1
|
Cao Z, Sun Y, Chen Y, Zhu C. Photoinduced Asymmetric Alkene Aminohetarylation with Chiral Sulfoximine Reagents. Angew Chem Int Ed Engl 2024:e202408177. [PMID: 39143840 DOI: 10.1002/anie.202408177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Given the pivotal role of β-(het)arylethylamine moiety in bioactive molecules, the direct amino(het)arylation of alkenes occupies a privileged position in the construction of (het)arylethylamine derivatives. Herein we devise chiral sulfoximines as novel bifunctional reagents which exhibit remarkable efficiency in the challenging asymmetric alkene aminohetarylation reaction, particularly in terms of reactivity and stereo-control. The chiral reagents can be conveniently accessed in gram scale, and efficiently generate N-centered radicals under mild photochemical conditions. The transformation proceeds through enantioselective 1,4-hetaryl migration, ensuring precise chirality transfer from sulfur- to carbon-centers, rendering wide applicability to both aromatic and aliphatic alkenes. Furthermore, the method is straightforward to operate and does not require transition metals or photosensitizers, making it an attractive and practical option.
Collapse
Affiliation(s)
- Zhu Cao
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuqian Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Yasu Chen
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Zhu
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
2
|
Nishino S, Sudo K, Kurahashi T. Nickel-Photoredox-Catalyzed Stereoconvergent Coupling of Alkenyl Halides and Nitrogen-Containing Heterocycles. Org Lett 2024; 26:4049-4054. [PMID: 38717164 DOI: 10.1021/acs.orglett.4c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Nitrogen-containing heterocycles possessing N-alkenyl substituents are an important structural motif. However, the synthetic methods reported thus far cannot selectively synthesize the Z stereoisomer on the basis of the stereochemistry of the substituted alkenes. Herein, we report the stereoconvergent coupling of heterocycles and alkenyl halides consisting of a mixture of E/Z stereoisomers, which selectively afforded the thermodynamically less stable Z-coupling product. Mechanistic studies suggest that a nickel photoredox catalyst facilitates the formation of N-centered heteroarene radicals.
Collapse
Affiliation(s)
- Sodai Nishino
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Kô Sudo
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Takuya Kurahashi
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
3
|
Ortalli S, Ford J, Trabanco AA, Tredwell M, Gouverneur V. Photoredox Nucleophilic (Radio)fluorination of Alkoxyamines. J Am Chem Soc 2024; 146:11599-11604. [PMID: 38651661 PMCID: PMC11066844 DOI: 10.1021/jacs.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Herein, we report a photoredox nucleophilic (radio)fluorination using TEMPO-derived alkoxyamines, a class of substrates accessible in a single step from a diversity of readily available carboxylic acids, halides, alkenes, alcohols, aldehydes, boron reagents, and C-H bonds. This mild and versatile one-electron pathway affords radiolabeled aliphatic fluorides that are typically inaccessible applying conventional nucleophilic substitution technologies due to insufficient reactivity and competitive elimination. Automation of this photoredox process is also demonstrated with a user-friendly and commercially available photoredox flow reactor and radiosynthetic platform, therefore expediting access to labeled aliphatic fluorides in high molar activity (Am) for (pre)clinical evaluation.
Collapse
Affiliation(s)
- Sebastiano Ortalli
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Joseph Ford
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Andrés A. Trabanco
- Global
Discovery Chemistry, Therapeutics Discovery, Johnson & Johnson Innovative Medicine, Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Matthew Tredwell
- Wales Research
and Diagnostic PET Imaging Centre, Cardiff
University, University
Hospital of Wales, Heath Park, Cardiff CF14 4XN, United
Kingdom
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Véronique Gouverneur
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
4
|
Noten EA, Ng CH, Wolesensky RM, Stephenson CRJ. A general alkene aminoarylation enabled by N-centred radical reactivity of sulfinamides. Nat Chem 2024; 16:599-606. [PMID: 38228850 DOI: 10.1038/s41557-023-01404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/17/2023] [Indexed: 01/18/2024]
Abstract
Arylethylamines are popular structural elements in bioactive molecules but are often made through a linear series of synthetic steps. A modular protocol to assemble arylethylamines from alkenes in one step would represent a useful advance in discovery chemistry, though current limitations preclude a generally applicable method. In this work we disclose an aminoarylation of alkenes using aryl sulfinamide reagents as bifunctional amine and arene donors. This reaction features excellent regioselectivity and diastereoselectivity on a variety of activated and unactivated substrates. Using a weakly oxidizing photocatalyst, a nitrogen radical is generated under mild conditions and adds to an alkene to form a new C-N bond. A desulfinylative aryl migration event known as a Smiles-Truce rearrangement follows to form a new C-C bond. In this manner, arylethylamines can be rapidly assembled from abundant alkene feedstocks. Moreover, chiral information from the sulfinamide can be transferred via rearrangement to a new carbon stereocentre in the product, thus advancing the development of traceless asymmetric alkene difunctionalization.
Collapse
Affiliation(s)
- Efrey A Noten
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Cody H Ng
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
5
|
Keum H, Ryoo H, Kim D, Chang S. Amidative β-Scission of Alcohols Enabled by Dual Catalysis of Photoredox Proton-Coupled Electron Transfer and Inner-Sphere Ni-Nitrenoid Transfer. J Am Chem Soc 2024; 146:1001-1008. [PMID: 38109265 DOI: 10.1021/jacs.3c11813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The photoredox/Ni dual catalysis is an appealing strategy to enable unconventional C-heteroatom bond formation. While significant advances have been achieved using this system, intermolecular C(sp3)-N bond formation has been relatively underdeveloped due to the difficulty in C(sp3)-N reductive elimination. Herein, we present a new mechanistic approach that utilizes dioxazolones as the Ni(II)-nitrenoid precursor to capture carbon-centered radicals by merging proton-coupled electron transfer (PCET) with nickel catalysis, thus forming synthetically versatile N-alkyl amides using alcohols. Based on mechanistic investigations, the involvement of (κ2-N,O)Ni(II)-nitrenoid species was proposed to capture photoredox PCET-induced alkyl radicals, thereby playing a pivotal role to enable the C(sp3)-N bond formation.
Collapse
Affiliation(s)
- Hyeyun Keum
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Harin Ryoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
6
|
Hu K, He YX, Lei ZY, Ran Y, Geng S, Chen LN, Pan L, Li YL, Huang F. Photocatalytic Intramolecular Alkene Hydroamination of N-Alkoxy Ureas: An Approach to Imidazolinones. J Org Chem 2023; 88:12727-12737. [PMID: 37596973 DOI: 10.1021/acs.joc.3c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Imidazolinones were obtained in good yields by intramolecular hydroamination of N-alkoxy ureas in the presence of an organic photocatalyst and an inorganic base. In this reaction, the N-alkoxy urea anion generated by deprotonation undergoes photocatalyzed single-electron-transfer oxidation to generate the corresponding radical, which cyclizes to afford the imidazolinone ring. This new protocol grants access to an array of complex molecules containing a privileged imidazolinone core.
Collapse
Affiliation(s)
- Kui Hu
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Yuan-Xiang He
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Zhen-Yao Lei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Yu Ran
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Shu Geng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Li-Na Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Li Pan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Feng Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| |
Collapse
|
7
|
Freis M, Balkenhohl M, Fischer DM, Georgiev T, Sarott RC, Carreira EM. Cobalt-Catalyzed Aerobic Aminocyclization of Unsaturated Amides for the Synthesis of Functionalized γ- and δ-Lactams. Org Lett 2023; 25:6380-6384. [PMID: 37610083 PMCID: PMC10476186 DOI: 10.1021/acs.orglett.3c02390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 08/24/2023]
Abstract
We report the cobalt-catalyzed aminocyclization of unsaturated N-acyl sulfonamides in the presence of oxygen to provide γ- and δ-lactam aldehydes. Use of an optically active cobalt catalyst resulted in the formation of enantiomerically enriched γ-and δ-lactam alcohols. The γ-lactam aldehydes and alcohols obtained were elaborated into useful building blocks.
Collapse
Affiliation(s)
- Manuel Freis
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory
of Organic Chemistry, 8093 Zürich, Switzerland
| | - Moritz Balkenhohl
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory
of Organic Chemistry, 8093 Zürich, Switzerland
| | - David M. Fischer
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory
of Organic Chemistry, 8093 Zürich, Switzerland
| | - Tony Georgiev
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory
of Organic Chemistry, 8093 Zürich, Switzerland
| | - Roman C. Sarott
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory
of Organic Chemistry, 8093 Zürich, Switzerland
| | - Erick M. Carreira
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory
of Organic Chemistry, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Zhang CC, Wu HL, Yu XC, Wang LT, Zhou Y, Sun YB, Wei WT. Photoinduced Copper-Catalyzed Aminoalkylation of Amino-Pendant Olefins. Org Lett 2023; 25:5862-5868. [PMID: 37534703 DOI: 10.1021/acs.orglett.3c02119] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The combination of photo and copper catalysts has emerged as a novel paradigm in organic catalysis, which provides access to the acceleration of chemical synthesis. Herein, we describe an aminoalkylation of amino-dependent olefins with maleimides through a cooperative photo/copper catalytic system. In this report, the strategy allows the generation of a broad complex of functionalized nitrogenous molecules including oxazolidinones, 2-pyrrolidones, imidazolidinones, thiazolidinones, pyridines, and piperidines in the absence of an external photosensitizer and base. The approach is achieved through a photoinduced Cu(I)/Cu(II)/Cu(III) complex species of nitrogen nucleophiles, intermolecular radical addition, and hydrogen atom transfer (HAT) processes. The plausible mechanism is investigated by a series of control experiments and theoretical tests, including radical scavenging experiments, deuterium labeling experiments, ultraviolet-visible absorption, and cyclic voltammetry (CV) tests.
Collapse
Affiliation(s)
- Can-Can Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Hong-Li Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Xuan-Chi Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Ling-Tao Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yu Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yong-Bin Sun
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang 310024, P. R. China
| |
Collapse
|
9
|
Qi XK, Zheng MJ, Yang C, Zhao Y, Guo L, Xia W. Metal-Free Amino(hetero)arylation and Aminosulfonylation of Alkenes Enabled by Photoinduced Energy Transfer. J Am Chem Soc 2023; 145:16630-16641. [PMID: 37486736 DOI: 10.1021/jacs.3c04073] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
β-(Hetero)arylethylamines are privileged structural motifs found in many high-value organic molecules, including pharmaceuticals and natural products. To construct these important molecular skeletons, previous methods are mainly achieved by amino(hetero)arylation reaction with the aid of transition metals and preactivated substrates. Herein, we report a metal-free and photoinduced intermolecular amino(hetero)arylation reaction for the single-step installation of both (hetero)aryl and iminyl groups across alkenes in an efficient and regioselective manner. This method shows broad scope (up to 124 examples) and excellent tolerance of various olefins─from the simplest ethylene to complex multisubstituted alkenes can all participate in the reaction. Furthermore, aminosulfonylation of alkenes can be also conducted in the presence of sodium bisulfite as the SO2 source.
Collapse
Affiliation(s)
- Xu-Kuan Qi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Meng-Jie Zheng
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yating Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
10
|
Sunbal, Alamzeb M, Omer M, Abid OUR, Ullah M, Sohail M, Ullah I. Chemical insights into the synthetic chemistry of five-membered saturated heterocycles-a transition metal-catalyzed approach. Front Chem 2023; 11:1185669. [PMID: 37564110 PMCID: PMC10411457 DOI: 10.3389/fchem.2023.1185669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Drug design and delivery is primarily based on the hunt for new potent drug candidates and novel synthetic techniques. Recently, saturated heterocycles have gained enormous attention in medicinal chemistry as evidenced by the medicinal drugs listed in the FDA Orange Book. Therefore, the demand for novel saturated heterocyclic syntheses has increased tremendously. Transition metal (TM)-catalyzed reactions have remained the prime priority in heterocyclic syntheses for the last three decades. Nowadays, TM catalysis is well adorned by combining it with other techniques such as bio- and/or enzyme-catalyzed reactions, organocatalysis, or using two different metals in a single catalysis. This review highlights the recent developments of the transition metal-catalyzed synthesis of five-membered saturated heterocycles.
Collapse
Affiliation(s)
- Sunbal
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | - Muhammad Omer
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | - Mohib Ullah
- Department of Chemistry, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Muhammad Sohail
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Ihsan Ullah
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| |
Collapse
|
11
|
Simons RT, Nandakumar M, Kwon K, Ayer SK, Venneti NM, Roizen JL. Directed Photochemically Mediated Nickel-Catalyzed (Hetero)arylation of Aliphatic C-H Bonds. J Am Chem Soc 2023; 145:10.1021/jacs.2c13409. [PMID: 36780585 PMCID: PMC10423309 DOI: 10.1021/jacs.2c13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Site-selective functionalization of unactivated C(sp3)-H centers is challenging because of the ubiquity and strength of alkyl C-H bonds. Herein, we disclose a position-selective C(sp3)-C(sp2) cross-coupling reaction. This process engages C(sp3)-H bonds and aryl bromides, utilizing catalytic quantities of a photoredox-capable molecule and a nickel precatalyst. Using this technology, selective C-H functionalization arises owing to a 1,6-hydrogen atom transfer (HAT) process that is guided by a pendant alcohol-anchored sulfamate ester. These transformations proceed directly from N-H bonds, in contrast to previous directed, radical-mediated, C-H arylation processes, which have relied on prior oxidation of the reactive nitrogen center in reactions with nucleophilic arenes. Moreover, these conditions promote arylation at secondary centers in good yields with excellent selectivity.
Collapse
Affiliation(s)
- R. Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Suraj K. Ayer
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Naresh M. Venneti
- Wayne State University, Department of Chemistry, Detroit, MI 48202, United States
| | - Jennifer L. Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| |
Collapse
|
12
|
Liu W, Wang L, Mu H, Zhang Q, Fang Z, Li D. Synthesis of cyano-substituted γ-lactams through a copper-catalyzed cascade cyclization/cyanation reaction. Org Biomol Chem 2023; 21:1168-1171. [PMID: 36647817 DOI: 10.1039/d2ob02086f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A convenient copper-catalyzed cascade cyclization/cyanation reaction for the construction of cyano-containing γ-lactams was developed. The protocol employed TMSCN as the cyano source and proceeded in water under simple conditions. Mechanistic studies indicated this reaction involved an amidyl radical initiated cascade 5-exo-trig cyclization/cyanation process. It is capable of generating a series of cyano-substituted γ-lactams and relative 2-oxazolidinone derivatives with a broad substrate scope.
Collapse
Affiliation(s)
- Wen Liu
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Liang Wang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Haiping Mu
- Hubei Kecy Chemical Co., Ltd, Qianjiang 433132, China
| | - Qian Zhang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Zeguo Fang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Dong Li
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
13
|
Dhungana RK, Granados A, Ciccone V, Martin RT, Majhi J, Sharique M, Gutierrez O, Molander GA. Trifunctionalization of Cinnamyl Alcohols Provides Access to Brominated α,α-Difluoro-γ-lactones via a Photoinduced Radical–Polar–Radical Mechanism. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roshan K. Dhungana
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Vittorio Ciccone
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Robert T. Martin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
14
|
Bhargava Reddy M, Prasanth K, Neerathilingam N, Anandhan R. Quinazolinones/Benzothiadiazines as Amidyl/Aminyl Radical Precursors for Controlled Cascade Cyclization via Photocatalyzed PCET. Org Lett 2022; 24:8158-8163. [DOI: 10.1021/acs.orglett.2c03222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kesavan Prasanth
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, India
| | | | - Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, India
| |
Collapse
|
15
|
Marchi M, Gentile G, Rosso C, Melchionna M, Fornasiero P, Filippini G, Prato M. The Nickel Age in Synthetic Dual Photocatalysis: A Bright Trip Toward Materials Science. CHEMSUSCHEM 2022; 15:e202201094. [PMID: 35789214 PMCID: PMC9804426 DOI: 10.1002/cssc.202201094] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Indexed: 05/30/2023]
Abstract
Recently, the field of dual photocatalysis has grown rapidly, to become one of the most powerful tools for the functionalization of organic molecules under mild conditions. In particular, the merging of Earth-abundant nickel-based catalytic systems with visible-light-activated photoredox catalysts has allowed the development of a number of unique green synthetic approaches. This goes in the direction of ensuring an effective and sustainable chemical production, while safeguarding human health and environment. Importantly, this relatively new branch of catalysis has inspired an interdisciplinary stream of research that spans from inorganic and organic chemistry to materials science, thus establishing itself as one dominant trend in modern organic synthesis. This Review aims at illustrating the milestones on the timeline evolution of the photocatalytic systems used, with a critical analysis toward novel applications based on the use of photoactive two-dimensional carbon-based nanostructures. Lastly, forward-looking opportunities within this intriguing research field are discussed.
Collapse
Affiliation(s)
- Miriam Marchi
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Giuseppe Gentile
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Cristian Rosso
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Consorzio Interuniversitario Nazionale per laScienza e Tecnologia dei Materiali (INSTM)Unit of Triestevia L. Giorgieri 134127TriesteItaly
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Consorzio Interuniversitario Nazionale per laScienza e Tecnologia dei Materiali (INSTM)Unit of Triestevia L. Giorgieri 134127TriesteItaly
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo Miramón 19420014Donostia San SebastiánSpain
- Basque Fdn Sci, Ikerbasque48013BilbaoSpain
| |
Collapse
|
16
|
Wang H, Han W, Noble A, Aggarwal VK. Dual Nickel/Photoredox-Catalyzed Site-Selective Cross-Coupling of 1,2-Bis-Boronic Esters Enabled by 1,2-Boron Shifts. Angew Chem Int Ed Engl 2022; 61:e202207988. [PMID: 35779000 PMCID: PMC9543306 DOI: 10.1002/anie.202207988] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Site-selective transition-metal-catalyzed mono-deboronative cross-couplings of 1,2-bis-boronic esters are valuable methods for the synthesis of functionalized organoboron compounds. However, such cross-couplings are limited to reaction of the sterically less hindered primary boronic ester. Herein, we report a nickel/photoredox-catalyzed mono-deboronative arylation of 1,2-bis-boronic esters that is selective for coupling of the more sterically hindered secondary/tertiary position. This is achieved by taking advantage of a 1,2-boron shift of primary β-boryl radicals to the thermodynamically favored secondary/tertiary radicals, which are subsequently intercepted by the nickel catalyst to enable arylation. The mild conditions are amenable to a broad range of aryl halides to give β-aryl boronic ester products in good yields and with high regioselectivity. This method also allows stereodivergent coupling of cyclic cis-1,2-bis-boronic esters to give trans-substituted products.
Collapse
Affiliation(s)
- Hui Wang
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Key Laboratory of Functional Molecular Solids (Ministry of Education)Anhui Key Laboratory of Molecular Based MaterialsCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241002China
| | - Wangyujing Han
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
17
|
Turksoy A, Bouayad‐Gervais S, Schoenebeck F. N
‐CF
3
Imidazolidin‐2‐one Derivatives via Photocatalytic and Silver‐Catalyzed Cyclizations. Chemistry 2022; 28:e202201435. [DOI: 10.1002/chem.202201435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Abdurrahman Turksoy
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Samir Bouayad‐Gervais
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
18
|
Wang H, Han W, Noble A, Aggarwal VK. Dual Nickel/Photoredox‐Catalyzed Site‐Selective Cross‐Coupling of 1,2‐Bis‐Boronic Esters Enabled by 1,2‐Boron Shifts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Wang
- University of Bristol School of Chemistry School of Chemistry UNITED KINGDOM
| | - Wangyujing Han
- University of Bristol School of Chemistry School of Chemistry UNITED KINGDOM
| | - Adam Noble
- University of Bristol School of Chemistry School of Chemistry UNITED KINGDOM
| | | |
Collapse
|
19
|
Allen AR, Poon JF, McAtee RC, Watson NB, Pratt DA, Stephenson CR. Mechanism of Visible Light-Mediated Alkene Aminoarylation with Arylsulfonylacetamides. ACS Catal 2022; 12:8511-8526. [DOI: 10.1021/acscatal.2c02577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anthony R. Allen
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jia-Fei Poon
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt. Ottawa, Ontario K1N 6N5, Canada
| | - Rory C. McAtee
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Nicholas B. Watson
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt. Ottawa, Ontario K1N 6N5, Canada
| | - Corey R.J. Stephenson
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Kwon Y, Wang Q. Recent Advances in 1,2-Amino(hetero)arylation of Alkenes. Chem Asian J 2022; 17:e202200215. [PMID: 35460596 PMCID: PMC9357224 DOI: 10.1002/asia.202200215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Indexed: 11/06/2022]
Abstract
Alkene amino(hetero)arylation presents a highly efficient and straightforward strategy for direct installation of amino groups and heteroaryl rings across a double bond simultaneously. An extensive array of practical transformations has been developed via alkene difunctionalization approach to access a broad range of medicinally valuable (hetero)arylethylamine motifs. This review presents recent progress in 1,2-amino(hetero)arylation of alkenes organized in three different modes. First, intramolecular transformations employing C, N-tethered alkenes will be introduced. Next, two-component reactions will be discussed with different combination of precursors, N-tethered alkenes and external aryl precursor, C-tethered alkenes and external amine precursor, or C, N-tethered reagents, and alkenes. Last, three-component intermolecular amino(hetero)arylation reactions will be covered.
Collapse
Affiliation(s)
- Yungeun Kwon
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
21
|
Acceptorless dehydrogenative amination of alkenes for the synthesis of N-heterocycles. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Reddy MB, Prasanth K, Anandhan R. Controlled Photochemical Synthesis of Substituted Isoquinoline-1,3,4(2 H)-triones, 3-Hydroxyisoindolin-1-ones, and Phthalimides via Amidyl Radical Cyclization Cascade. Org Lett 2022; 24:3674-3679. [PMID: 35549291 DOI: 10.1021/acs.orglett.2c01296] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a controlled radical cyclization cascade of isoquinoline-1,3,4(2H)-triones, 3-hydroxyisoindolin-1-ones, and phthalimides from o-alkynylated benzamides by metal-free photoredox catalyzed amidyl N-centered radical addition to the C-C triple bond using the proton-coupled electron transfer (PCET) process under mild reaction conditions. A time tunable synthesis of 3-hydroxyisoindolin-1-ones and phthalimides via β-carbonyl-C(sp3) bond cleavage was also achieved under visible light irradiation. A mechanistic rationale for the radical cyclization cascade is supported by various control and quenching experiments as well as EPR studies.
Collapse
Affiliation(s)
| | - Kesavan Prasanth
- Department of Organic Chemistry, University of Madras, Chennai-600025, Tamilnadu, India
| | - Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras, Chennai-600025, Tamilnadu, India
| |
Collapse
|
23
|
Lee C, Kang HJ, Seo H, Hong S. Nickel-Catalyzed Regio- and Enantioselective Hydroamination of Unactivated Alkenes Using Carbonyl Directing Groups. J Am Chem Soc 2022; 144:9091-9100. [PMID: 35538676 DOI: 10.1021/jacs.2c02343] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The asymmetric addition of an N-H bond to various alkenes via a direct catalytic method is a powerful way of synthesizing value-added chiral amines. Therefore, the enantio- and regioselective hydroamination of unactivated alkenes remains an appealing goal. Here, we report the highly enantio- and regioselective Ni-catalyzed hydroamination of readily available unactivated alkenes bearing weakly coordinating native amides or esters. This method succeeds for both terminal and internal unactivated alkenes and has a broad amine coupling partner scope. The mild reaction process is well suited for the late-stage functionalization of complex molecules and has the potential to gain modular access to enantioenriched β- or γ-amino acid derivatives and 1,2- or 1,3-diamines. Mechanistic studies reveal that a chiral bisoxazoline-bound Ni specie effectively leverages carbonyl coordination to achieve enantio- and regioselective NiH insertion into alkenes.
Collapse
Affiliation(s)
- Changseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Hyung-Joon Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Huiyeong Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
24
|
Affiliation(s)
- Giulio Goti
- Università degli Studi di Padova Dipartimento di Scienze Chimiche via Francesco Marzolo, 1 35131 Padova ITALY
| |
Collapse
|
25
|
Singh AK, Venkatesh R, Kanaujiya VK, Tiwari V, Kandasamy J. Palladium‐Catalyzed Reaction of Aryl Iodides and Glycal Enones: Application in the Preparation of Dapagliflozin Analogues. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Varsha Tiwari
- Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
26
|
Ohmatsu K, Fujimori H, Minami K, Nomura K, Kiyokawa M, Ooi T. Thioamidate Ion as Effective Cocatalyst for Photoinduced C−H Alkylation via Multisite Proton-Coupled Electron Transfer. CHEM LETT 2022. [DOI: 10.1246/cl.220026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kohsuke Ohmatsu
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Haruka Fujimori
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Kodai Minami
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Kosuke Nomura
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Mari Kiyokawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| |
Collapse
|
27
|
Kwon K, Simons RT, Nandakumar M, Roizen JL. Strategies to Generate Nitrogen-centered Radicals That May Rely on Photoredox Catalysis: Development in Reaction Methodology and Applications in Organic Synthesis. Chem Rev 2022; 122:2353-2428. [PMID: 34623809 PMCID: PMC8792374 DOI: 10.1021/acs.chemrev.1c00444] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For more than 70 years, nitrogen-centered radicals have been recognized as potent synthetic intermediates. This review is a survey designed for use by chemists engaged in target-oriented synthesis. This review summarizes the recent paradigm shift in access to and application of N-centered radicals enabled by visible-light photocatalysis. This shift broadens and streamlines approaches to many small molecules because visible-light photocatalysis conditions are mild. Explicit attention is paid to innovative advances in N-X bonds as radical precursors, where X = Cl, N, S, O, and H. For clarity, key mechanistic data is noted, where available. Synthetic applications and limitations are summarized to illuminate the tremendous utility of photocatalytically generated nitrogen-centered radicals.
Collapse
Affiliation(s)
- Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - R Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Jennifer L Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| |
Collapse
|
28
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
29
|
Patel B, Dahiya A, Das B, SAHOO ASHISHKUMAR. Visible‐Light‐Driven Isocyanide Insertion to o‐Alkenylanilines: A Route to Isoindolinone Synthesis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Bubul Das
- Indian Institute of Technology Guwahati INDIA
| | | |
Collapse
|
30
|
Affiliation(s)
- Cai Zhang
- Department of Safety Supervision and Management Chongqing Vocational Institute of Safety Technology Chongqing People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang People's Republic of China
| |
Collapse
|
31
|
Noten EA, McAtee RC, Stephenson CRJ. Catalytic Intramolecular Aminoarylation of Unactivated Alkenes with Aryl Sulfonamides. Chem Sci 2022; 13:6942-6949. [PMID: 35774166 PMCID: PMC9200115 DOI: 10.1039/d2sc01228f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Arylethylamines are abundant motifs in myriad natural products and pharmaceuticals, so efficient methods to synthesize them are valuable in drug discovery. In this work, we disclose an intramolecular alkene aminoarylation cascade that exploits the electrophilicity of a nitrogen-centered radical to form a C–N bond, then repurposes the nitrogen atom's sulfonyl activating group as a traceless linker to form a subsequent C–C bond. This photoredox catalysis protocol enables the preparation of densely substituted arylethylamines from commercially abundant aryl sulfonamides and unactivated alkenes under mild conditions. Reaction optimization, scope, mechanism, and synthetic applications are discussed. A photochemical assembly of cyclic arylethylamines occurs by cascade radical annulation and desulfonylative rearrangement in N-acyl sulfonamides. This aminoarylation is made possible through judicious design intended to thwart undesired reactivity.![]()
Collapse
Affiliation(s)
- Efrey A Noten
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| | - Rory C McAtee
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| | - Corey R J Stephenson
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| |
Collapse
|
32
|
Xu L, Wang F, Chen F, Zhu S, Chu L. Recent Advances in Photoredox/Nickel Dual-Catalyzed Difunctionalization of Alkenes and Alkynes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Chen JJ, Zhang Y, Huang HM. Radical umpolung chemistry enabled by dual catalysis: concept and recent advances. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01161a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a perspective on recent advances in radical umpolung chemistry; some selected examples in this area have been highlighted.
Collapse
Affiliation(s)
- Jun-Jie Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ying Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
34
|
Fang Z, Xie L, Wang L, Zhang Q, Li D. Silver-catalyzed cascade cyclization and functionalization of N-aryl-4-pentenamides: an efficient route to γ-lactam-substituted quinone derivatives. RSC Adv 2022; 12:26776-26780. [PMID: 36320855 PMCID: PMC9490777 DOI: 10.1039/d2ra05283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis of γ-lactam-substituted quinone derivatives through a Ag2O-catalyzed cascade cyclization and functionalization of N-aryl-4-pentenamides has been developed. Related 2-oxazolidinone substituted quinone products can be also obtained with N-aryl allyl carbamates. The reactions proceed through an amidyl radical-initiated 5-exo-trig cyclization and followed radical addition to quinones. They provide an efficient route to various γ-lactam-substituted quinone derivatives with a wide range of substrate scope. The synthesis of γ-lactam and related 2-oxazolidinone substituted quinone derivatives through a Ag2O-catalyzed cascade cyclization and functionalization of N-ary-4-pentenamides and N-aryl allyl carbamates has been developed.![]()
Collapse
Affiliation(s)
- Zeguo Fang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Lin Xie
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Liang Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Qian Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Dong Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
35
|
Wu S, Li J, He R, Jia K, Chen Y. Terminal Trifluoromethylation of Ketones via Selective C-C Cleavage of Cycloalkanols Enabled by Hypervalent Iodine Reagents. Org Lett 2021; 23:9204-9209. [PMID: 34787436 DOI: 10.1021/acs.orglett.1c03526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the first terminal trifluoromethylation at aryl and alkyl ketones' γ, δ, ε, or more remote sites via the selective C-C bond cleavage of cycloalkanols. The noncovalent interactions between alcohols and hypervalent iodines(III) reagents were disclosed to activate both alcohols and the Togni I reagent in the dual photoredox/copper catalysis for the transformation. This reaction was scalable to the gram-scale synthesis, applicable to the structurally complex steroid trifluoromethylation, and extendable to the pentafluoroethylation.
Collapse
Affiliation(s)
- Shuang Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Junzhao Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ru He
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Kunfang Jia
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
36
|
Patel M, Desai B, Sheth A, Dholakiya BZ, Naveen T. Recent Advances in Mono‐ and Difunctionalization of Unactivated Olefins. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Monak Patel
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bhargav Desai
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Aakash Sheth
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Togati Naveen
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| |
Collapse
|
37
|
Shi J, Guo LY, Hu QP, Liu YT, Li Q, Pan F. Photoredox-Catalyzed Difunctionalization of Unactivated Olefins for Synthesizing Lactam-Substituted gem-Difluoroalkenes. Org Lett 2021; 23:8822-8827. [PMID: 34723553 DOI: 10.1021/acs.orglett.1c03329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, the synthesis of lactam-substituted gem-difluoroalkenes has been developed through a photoredox-catalyzed radical cascade reaction. This developed photoredox-catalyzed, Brønsted base-assisted intramolecular 5-exo-trig cyclization/intermolecular radical addition/β-fluoride elimination reaction offers a simple method for producing lactam, carbamate, or urea-substituted gem-difluoroalkenes with good functional group tolerance and high yields.
Collapse
Affiliation(s)
- Jie Shi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Li-Yun Guo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Qu-Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yu-Tao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Qing Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
38
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 514] [Impact Index Per Article: 171.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
39
|
Liu Z, Wu S, Chen Y. Selective C(sp 3)-C(sp 3) Cleavage/Alkynylation of Cycloalkylamides Enables Aminoalkyne Synthesis with Hypervalent Iodine Reagents. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02981] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhengyi Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shuang Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
40
|
Bell JD, Murphy JA. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem Soc Rev 2021; 50:9540-9685. [PMID: 34309610 DOI: 10.1039/d1cs00311a] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoredox chemistry with organic or transition metal agents has been reviewed in earlier years, but such is the pace of progress that we will overlap very little with earlier comprehensive reviews. This review first presents an overview of the area of research and then examines recent examples of C-C, C-N, C-O and C-S bond formations via radical intermediates with transition metal and organic radical promoters. Recent successes with Birch reductions are also included. The transition metal chemistry will be restricted to photocatalysts based on the most widely used metals, Ru and Ir, but includes coupling chemistries that take advantage of low-valent nickel, or occasionally copper, complexes to process the radicals that are formed. Our focus is on developments in the past 10 years (2011-2021). This period has also seen great advances in the chemistry of organic photoredox reagents and the review covers this area. The review is intended to present highlights and is not comprehensive.
Collapse
Affiliation(s)
- Jonathan D Bell
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | | |
Collapse
|
41
|
Kwon Y, Zhang W, Wang Q. Copper-Catalyzed Aminoheteroarylation of Unactivated Alkenes through Distal Heteroaryl Migration. ACS Catal 2021; 11:8807-8817. [PMID: 36381639 PMCID: PMC9648721 DOI: 10.1021/acscatal.1c01001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a copper-catalyzed aminoheteroarylation of unactivated alkenes to access valuable heteroarylethylamine motif. The developed reaction features a copper-catalyzed intermolecular electrophilic amination of the alkenes followed by a migratory heteroarylation. The method applies on alcohol-, amide-, and ether-containing alkenes, overcoming the common requirement of a hydroxyl motif in previous migratory difunctionalization reactions. This reaction is effective for the introduction of diverse aliphatic amines and has good functional group tolerance, which is particularly useful for richly functionalized heteroarenes. This migration-involved reaction was found well suited as a powerful ring expansion approach for the construction of medium-sized rings that are in great demand in medicinal chemistry.
Collapse
Affiliation(s)
- Yungeun Kwon
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Wei Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
42
|
Zhong T, Yi JT, Chen ZD, Zhuang QC, Li YZ, Lu G, Weng J. Photoredox-catalyzed aminofluorosulfonylation of unactivated olefins. Chem Sci 2021; 12:9359-9365. [PMID: 34349907 PMCID: PMC8278970 DOI: 10.1039/d1sc02503a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
Abstract
The development of efficient approaches to access sulfonyl fluorides is of great significance because of the widespread applications of these structural motifs in many areas, among which the emerging sulfur(vi) fluoride exchange (SuFEx) click chemistry is the most prominent. Here, we report the first three-component aminofluorosulfonylation of unactivated olefins by merging photoredox-catalyzed proton-coupled electron transfer (PCET) activation with radical relay processes. Various aliphatic sulfonyl fluorides featuring a privileged 5-membered heterocyclic core have been efficiently afforded under mild conditions with good functional group tolerance. The synthetic potential of the sulfonyl fluoride products has been examined by diverse transformations including SuFEx reactions and transition metal-catalyzed cross-coupling reactions. Mechanistic studies demonstrate that amidyl radicals, alkyl radicals and sulfonyl radicals are involved in this difunctionalization transformation.
Collapse
Affiliation(s)
- Tao Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ji-Tao Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Zhi-Da Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Quan-Can Zhuang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Yong-Zhao Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
43
|
Jiang H, Yu X, Daniliuc CG, Studer A. Three-Component Aminoarylation of Electron-Rich Alkenes by Merging Photoredox with Nickel Catalysis. Angew Chem Int Ed Engl 2021; 60:14399-14404. [PMID: 33871137 PMCID: PMC8252614 DOI: 10.1002/anie.202101775] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/14/2022]
Abstract
A three-component 1,2-aminoarylation of vinyl ethers, enamides, ene-carbamates and vinyl thioethers by synergistic photoredox and nickel catalysis is reported. 2,2,2-Trifluoroethoxy carbonyl protected α-amino-oxy acids are used as amidyl radical precursors. anti-Markovnikov addition of the amidyl radical to the alkene and Ni-mediated radical/transition metal cross over lead to the corresponding 1,2-aminoarylation product. The radical cascade, which can be conducted under practical and mild conditions, features high functional group tolerance and broad substrate scope. Stereoselective 1,2-aminoarylation is achieved using a L-(+)-lactic acid derived vinyl ether as the substrate, offering a novel route for the preparation of protected enantiopure α-arylated β-amino alcohols. In addition, 1,2-aminoacylation of vinyl ethers is achieved by using an acyl succinimide as the electrophile for the Ni-mediated radical coupling.
Collapse
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
- School of PharmacyShanghai Jiao Tong UniversityNo. 800 Dongchuan Rd.200240ShanghaiChina
| | - Xiaoye Yu
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| |
Collapse
|
44
|
Kalra A, Bagchi V, Paraskevopoulou P, Das P, Ai L, Sanakis Y, Raptopoulos G, Mohapatra S, Choudhury A, Sun Z, Cundari TR, Stavropoulos P. Is the Electrophilicity of the Metal Nitrene the Sole Predictor of Metal-Mediated Nitrene Transfer to Olefins? Secondary Contributing Factors as Revealed by a Library of High-Spin Co(II) Reagents. Organometallics 2021; 40:1974-1996. [PMID: 35095166 PMCID: PMC8797515 DOI: 10.1021/acs.organomet.1c00267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent research has highlighted the key role played by the electron affinity of the active metal-nitrene/imido oxidant as the driving force in nitrene additions to olefins to afford valuable aziridines. The present work showcases a library of Co(II) reagents that, unlike the previously examined Mn(II) and Fe(II) analogues, demonstrate reactivity trends in olefin aziridinations that cannot be solely explained by the electron affinity criterion. A family of Co(II) catalysts (17 members) has been synthesized with the assistance of a trisphenylamido-amine scaffold decorated by various alkyl, aryl, and acyl groups attached to the equatorial amidos. Single-crystal X-ray diffraction analysis, cyclic voltammetry and EPR data reveal that the high-spin Co(II) sites (S = 3/2) feature a minimal [N3N] coordination and span a range of 1.4 V in redox potentials. Surprisingly, the Co(II)-mediated aziridination of styrene demonstrates reactivity patterns that deviate from those anticipated by the relevant electrophilicities of the putative metal nitrenes. The representative L4Co catalyst (-COCMe3 arm) is operating faster than the L8Co analogue (-COCF3 arm), in spite of diminished metal-nitrene electrophilicity. Mechanistic data (Hammett plots, KIE, stereocontrol studies) reveal that although both reagents follow a two-step reactivity path (turnover-limiting metal-nitrene addition to the C b atom of styrene, followed by product-determining ring-closure), the L4Co catalyst is associated with lower energy barriers in both steps. DFT calculations indicate that the putative [L4Co]NTs and [L8Co]NTs species are electronically distinct, inasmuch as the former exhibits a single-electron oxidized ligand arm. In addition, DFT calculations suggest that including London dispersion corrections for L4Co (due to the polarizability of the tert-Bu substituent) can provide significant stabilization of the turnover-limiting transition state. This study highlights how small ligand modifications can generate stereoelectronic variants that in certain cases are even capable of overriding the preponderance of the metal-nitrene electrophilicity as a driving force.
Collapse
Affiliation(s)
- Anshika Kalra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Vivek Bagchi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States; Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Patrina Paraskevopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Purak Das
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States; College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yiannis Sanakis
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, NCSR "Demokritos", Athens 15310, Greece
| | - Grigorios Raptopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Sudip Mohapatra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Zhicheng Sun
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
45
|
Jiang H, Yu X, Daniliuc CG, Studer A. Three‐Component Aminoarylation of Electron‐Rich Alkenes by Merging Photoredox with Nickel Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Germany
- School of Pharmacy Shanghai Jiao Tong University No. 800 Dongchuan Rd. 200240 Shanghai China
| | - Xiaoye Yu
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
46
|
Shi WZ, Li H, Mu GC, Lu JL, Tu YH, Hu XG. 1,2- trans-Stereoselective Synthesis of C-Glycosides of 2-Deoxy-2-amino-sugars Involving Glycosyl Radicals. Org Lett 2021; 23:2659-2663. [PMID: 33733785 DOI: 10.1021/acs.orglett.1c00551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report for the first time that the imidate radical can be efficiently added to glycals to generate glycosyl radicals, based on which a general, toxic-reagent-free synthesis of C-glycosides of 2-deoxy-2-amino sugars has been developed. Complementary to previous strategies, the reaction is 1,2-trans-stereoselective and could use aryl alkenes as substrates. The late-stage functionalization and density functional theory calculations are reported.
Collapse
Affiliation(s)
- Wen-Ze Shi
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R.China
| | - Hai Li
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R.China
| | - Gui-Cai Mu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R.China
| | - Ji-Liang Lu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R.China
| | - Yuan-Hong Tu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R.China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R.China.,Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
47
|
Zhang Z, Ngo DT, Nagib DA. Regioselective Radical Amino-Functionalizations of Allyl Alcohols via Dual Catalytic Cross-Coupling. ACS Catal 2021; 11:3473-3477. [PMID: 34745713 DOI: 10.1021/acscatal.1c00404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The regioselective amination and cross-coupling of a range of nucleophiles with allyl alcohols has been enabled by a dual catalytic strategy. This approach entails the combined action of an Ir photocatalyst that enables mild access to N-radicals via an energy transfer mechanism, as well as a Cu complex that intercepts the ensuing alkyl radical upon cyclization. Merger of this Cu-catalyzed cross-coupling enables a broad range of nucleophiles (e.g. CN, SCN, N3, vinyl, allyl) to engage in radical amino-functionalizations of olefins. Notably, stereo, regio, and kinetic probes provide insights into the nature of this Cu-based radical interception.
Collapse
Affiliation(s)
- Zuxiao Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Duong T. Ngo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A. Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
48
|
Nickel-catalyzed oxidative dehydrogenative coupling of alkane with thiol for C(sp3)-S bond formation. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Chaheine CM, Song CJ, Gladen PT, Romo D. Enantioselective Michael-Proton Transfer-Lactamization for Pyroglutamic Acid Derivatives: Synthesis of Dimethyl-( S,E)-5-oxo-3-styryl-1-tosylpyrrolidine-2,2-dicarboxylate. ORGANIC SYNTHESES; AN ANNUAL PUBLICATION OF SATISFACTORY METHODS FOR THE PREPARATION OF ORGANIC CHEMICALS 2021; 98:194-226. [PMID: 36090506 PMCID: PMC9463714 DOI: 10.15227/orgsyn.098.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
| | - Conner J Song
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76710
| | - Paul T Gladen
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76710
| | - Daniel Romo
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76710
| |
Collapse
|
50
|
Tu JL, Yang JW, Xu W, Su M, Liu F. Amidyl radical-mediated aminodifluoroallylation of alkenes via photoredox catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo01208h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A practical and redox-neutral method is developed for the synthesis of gem-difluoroalkene-containing N-heterocycles via photoredox catalysis.
Collapse
Affiliation(s)
- Jia-Lin Tu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jia-Wen Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wei Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|