear functions.
Collapse
|
24
|
Guo Q, Zhang T, Meng N, Duan Y, Meng Y, Sun D, Liu Y, Luo G. Sphingolipids are required for exocyst polarity and exocytic secretion in Saccharomyces cerevisiae. Cell Biosci 2020; 10:53. [PMID: 32257111 PMCID: PMC7106735 DOI: 10.1186/s13578-020-00406-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/10/2020] [Indexed: 11/13/2022] Open
Abstract
Background Exocytosis is a process by which vesicles are transported to and fused with specific areas of the plasma membrane. Although several studies have shown that sphingolipids are the main components of exocytic compartments, whether they control exocytosis process is unclear. Results Here, we have investigated the role of sphingolipids in exocytosis by reducing the activity of the serine palmitoyl-transferase (SPT), which catalyzes the first step in sphingolipid synthesis in endoplasmic reticulum. We found that the exocyst polarity and exocytic secretion were impaired in lcb1-100 mutant cells and in wild type cells treated with myriocin, a chemical which can specifically inhibit SPT enzyme activity, suggesting that sphingolipids controls exocytic secretion. This speculation was further confirmed by immuno-fluorescence and electron microscopy results that small secretory vesicles were accumulated in lcb1-100 mutant cells. Conclusions Taken together, our results suggest that sphingolipids are required for exocytosis. Mammals may use similar regulatory mechanisms because components of the exocytic secretion apparatus and signaling pathways are conserved.
Collapse
Affiliation(s)
- Qingguo Guo
- 1Institute of Translational Medicine, China Medical University, Shenyang, 110122 China.,2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Tianrui Zhang
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Na Meng
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Yuran Duan
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Yuan Meng
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Dong Sun
- 1Institute of Translational Medicine, China Medical University, Shenyang, 110122 China
| | - Ying Liu
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Guangzuo Luo
- 1Institute of Translational Medicine, China Medical University, Shenyang, 110122 China
| |
Collapse
|
25
|
Funai K, Summers SA, Rutter J. Reign in the membrane: How common lipids govern mitochondrial function. Curr Opin Cell Biol 2020; 63:162-173. [PMID: 32106003 DOI: 10.1016/j.ceb.2020.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
The lipids that make up biological membranes tend to be the forgotten molecules of cell biology. The paucity of data on these important entities likely reflects the difficulties of studying and understanding their biological roles, rather than revealing a lack of importance. Indeed, the lipid composition of biological membranes has a profound impact on a diverse array of cellular processes. The focus of this review is on the effects of different lipid classes on the function of mitochondria, particularly bioenergetics, in health and disease.
Collapse
Affiliation(s)
- Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
| | - Scott A Summers
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| | - Jared Rutter
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA; Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
26
|
Grosjean N, Gross EM, Le Jean M, Blaudez D. Global Deletome Profile of Saccharomyces cerevisiae Exposed to the Technology-Critical Element Yttrium. Front Microbiol 2018; 9:2005. [PMID: 30233513 PMCID: PMC6131306 DOI: 10.3389/fmicb.2018.02005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/08/2018] [Indexed: 11/14/2022] Open
Abstract
The emergence of the technology-critical-element yttrium as a contaminant in the environment raises concern regarding its toxicological impact on living organisms. The molecular mechanisms underlying yttrium toxicity must be delineated. We considered the genomic phenotyping of a mutant collection of Saccharomyces cerevisiae to be of particular interest to decipher key cellular pathways involved either in yttrium toxicity or detoxification mechanisms. Among the 4733 mutants exposed to yttrium, 333 exhibited modified growth, of which 56 were sensitive and 277 were resistant. Several functions involved in yttrium toxicity mitigation emerged, primarily vacuolar acidification and retrograde transport. Conversely, functional categories overrepresented in the yttrium toxicity response included cytoskeleton organization and endocytosis, protein transport and vesicle trafficking, lipid metabolism, as well as signaling pathways. Comparison with similar studies carried out using other metals and stressors showed a response pattern similar to nickel stress. One third of the identified mutants highlighted peculiar cellular effects triggered by yttrium, specifically those affecting the pheromone-dependent signaling pathway or sphingolipid metabolic processes. Taken together, these data emphasize the role of the plasma membrane as a hotspot for yttrium toxicity. The up-to-now lack of data concerning yttrium toxicity at the cellular and molecular levels makes this pioneer study using the model S. cerevisiae an excellent first basis for the assessment of yttrium toxicity toward eukaryotes.
Collapse
Affiliation(s)
- Nicolas Grosjean
- Université de Lorraine, CNRS, LIEC, Nancy, France.,Université de Lorraine, CNRS, LIEC, Metz, France
| | | | | | | |
Collapse
|
27
|
Abstract
Studies of bioactive lipids in general and sphingolipids in particular have intensified over the past several years, revealing an unprecedented and unanticipated complexity of the lipidome and its many functions, which rivals, if not exceeds, that of the genome or proteome. These results highlight critical roles for bioactive sphingolipids in most, if not all, major cell biological responses, including all major cell signalling pathways, and they link sphingolipid metabolism to key human diseases. Nevertheless, the fairly nascent field of bioactive sphingolipids still faces challenges in its biochemical and molecular underpinnings, including defining the molecular mechanisms of pathway and enzyme regulation, the study of lipid-protein interactions and the development of cellular probes, suitable biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, New York 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, New York 11794, USA
- Northport Veterans Affairs Medical Center, Northport, New York 11768, USA
| |
Collapse
|
28
|
Villasmil ML, Gallo-Ebert C, Liu HY, Francisco J, Nickels JT. A link between very long chain fatty acid elongation and mating-specific yeast cell cycle arrest. Cell Cycle 2017; 16:2192-2203. [PMID: 28745545 DOI: 10.1080/15384101.2017.1329065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Ceramides and sphingolipid intermediates are well-established regulators of the cell cycle. In the budding yeast Saccharomyces cerevisae, the complex sphingolipid backbone, ceramide, comprises a long chain sphingoid base, a polar head group, and a very long chain fatty acid (VLCFA). While ceramides and long chain bases have been extensively studied as to their roles in regulating cell cycle arrest under multiple conditions, the roles of VLCFAs are not well understood. Here, we used the yeast elo2 and elo3 mutants, which are unable to elongate fatty acids, as tools to explore if maintaining VLCFA elongation is necessary for cell cycle arrest in response to yeast mating. We found that both elo2 and elo3 cells had severely reduced mating efficiencies and were unable to form polarized shmoo projections that are necessary for cell-cell contact during mating. They also lacked functional MAP kinase signaling activity and were defective in initiating a cell cycle arrest in response to pheromone. Additional data suggests that mislocalization of the Ste5 scaffold in elo2 and elo3 mutants upon mating initiation may be responsible for the inability to initiate a cell cycle arrest. Moreover, the lack of proper Ste5 localization may be caused by the inability of mutant cells to mobilize PIP2. We suggest that VLCFAs are required for Ste5 localization, which is a necessary event for initiating MAP kinase signaling and cell cycle arrest during yeast mating initiation.
Collapse
Affiliation(s)
| | - Christina Gallo-Ebert
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| | - Hsing-Yin Liu
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| | | | - Joseph T Nickels
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| |
Collapse
|
29
|
Adelantado N, Tarazona P, Grillitsch K, García-Ortega X, Monforte S, Valero F, Feussner I, Daum G, Ferrer P. The effect of hypoxia on the lipidome of recombinant Pichia pastoris. Microb Cell Fact 2017; 16:86. [PMID: 28526017 PMCID: PMC5437588 DOI: 10.1186/s12934-017-0699-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/10/2017] [Indexed: 01/17/2023] Open
Abstract
Background Cultivation of recombinant Pichia pastoris (Komagataella sp.) under hypoxic conditions has a strong positive effect on specific productivity when the glycolytic GAP promoter is used for recombinant protein expression, mainly due to upregulation of glycolytic conditions. In addition, transcriptomic analyses of hypoxic P. pastoris pointed out important regulation of lipid metabolism and unfolded protein response (UPR). Notably, UPR that plays a role in the regulation of lipid metabolism, amino acid metabolism and protein secretion, was found to be upregulated under hypoxia. Results To improve our understanding of the interplay between lipid metabolism, UPR and protein secretion, the lipidome of a P. pastoris strain producing an antibody fragment was studied under hypoxic conditions. Furthermore, lipid composition analyses were combined with previously available transcriptomic datasets to further understand the impact of hypoxia on lipid metabolism. Chemostat cultures operated under glucose-limiting conditions under normoxic and hypoxic conditions were analyzed in terms of intra/extracellular product distribution and lipid composition. Integrated analysis of lipidome and transcriptome datasets allowed us to demonstrate an important remodeling of the lipid metabolism under limited oxygen availability. Additionally, cells with reduced amounts of ergosterol through fluconazole treatment were also included in the study to observe the impact on protein secretion and its lipid composition. Conclusions Our results show that cells adjust their membrane composition in response to oxygen limitation mainly by changing their sterol and sphingolipid composition. Although fluconazole treatment results a different lipidome profile than hypoxia, both conditions result in higher recombinant protein secretion levels. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0699-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Núria Adelantado
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain.,Evonik Nutrition & Care GmbH, Hanau, Germany
| | - Pablo Tarazona
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Karlheinz Grillitsch
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Xavier García-Ortega
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Sergi Monforte
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Günther Daum
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria. .,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria.
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| |
Collapse
|
30
|
Singh P. Budding Yeast: An Ideal Backdrop for In vivo Lipid Biochemistry. Front Cell Dev Biol 2017; 4:156. [PMID: 28119915 PMCID: PMC5222803 DOI: 10.3389/fcell.2016.00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/27/2016] [Indexed: 12/29/2022] Open
Abstract
Biological membranes are non-covalent assembly of lipids and proteins. Lipids play critical role in determining membrane physical properties and regulate the function of membrane associated proteins. Budding yeast Saccharomyces cerevisiae offers an exceptional advantage to understand the lipid-protein interactions since lipid metabolism and homeostasis are relatively simple and well characterized as compared to other eukaryotes. In addition, a vast array of genetic and cell biological tools are available to determine and understand the role of a particular lipid in various lipid metabolic disorders. Budding yeast has been instrumental in delineating mechanisms related to lipid metabolism, trafficking and their localization in different subcellular compartments at various cell cycle stages. Further, availability of tools and enormous potential for the development of useful reagents and novel technologies to localize a particular lipid in different subcellular compartments in yeast makes it a formidable system to carry out lipid biology. Taken together, yeast provides an outstanding backdrop to characterize lipid metabolic changes under various physiological conditions.
Collapse
Affiliation(s)
- Pushpendra Singh
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of MedicineBaltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins UniversityBaltimore, MD, USA
| |
Collapse
|
31
|
Martínez-Montañés F, Lone MA, Hsu FF, Schneiter R. Accumulation of long-chain bases in yeast promotes their conversion to a long-chain base vinyl ether. J Lipid Res 2016; 57:2040-2050. [PMID: 27561298 DOI: 10.1194/jlr.m070748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Indexed: 02/07/2023] Open
Abstract
Long-chain bases (LCBs) are the precursors to ceramide and sphingolipids in eukaryotic cells. They are formed by the action of serine palmitoyl-CoA transferase (SPT), a complex of integral membrane proteins located in the endoplasmic reticulum. SPT activity is negatively regulated by Orm proteins to prevent the toxic overaccumulation of LCBs. Here we show that overaccumulation of LCBs in yeast results in their conversion to a hitherto undescribed LCB derivative, an LCB vinyl ether. The LCB vinyl ether is predominantly formed from phytosphingosine (PHS) as revealed by conversion of odd chain length tracers C17-dihydrosphingosine and C17-PHS into the corresponding LCB vinyl ether derivative. PHS vinyl ether formation depends on ongoing acetyl-CoA synthesis, and its levels are elevated when the LCB degradative pathway is blocked by deletion of the major LCB kinase, LCB4, or the LCB phosphate lyase, DPL1. PHS vinyl ether formation thus appears to constitute a shunt for the LCB phosphate- and lyase-dependent degradation of LCBs. Consistent with a role of PHS vinyl ether formation in LCB detoxification, the lipid is efficiently exported from the cells.
Collapse
Affiliation(s)
| | - Museer A Lone
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Roger Schneiter
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
32
|
Matmati N, Kitagaki H, Hannun YA. New role for ceramide in the pheromone response. Cell Cycle 2016; 15:617-8. [PMID: 26822556 DOI: 10.1080/15384101.2016.1143271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Nabil Matmati
- a Department of Neurology , Rochester General Hospital , Rochester , NY , USA.,b Departments of Medicine, Pharmacology, Pathology, and Biochemistry and the Stony Brook Cancer Center , Stony Brook , NY , USA
| | - Hiroshi Kitagaki
- c Department of Environmental Science , Faculty of Agriculture, Saga University , Saga City , Saga , Japan
| | - Yusuf A Hannun
- b Departments of Medicine, Pharmacology, Pathology, and Biochemistry and the Stony Brook Cancer Center , Stony Brook , NY , USA
| |
Collapse
|
33
|
Tani M, Toume M. Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase. Microbiology (Reading) 2015; 161:2369-83. [DOI: 10.1099/mic.0.000187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
34
|
|
35
|
Fröhlich F, Petit C, Kory N, Christiano R, Hannibal-Bach HK, Graham M, Liu X, Ejsing CS, Farese RV, Walther TC. The GARP complex is required for cellular sphingolipid homeostasis. eLife 2015; 4. [PMID: 26357016 PMCID: PMC4600884 DOI: 10.7554/elife.08712] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are abundant membrane components and important signaling molecules in eukaryotic cells. Their levels and localization are tightly regulated. However, the mechanisms underlying this regulation remain largely unknown. In this study, we identify the Golgi-associated retrograde protein (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution, and lysosomal dysfunction. A GARP complex mutation analogous to a VPS53 allele causing progressive cerebello-cerebral atrophy type 2 (PCCA2) in humans exhibits similar, albeit weaker, phenotypes in yeast, providing mechanistic insights into disease pathogenesis. Inhibition of the first step of de novo sphingolipid synthesis is sufficient to mitigate many of the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2. DOI:http://dx.doi.org/10.7554/eLife.08712.001 Every cell is enveloped by a membrane that forms a barrier between the cell and its environment. This membrane contains fat molecules called ‘sphingolipids’, which help to maintain the structure of the membrane and enable it to work correctly. These molecules are also used as signals to send information around the interior of the cell and are required for the cell to grow and divide normally. The levels of sphingolipids in the membrane have to be tightly controlled because any imbalance can cause stress to the cell and can lead to serious diseases. Sphingolipids are made inside the cell and are then sent to a compartment called the Golgi before being delivered to the membrane. To regulate the amount of sphingolipids in the membrane, these molecules are routinely returned to the interior of the cell in small structures called endosomes. From here, they can either be broken down or recycled back to the membrane via the Golgi. A group of proteins known as the Golgi-associated retrograde protein complex (or GARP) is involved in the movement of endosomes from the membrane to the Golgi. People that have a mutation in the gene that encodes GARP suffer from a severe neurodegenerative disease known as ‘progressive cerebello-cerebral atrophy type 2’ (PCCA2) in which brain cells die prematurely. Researchers have assumed that the most important role of GARP is to sort proteins, and that the missorting of proteins leads to PCCA2. Here, Frohlich et al. used a combination of genetic analysis and biochemical techniques to study GARP in yeast cells. The experiments show that GARP is critical for sphingolipid recycling, and that a lack of GARP leads to more sphingolipids being degraded, which results in a build-up of toxic molecules. Frohlich et al. generated yeast cells that have the same mutations in the gene that encodes GARP as those in human patients with PCCA2. These cells grew much slower than normal yeast and were less able to transport sphingolipids from the endosome to the Golgi. Like the yeast cells, human cells in which the gene that encodes GARP was less active also accumulated toxic molecules. Together, these findings suggest that a build-up of toxic fat molecules may be responsible for the symptoms observed in PCCA2 patients. A future challenge is to find out whether this also applies to patients with Alzheimer's disease and other conditions that also affect endosomes. DOI:http://dx.doi.org/10.7554/eLife.08712.002
Collapse
Affiliation(s)
- Florian Fröhlich
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Constance Petit
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Nora Kory
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Romain Christiano
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Hans-Kristian Hannibal-Bach
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Morven Graham
- Center for Cellular and Molecular Imaging, Yale School of Medicine, New Haven, United States
| | - Xinran Liu
- Center for Cellular and Molecular Imaging, Yale School of Medicine, New Haven, United States.,Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States.,Broad Institute, Cambridge, United States
| | - Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States.,Broad Institute, Cambridge, United States.,Howard Hughes Medical Institute, Harvard T.H. Chan School of Public Health, Boston, United States
| |
Collapse
|
36
|
Chen PW, Fonseca LL, Hannun YA, Voit EO. Dynamics of the Heat Stress Response of Ceramides with Different Fatty-Acyl Chain Lengths in Baker's Yeast. PLoS Comput Biol 2015; 11:e1004373. [PMID: 26241868 PMCID: PMC4524633 DOI: 10.1371/journal.pcbi.1004373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/02/2015] [Indexed: 11/19/2022] Open
Abstract
The article demonstrates that computational modeling has the capacity to convert metabolic snapshots, taken sequentially over time, into a description of cellular, dynamic strategies. The specific application is a detailed analysis of a set of actions with which Saccharomyces cerevisiae responds to heat stress. Using time dependent metabolic concentration data, we use a combination of mathematical modeling, reverse engineering, and optimization to infer dynamic changes in enzyme activities within the sphingolipid pathway. The details of the sphingolipid responses to heat stress are important, because they guide some of the longer-term alterations in gene expression, with which the cells adapt to the increased temperature. The analysis indicates that all enzyme activities in the system are affected and that the shapes of the time trends in activities depend on the fatty-acyl CoA chain lengths of the different ceramide species in the system.
Collapse
Affiliation(s)
- Po-Wei Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Luis L. Fonseca
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Yusuf A. Hannun
- The Cancer Center at Stony Brook Medicine, Stony Brook University, Health Science Center, Stony Brook, New York, United States of America
| | - Eberhard O. Voit
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
37
|
Liu L, Zhang Y, Liu Z, Petranovic D, Nielsen J. Improving heterologous protein secretion at aerobic conditions by activating hypoxia-induced genes inSaccharomyces cerevisiae. FEMS Yeast Res 2015. [DOI: 10.1093/femsyr/fov070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
38
|
Ikeda A, Muneoka T, Murakami S, Hirota A, Yabuki Y, Karashima T, Nakazono K, Tsuruno M, Pichler H, Shirahige K, Kodama Y, Shimamoto T, Mizuta K, Funato K. Sphingolipids regulate telomere clustering by affecting the transcription of genes involved in telomere homeostasis. J Cell Sci 2015; 128:2454-67. [PMID: 26045446 DOI: 10.1242/jcs.164160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/20/2015] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic organisms, including mammals, nematodes and yeasts, the ends of chromosomes, telomeres are clustered at the nuclear periphery. Telomere clustering is assumed to be functionally important because proper organization of chromosomes is necessary for proper genome function and stability. However, the mechanisms and physiological roles of telomere clustering remain poorly understood. In this study, we demonstrate a role for sphingolipids in telomere clustering in the budding yeast Saccharomyces cerevisiae. Because abnormal sphingolipid metabolism causes downregulation of expression levels of genes involved in telomere organization, sphingolipids appear to control telomere clustering at the transcriptional level. In addition, the data presented here provide evidence that telomere clustering is required to protect chromosome ends from DNA-damage checkpoint signaling. As sphingolipids are found in all eukaryotes, we speculate that sphingolipid-based regulation of telomere clustering and the protective role of telomere clusters in maintaining genome stability might be conserved in eukaryotes.
Collapse
Affiliation(s)
- Atsuko Ikeda
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Tetsuya Muneoka
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Suguru Murakami
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Ayaka Hirota
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Yukari Yabuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Takefumi Karashima
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Kota Nakazono
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Masahiro Tsuruno
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Harald Pichler
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14/2, Graz 8010, Austria
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute of Molecular and Cellular Biosciences, the University of Tokyo, Tokyo 113-0032, Japan
| | | | - Toshi Shimamoto
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Keiko Mizuta
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Kouichi Funato
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
39
|
Desjardins CA, Sanscrainte ND, Goldberg JM, Heiman D, Young S, Zeng Q, Madhani HD, Becnel JJ, Cuomo CA. Contrasting host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes. Nat Commun 2015; 6:7121. [PMID: 25968466 PMCID: PMC4435813 DOI: 10.1038/ncomms8121] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/07/2015] [Indexed: 12/14/2022] Open
Abstract
Obligate intracellular pathogens depend on their host for growth yet must also evade detection by host defenses. Here we investigate host adaptation in two Microsporidia, the specialist Edhazardia aedis and the generalist Vavraia culicis, pathogens of disease vector mosquitoes. Genomic analysis and deep RNA-Seq across infection time courses reveal fundamental differences between these pathogens. E. aedis retains enhanced cell surface modification and signalling capacity, upregulating protein trafficking and secretion dynamically during infection. V. culicis is less dependent on its host for basic metabolites and retains a subset of spliceosomal components, with a transcriptome broadly focused on growth and replication. Transcriptional profiling of mosquito immune responses reveals that response to infection by E. aedis differs dramatically depending on the mode of infection, and that antimicrobial defensins may play a general role in mosquito defense against Microsporidia. This analysis illuminates fundamentally different evolutionary paths and host interplay of specialist and generalist pathogens.
Collapse
Affiliation(s)
| | - Neil D Sanscrainte
- USDA, ARS, Center for Medical, Agricultural and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, Florida 32608, USA
| | | | - David Heiman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, California 94158, USA
| | - James J Becnel
- USDA, ARS, Center for Medical, Agricultural and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, Florida 32608, USA
| | - Christina A Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
40
|
Plasma Membrane Proteolipid 3 Protein Modulates Amphotericin B Resistance through Sphingolipid Biosynthetic Pathway. Sci Rep 2015; 5:9685. [PMID: 25965669 PMCID: PMC4428271 DOI: 10.1038/srep09685] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/16/2015] [Indexed: 02/08/2023] Open
Abstract
Invasive opportunistic fungal infections of humans are common among those suffering from impaired immunity, and are difficult to treat resulting in high mortality. Amphotericin B (AmB) is one of the few antifungals available to treat such infections. The AmB resistance mechanisms reported so far mainly involve decrease in ergosterol content or alterations in cell wall. In contrast, depletion of sphingolipids sensitizes cells to AmB. Recently, overexpression of PMP3 gene, encoding plasma membrane proteolipid 3 protein, was shown to increase and its deletion to decrease, AmB resistance. Here we have explored the mechanistic basis of PMP3 effect on AmB resistance. It was found that ergosterol content and cell wall integrity are not related to modulation of AmB resistance by PMP3. A few prominent phenotypes of PMP3 delete strain, namely, defective actin polarity, impaired salt tolerance, and reduced rate of endocytosis are also not related to its AmB-sensitivity. However, PMP3 overexpression mediated increase in AmB resistance requires a functional sphingolipid pathway. Moreover, AmB sensitivity of strains deleted in PMP3 can be suppressed by the addition of phytosphingosine, a sphingolipid pathway intermediate, confirming the importance of this pathway in modulation of AmB resistance by PMP3.
Collapse
|
41
|
Vriens K, Cammue BPA, Thevissen K. Antifungal plant defensins: mechanisms of action and production. Molecules 2014; 19:12280-303. [PMID: 25153857 PMCID: PMC6271847 DOI: 10.3390/molecules190812280] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 12/18/2022] Open
Abstract
Plant defensins are small, cysteine-rich peptides that possess biological activity towards a broad range of organisms. Their activity is primarily directed against fungi, but bactericidal and insecticidal actions have also been reported. The mode of action of various antifungal plant defensins has been studied extensively during the last decades and several of their fungal targets have been identified to date. This review summarizes the mechanism of action of well-characterized antifungal plant defensins, including RsAFP2, MsDef1, MtDef4, NaD1 and Psd1, and points out the variety by which antifungal plant defensins affect microbial cell viability. Furthermore, this review summarizes production routes for plant defensins, either via heterologous expression or chemical synthesis. As plant defensins are generally considered non-toxic for plant and mammalian cells, they are regarded as attractive candidates for further development into novel antimicrobial agents.
Collapse
Affiliation(s)
- Kim Vriens
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium
| |
Collapse
|
42
|
Spincemaille P, Matmati N, Hannun YA, Cammue BPA, Thevissen K. Sphingolipids and mitochondrial function in budding yeast. Biochim Biophys Acta Gen Subj 2014; 1840:3131-7. [PMID: 24973565 DOI: 10.1016/j.bbagen.2014.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sphingolipids (SLs) are not only key components of cellular membranes, but also play an important role as signaling molecules in orchestrating both cell growth and apoptosis. In Saccharomyces cerevisiae, three complex SLs are present and hydrolysis of either of these species is catalyzed by the inositol phosphosphingolipid phospholipase C (Isc1p). Strikingly, mutants deficient in Isc1p display several hallmarks of mitochondrial dysfunction such as the inability to grow on a non-fermentative carbon course, increased oxidative stress and aberrant mitochondrial morphology. SCOPE OF REVIEW In this review, we focus on the pivotal role of Isc1p in regulating mitochondrial function via SL metabolism, and on Sch9p as a central signal transducer. Sch9p is one of the main effectors of the target of rapamycin complex 1 (TORC1), which is regarded as a crucial signaling axis for the regulation of Isc1p-mediated events. Finally, we describe the retrograde response, a signaling event originating from mitochondria to the nucleus, which results in the induction of nuclear target genes. Intriguingly, the retrograde response also interacts with SL homeostasis. MAJOR CONCLUSIONS All of the above suggests a pivotal signaling role for SLs in maintaining correct mitochondrial function in budding yeast. GENERAL SIGNIFICANCE Studies with budding yeast provide insight on SL signaling events that affect mitochondrial function.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Nabil Matmati
- Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
43
|
Spincemaille P, Cammue BP, Thevissen K. Sphingolipids and mitochondrial function, lessons learned from yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2014; 1:210-224. [PMID: 28357246 PMCID: PMC5349154 DOI: 10.15698/mic2014.07.156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/10/2014] [Indexed: 01/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of several neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also of cancer, diabetes and rare diseases such as Wilson's disease (WD) and Niemann Pick type C1 (NPC). Mitochondrial dysfunction underlying human pathologies has often been associated with an aberrant cellular sphingolipid metabolism. Sphingolipids (SLs) are important membrane constituents that also act as signaling molecules. The yeast Saccharomyces cerevisiae has been pivotal in unraveling mammalian SL metabolism, mainly due to the high degree of conservation of SL metabolic pathways. In this review we will first provide a brief overview of the major differences in SL metabolism between yeast and mammalian cells and the use of SL biosynthetic inhibitors to elucidate the contribution of specific parts of the SL metabolic pathway in response to for instance stress. Next, we will discuss recent findings in yeast SL research concerning a crucial signaling role for SLs in orchestrating mitochondrial function, and translate these findings to relevant disease settings such as WD and NPC. In summary, recent research shows that S. cerevisiae is an invaluable model to investigate SLs as signaling molecules in modulating mitochondrial function, but can also be used as a tool to further enhance our current knowledge on SLs and mitochondria in mammalian cells.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Bruno P. Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052,
Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
44
|
Voynova NS, Mallela SK, Vazquez HM, Cerantola V, Sonderegger M, Knudsen J, Ejsing CS, Conzelmann A. Characterization of yeast mutants lacking alkaline ceramidases YPC1 and YDC1. FEMS Yeast Res 2014; 14:776-88. [PMID: 24866405 DOI: 10.1111/1567-1364.12169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/22/2022] Open
Abstract
Humans and yeast possess alkaline ceramidases located in the early secretory pathway. Single deletions of the highly homologous yeast alkaline ceramidases YPC1 and YDC1 have very little genetic interactions or phenotypes. Here, we performed chemical-genetic screens to find deletions/conditions that would alter the growth of ypc1∆ydc1∆ double mutants. These screens were essentially negative, demonstrating that ceramidase activity is not required for cell growth even under genetic stresses. A previously reported protein targeting defect of ypc1∆ could not be reproduced and reported abnormalities in sphingolipid biosynthesis detected by metabolic labeling do not alter the mass spectrometric lipid profile of ypc1∆ydc1∆ cells. Ceramides of ypc1∆ydc1∆ remained normal even in presence of aureobasidin A, an inhibitor of inositolphosphorylceramide synthase. Moreover, in caloric restriction conditions Ypc1p reduces chronological life span. A novel finding is that, when working backwards as a ceramide synthase in vivo, Ypc1p prefers C24 and C26 fatty acids as substrates, whereas it prefers C16:0, when solubilized in detergent and working in vitro. Therefore, its physiological activity may not only concern the minor ceramides containing C14 and C16. Intriguingly, so far the sole discernable benefit of conserving YPC1 for yeast resides with its ability to convey relative resistance toward H2O2.
Collapse
Affiliation(s)
- Natalia S Voynova
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Uemura S, Shishido F, Tani M, Mochizuki T, Abe F, Inokuchi JI. Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in S. cerevisiae. J Lipid Res 2014; 55:1343-56. [PMID: 24875539 DOI: 10.1194/jlr.m048637] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Indexed: 12/15/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, structural diversities of complex sphingolipids [inositol phosphorylceramide (IPC), mannosylinositol phosphorylceramide, and mannosyldiinositol phosphorylceramide] are often observed in the presence or absence of hydroxyl groups on the C-4 position of long-chain base (C4-OH) and the C-2 position of very long-chain fatty acids (C2-OH), but the biological significance of these groups remains unclear. Here, we evaluated cellular membrane fluidity in hydroxyl group-defective yeast mutants by fluorescence recovery after photobleaching. The lateral diffusion of enhanced green fluorescent protein-tagged hexose transporter 1 (Hxt1-EGFP) was influenced by the absence of C4-OH and/or C2-OH. Notably, the fluorescence recovery of Hxt1-EGFP was dramatically decreased in the sur2Δ mutant (absence of C4-OH) under the csg1Δcsh1Δ background, in which mannosylation of IPC is blocked leading to IPC accumulation, while the recovery in the scs7Δ mutant (absence of C2-OH) under the same background was modestly decreased. In addition, the amount of low affinity tryptophan transporter 1 (Tat1)-EGFP was markedly decreased in the sur2Δcsg1Δcsh1Δ mutant and accumulated in intracellular membranes in the scs7Δcsg1Δcsh1Δ mutant without altering its protein expression. These results suggest that C4-OH and C2-OH are most probably critical factors for maintaining membrane fluidity and proper turnover of membrane molecules in yeast containing complex sphingolipids with only one hydrophilic head group.
Collapse
Affiliation(s)
- Satoshi Uemura
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai 981-8558, Japan Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Fumi Shishido
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| | - Motohiro Tani
- Department of Chemistry, Kyushu University, Fukuoka 812-8581, Japan
| | - Takahiro Mochizuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| |
Collapse
|