1
|
Perez-Salas U, Porcar L, Garg S, Ayee MAA, Levitan I. Effective Parameters Controlling Sterol Transfer: A Time-Resolved Small-Angle Neutron Scattering Study. J Membr Biol 2022; 255:423-435. [PMID: 35467109 DOI: 10.1007/s00232-022-00231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/19/2022] [Indexed: 11/29/2022]
Abstract
Though cholesterol is the most prevalent and essential sterol in mammalian cellular membranes, its precursors, post-synthesis cholesterol products, as well as its oxidized derivatives play many other important physiological roles. Using a non-invasive in situ technique, time-resolved small angle neutron scattering, we report on the rate of membrane desorption and corresponding activation energy for this process for a series of sterol precursors and post-synthesis cholesterol products that vary from cholesterol by the number and position of double bonds in B ring of cholesterol's steroid core. In addition, we report on sterols that have oxidation modifications in ring A and ring B of the steroid core. We find that sterols that differ in position or the number of double bonds in ring B have similar time and energy characteristics, while oxysterols have faster transfer rates and lower activation energies than cholesterol in a manner generally consistent with known sterol characteristics, like Log P, the n-octanol/water partitioning coefficient. We find, however, that membrane/water partitioning which is dependent on lipid-sterol interactions is a better predictor, shown by the correlation of the sterols' tilt modulus with both the desorption rates and activation energy.
Collapse
Affiliation(s)
- Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Lionel Porcar
- Institut Laue Langevin, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Manuela A A Ayee
- Department of Engineering, Dordt University, Sioux Center, IA, USA
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
2
|
Impact of Quercetin Encapsulation with Added Phytosterols on Bilayer Membrane and Photothermal-Alteration of Novel Mixed Soy Lecithin-Based Liposome. NANOMATERIALS 2020; 10:nano10122432. [PMID: 33291386 PMCID: PMC7762074 DOI: 10.3390/nano10122432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023]
Abstract
This study used highly lipophilic agents with an aim to increase the oxidant inhibitory activity and enhance photothermal stability of a novel mixed soy lecithin (ML)-based liposome by changing the composition of formulation within the membrane. Specifically, the development and optimization of the liposome intended for improving Trolox equivalent antioxidant capacity (TEAC) value and %TEAC loss was carried out by incorporating a natural antioxidant, quercetin (QU). In this context, a focus was set on QU encapsulation in ML-based liposomes and the concentration-dependent solubility of QU was investigated and calculated as encapsulation efficiency (EE). To explore the combined effects of the incorporation of plant sterols on the integrity and entrapment capacity of mixed phospholipid vesicles, conjugation of two types of phytosterols (PSs), namely β-sitosterol (βS) and stigmasterol (ST), to mixed membranes at different ratios was also performed. The EE measurement revealed that QU could be efficiently encapsulated in the stable ML-based liposome using 0.15 and 0.1 g/100 mL of βS and ST, respectively. The aforementioned liposome complex exhibited a considerable TEAC (197.23%) and enhanced TEAC loss (30.81%) when exposed to ultraviolet (UV) light (280-320 nm) over a 6 h duration. It appeared that the presence and type of PSs affect the membrane-integration characteristics as well as photodamage transformation of the ML-based liposome. The association of QU with either βS or ST in the formulation was justified by their synergistic effects on the enhancement of the EE of liposomes. Parallel to this, it was demonstrated that synergistic PS effects could be in effect in the maintenance of membrane order of the ML-based liposome. The findings presented in this study provided useful information for the development and production of stable QU-loaded ML-based liposomes for food and nutraceutical applications and could serve as a potential mixed lipids-based delivery system in the disease management using antioxidant therapy.
Collapse
|
3
|
Chountoulesi M, Perinelli DR, Forys A, Bonacucina G, Trzebicka B, Pispas S, Demetzos C. Liquid crystalline nanoparticles for drug delivery: The role of gradient and block copolymers on the morphology, internal organisation and release profile. Eur J Pharm Biopharm 2020; 158:21-34. [PMID: 33098976 DOI: 10.1016/j.ejpb.2020.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/23/2022]
Abstract
Amphiphilic polymers represent one of the main class of stabilizers for non-lamellar lyotropic liquid crystalline nanoparticles, being essential for their formation and stability. In the present study, poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) block copolymers and poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) (MPOx) gradient copolymers were incorporated as stabilizers in liquid crystalline nanoparticles prepared from glyceryl monooleate. The polymers were chosen according to their high biocompatibility and promising stealth properties, in order to develop safe and efficient drug delivery nanosystems. The physicochemical characteristics and fractal dimension of the resultant nanosystems were obtained from light scattering techniques, while their micropolarity and microfluidity from fluorescence spectroscopy. The effect of temperature, serum proteins and ionic strength on the physicochemical behavior was monitored. Their morphology was assessed by cryo-TEM, while their thermal behavior by microcalorimetry and high-resolution ultrasound spectroscopy. Their properties were dependent on the stabilizer chemistry and topology (block/gradient copolymer) and its concentration. Subsequently, resveratrol, as model hydrophobic drug, was loaded into the nanosystems, the entrapment efficiency was calculated and in vitro release studies were carried out, highlighting how the different stabilizer can differentiate the drug release profile. In conclusion, the proposed copolymers broaden the toolbox of polymeric stabilizers for the development of liquid crystalline nanoparticles intended for drug delivery applications.
Collapse
Affiliation(s)
- Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Diego Romano Perinelli
- School of Pharmacy, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, Zabrze, Poland
| | - Giulia Bonacucina
- School of Pharmacy, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, Zabrze, Poland
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
4
|
Bin Sintang MD, Danthine S, Khalenkow D, Tavernier I, Tzompa Sosa DA, Julmohammad NB, Van de Walle D, Rimaux T, Skirtach A, Dewettinck K. Modulating the crystallization of phytosterols with monoglycerides in the binary mixture systems: mixing behavior and eutectic formation. Chem Phys Lipids 2020; 230:104912. [DOI: 10.1016/j.chemphyslip.2020.104912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
|
5
|
Madihalli C, Sudhakar H, Doble M. Production and investigation of the physico-chemical properties of MEL-A from glycerol and coconut water. World J Microbiol Biotechnol 2020; 36:88. [PMID: 32500290 DOI: 10.1007/s11274-020-02857-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Abstract
This work reports the production of MEL-A using coconut water as the carbon source. Proximate analysis of coconut water indicated the presence of nutrients necessary for growth of the organism and production of desired metabolite. The amount of MEL produced using coconut water was 3.85 g/L (± 0.35) with 74% of it being MEL-A when compared to 2.58 g/L (± 0.15) with 60% being MEL-A using glycerol, a conventional carbon source. MEL-A from coconut water consisted of 38.1% long-chain saturated fatty acids (C16:0 and C18:0) whereas with glycerol it was 9.6%. The critical micellar concentration of the biosurfactant from coconut water was 2.32 ± 0.21 µM when compared to 4.41 ± 0.25 µM from glycerol. The stability of O/W emulsion was reduced by 50% and 90% after incubation for 8 h in the case of MEL-A from coconut water and glycerol respectively when compared to synthetic surfactant, Tween-20. MEL-A from both the sources exhibited free radical scavenging activity (DPPH assay) in a dose-dependent manner wherein MEL-A from coconut water showed two fold higher activity than the other. The interaction of coconut water MEL-A with DPPC for drug encapsulation applications was also studied. The DSC measurements showed the differences in the interaction of drugs with DPPC/MEL-A liposome. The differences were also observed in the solubility of drugs after encapsulation with DPPC/MEL-A liposome.
Collapse
Affiliation(s)
- Chandraprasad Madihalli
- Bioengineering and Drug Design Lab, Bhupat and Jyothi Mehta School of Bioscience, Department of Biotechnology, Indian Institute of Technology, Chennai, 600036, India.,Department of Biotechnology, BMS College of Engineering, Bengaluru, 560019, India
| | - Harshal Sudhakar
- Bioengineering and Drug Design Lab, Bhupat and Jyothi Mehta School of Bioscience, Department of Biotechnology, Indian Institute of Technology, Chennai, 600036, India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Bhupat and Jyothi Mehta School of Bioscience, Department of Biotechnology, Indian Institute of Technology, Chennai, 600036, India.
| |
Collapse
|
6
|
Bernabò N, Machado-Simoes J, Valbonetti L, Ramal-Sanchez M, Capacchietti G, Fontana A, Zappacosta R, Palestini P, Botto L, Marchisio M, Lanuti P, Ciulla M, Di Stefano A, Fioroni E, Spina M, Barboni B. Graphene Oxide increases mammalian spermatozoa fertilizing ability by extracting cholesterol from their membranes and promoting capacitation. Sci Rep 2019; 9:8155. [PMID: 31148593 PMCID: PMC6544623 DOI: 10.1038/s41598-019-44702-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/14/2019] [Indexed: 11/09/2022] Open
Abstract
Graphene Oxide (GO) is a widely used biomaterial with an amazing variety of applications in biology and medicine. Recently, we reported the ability of GO to improve the in vitro fertilization (IVF) outcomes in swine, a validated animal model with a high predictive value for human fertility. For that reason, here we characterized the mechanisms involved in this positive interaction by adopting an experimental approach combining biological methods (confocal microscopy analysis on single cell, flow cytometry on cell populations and co-incubation with epithelial oviductal cells), physical-chemical techniques (Differential Scanning Calorimetry and Thermogravimetric Analysis), and chemical methods (mass spectrometry and lipid measurement). As a result, we propose a model in which GO is able to extract cholesterol from the spermatozoa membrane without causing any detrimental effect. In this way, the cholesterol extraction promotes a change in membrane chemical-physical properties that could positively affect male gamete function, modulating sperm signalling function and increasing in this way the fertilizing potential, without losing the ability to physiologically interact with the female environment. In conclusion, these data seem to suggest new intriguing possibilities in engineering sperm membrane for improving assisted reproduction technologies outcomes, even in human medicine.
Collapse
Affiliation(s)
- Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
| | - Juliana Machado-Simoes
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Antonella Fontana
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Romina Zappacosta
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano Bicocca, 20900, Monza, Italy
| | - Laura Botto
- School of Medicine and Surgery, University of Milano Bicocca, 20900, Monza, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.,Center on Aging Sciences and Translational Medicine (CeSI-MeT), University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.,Center on Aging Sciences and Translational Medicine (CeSI-MeT), University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Michele Ciulla
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Elena Fioroni
- Laboratorio Analisi Dr. Fioroni, Viale A. de Gasperi, 19, 63074, San Benedetto del Tronto, Italy
| | - Michele Spina
- Laboratorio Analisi Dr. Fioroni, Viale A. de Gasperi, 19, 63074, San Benedetto del Tronto, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| |
Collapse
|