1
|
Cao Y, Chao Y, Shum HC. Affinity-Controlled Partitioning of Biomolecules at Aqueous Interfaces and Their Bioanalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409362. [PMID: 39171488 DOI: 10.1002/adma.202409362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Indexed: 08/23/2024]
Abstract
All-aqueous phase separation systems play essential roles in bioanalytical and biochemical applications. Compared to conventional oil and organic solvent-based systems, these systems are characterized by their rich bulk and interfacial properties, offering superior biocompatibility. In particular, phase separation in all-aqueous systems facilitates the creation of compartments with specific physicochemical properties, and therefore largely enhances the accessibility of the systems. In addition, the all-aqueous compartments have diverse affinities, with an important property known as partitioning, which can concentrate (bio)molecules toward distinct immiscible phases. This partitioning affinity imparts all-aqueous interfaces with selective permeability, enabling the controlled enrichment of target (bio)molecules. This review introduces the basic principles and applications of partitioning-induced interfacial phenomena in a typical all-aqueous system, namely aqueous two-phase systems (ATPSs); these applications include interfacial chemical reactions, bioprinting, and assembly, as well as bio-sensing and detection. The primary challenges associated with designing all-aqueous phase separation systems and several future directions are also discussed, such as the stabilization of aqueous interfaces, the handling of low-volume samples, and exploration of suitable ATPSs compositions with the efficient protocol.
Collapse
Affiliation(s)
- Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Youchuang Chao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, 999077, China
| |
Collapse
|
2
|
Jiang J, Yuan C, Zhang X, Gu L, Yao Y, Wang X, He Y, Shao L. 3D Bioprinting of Liquid High-Cell-Proportion Bioinks in Liquid Granular Bath. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412127. [PMID: 39385640 DOI: 10.1002/adma.202412127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Embedded 3D bioprinting techniques have emerged as a powerful method to fabricate 3D engineered constructs using low strength bioinks; however, there are challenges in simultaneously satisfying the requirements of high-cell-activity, high-cell-proportion, and low-viscosity bioinks. In particular, the printing capacity of embedded 3D bioprinting is limited as two main challenges: spreading and diffusion, especially for liquid, high-cell-activity bioinks that can facilitate high-cell-proportion. Here, a liquid-in-liquid 3D bioprinting (LL3DBP) strategy is developed, which used a liquid granular bath to prevent the spreading of liquid bioinks during 3D printing, and electrostatic interaction between the liquid bioinks and liquid granular baths is found to effectively prevent the diffusion of liquid bioinks. As an example, the printing of positively charged 5% w/v gelatin methacryloyl (GelMA) in a liquid granular bath prepared with negatively charged κ-carrageenan is proved to be achievable. By LL3DBP, printing capacity is greatly advanced and bioinks with over 90% v/v cell can be printed, and printed structures with high-cell-proportion exhibit excellent bioactivity.
Collapse
Affiliation(s)
- Jinhong Jiang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chenhui Yuan
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xinyu Zhang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lin Gu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yudong Yao
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xueping Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Lei Shao
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
3
|
Honaryar H, Amirfattahi S, Nguyen D, Kim K, Shillcock JC, Niroobakhsh Z. A Versatile Approach to Stabilize Liquid-Liquid Interfaces using Surfactant Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403013. [PMID: 38874067 DOI: 10.1002/smll.202403013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Stabilizing liquid-liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the water-oil interface is presented using the morphological transitions that occur during the self-assembly of anionic, cationic, and nonionic surfactants mixed with fatty acid oils. The morphological transitions underlying this approach are characterized and extensively studied through small-angle X-ray scattering (SAXS), rheometry, and microscopy techniques. Dissipative particle dynamics (DPD) as a simulation tool is adopted to investigate these morphological transitions both in the equilibrium ternary system as well as in the dynamic condition of the water-oil interface. Such a versatile strategy holds promise for enhancing applications such as liquid-in-liquid 3D printing. Moreover, it has the potential to revolutionize a wide range of fields where stabilizing liquid-liquid interfaces not only offers unprecedented opportunities for fine-tuning nanostructural morphologies but also imparts interesting practical features to the resulting liquid shapes. These features include perfusion capabilities, self-healing, and porosity, which could have significant implications for various industries.
Collapse
Affiliation(s)
- Houman Honaryar
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Saba Amirfattahi
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Duoc Nguyen
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Kyungtae Kim
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Julian C Shillcock
- Laboratory for Biomolecular Modeling, École Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
- Blue Brain Project, École Polytechnique Federale de Lausanne (EPFL), Campus Biotech, Geneva, CH-1202, Switzerland
| | - Zahra Niroobakhsh
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| |
Collapse
|
4
|
Gonçalves RC, Oliveira MB, Mano JF. Exploring the potential of all-aqueous immiscible systems for preparing complex biomaterials and cellular constructs. MATERIALS HORIZONS 2024; 11:4573-4599. [PMID: 39010747 DOI: 10.1039/d4mh00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
All-aqueous immiscible systems derived from liquid-liquid phase separation of incompatible hydrophilic agents such as polymers and salts have found increasing interest in the biomedical and tissue engineering fields in the last few years. The unique characteristics of aqueous interfaces, namely their low interfacial tension and elevated permeability, as well as the non-toxic environment and high water content of the immiscible phases, confer to these systems optimal qualities for the development of biomaterials such as hydrogels and soft membranes, as well as for the preparation of in vitro tissues derived from cellular assembly. Here, we overview the main properties of these systems and present a critical review of recent strategies that have been used for the development of biomaterials with increased levels of complexity using all-aqueous immiscible phases and interfaces, and their potential as cell-confining environments for micropatterning approaches and the bioengineering of cell-rich structures. Importantly, due to the relatively recent emergence of these areas, several key design considerations are presented, in order to guide researchers in the field. Finally, the main present challenges, future directions, and adaptability to develop advanced materials with increased biomimicry and new potential applications are briefly evaluated.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Ghaffarkhah A, Hashemi SA, Isari AA, Panahi-Sarmad M, Jiang F, Russell TP, Rojas OJ, Arjmand M. Chemistry, applications, and future prospects of structured liquids. Chem Soc Rev 2024; 53:9652-9717. [PMID: 39189110 DOI: 10.1039/d4cs00549j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Structured liquids are emerging functional soft materials that combine liquid flowability with solid-like structural stability and spatial organization. Here, we delve into the chemistry and underlying principles of structured liquids, ranging from nanoparticle surfactants (NPSs) to supramolecular assemblies and interfacial jamming. We then highlight recent advancements related to the design of intricate all-liquid 3D structures and examine their reconfigurability. Additionally, we demonstrate the versatility of these soft functional materials through innovative applications, such as all-liquid microfluidic devices and liquid microreactors. We envision that in the future, the vast potential of the liquid-liquid interface combined with human creativity will pave the way for innovative platforms, exemplified by current developments like liquid batteries and circuits. Although still in its nascent stages, the field of structured liquids holds immense promise, with future applications across various sectors poised to harness their transformative capabilities.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarkhah
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Ali Akbar Isari
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Mahyar Panahi-Sarmad
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
6
|
Zhu S, Cui H, Pan Y, Popple D, Xie G, Fink Z, Han J, Zettl A, Cheung Shum H, Russell TP. Responsive-Hydrogel Aquabots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401215. [PMID: 39075829 PMCID: PMC11422812 DOI: 10.1002/advs.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/21/2024] [Indexed: 07/31/2024]
Abstract
It remains a challenge to produce soft robots that can mimic the responsive adaptability of living organisms. Rather than fabricating soft robots from bulk hydrogels,hydrogels are integrated into the interfacial assembly of aqueous two-phase systems to generate ultra-soft and elastic all-aqueous aquabots that exhibit responsive adaptability, that can shrink on demand and have electrically conductive functions. The adaptive functions of the aquabots provide a new platform to develop minimally invasive surgical devices, targeted drug delivery systems, and flexible electronic sensors and actuators.
Collapse
Affiliation(s)
- Shipei Zhu
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongP. R. China
| | - Huanqing Cui
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongP. R. China
| | - Yi Pan
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongP. R. China
- Institute of Biomedical EngineeringCollege of MedicineSouthwest Jiaotong UniversityChengdu610031P. R. China
| | - Derek Popple
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of PhysicsUniversity of California BerkeleyBerkeleyCA94720USA
- Department of ChemistryUniversity of California BerkeleyBerkeleyCA94720USA
| | - Ganhua Xie
- State Key Laboratory for Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Zachary Fink
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of Polymer Science and EngineeringUniversity of Massachusetts AmherstAmherstMA01003USA
| | - Jiale Han
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of Materials Science and EngineeringUniversity of California BerkeleyBerkeleyCA94720USA
| | - Alex Zettl
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of PhysicsUniversity of California BerkeleyBerkeleyCA94720USA
| | - Ho Cheung Shum
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongP. R. China
- Advanced Biomedical Instrumentation CentreHong Kong Science ParkShatin, New TerritoriesHong Kong (SAR)999077P. R. China
| | - Thomas P Russell
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of Polymer Science and EngineeringUniversity of Massachusetts AmherstAmherstMA01003USA
- Advanced Institute for Materials Research (AIMR)Tohoku University2‐1‐1 Katahira, AobaSendai980‐8577Japan
| |
Collapse
|
7
|
Zhao S, Jiang Y, Fu Y, Chen W, Zhang Q, He L, Huang C, Liu Y, Zeng XC, Chai Y. Chaperone solvent-assisted assembly of polymers at the interface of two immiscible liquids. Nat Commun 2024; 15:7423. [PMID: 39198431 PMCID: PMC11358526 DOI: 10.1038/s41467-024-51657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
The assembly of polymers at liquid-liquid interfaces offers a promising strategy for fabricating two-dimensional polymer films. However, a significant challenge arises when the polymers lack inherent interfacial traction. In response, we introduce an approach termed chaperone solvent-assisted assembly. This approach utilizes a target polymer, X, along with three solvents: α, β, and γ. α and β are poor solvents for X and immiscible with each other, while γ is a good solvent for X and miscible with both α and β, thus serving as the chaperone solvent. The cross-interface diffusion of γ induces the assembly of interfacially nonactive X at the α-β interface, and this mechanism is verified through systematic in situ and ex situ studies. We show that chaperone solvent-assisted assembly is versatile and reliable for the interfacial assembly of polymers, including those that are interfacially nonactive. Several practical applications based on chaperone solvent-assisted assembly are also demonstrated.
Collapse
Affiliation(s)
- Sai Zhao
- Department of Physics, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China
| | - Yongkang Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuchen Fu
- Department of Physics, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China
| | - Wei Chen
- Department of Physics, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China
| | - Qinrong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Liulin He
- Department of Physics, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China
| | - Changxiong Huang
- Department of Materials Science and Engineering, The City University of Hong Kong, Kowloon, Hong Kong, 999077, China.
| | - Yao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, The City University of Hong Kong, Kowloon, Hong Kong, 999077, China.
| | - Yu Chai
- Department of Physics, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China.
| |
Collapse
|
8
|
Cui H, Zhang Y, Liu S, Cao Y, Ma Q, Liu Y, Lin H, Li C, Xiao Y, Hassan SU, Shum HC. Thermo-responsive aqueous two-phase system for two-level compartmentalization. Nat Commun 2024; 15:6771. [PMID: 39117632 PMCID: PMC11310206 DOI: 10.1038/s41467-024-51043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Hierarchical compartmentalization responding to changes in intracellular and extracellular environments is ubiquitous in living eukaryotic cells but remains a formidable task in synthetic systems. Here we report a two-level compartmentalization approach based on a thermo-responsive aqueous two-phase system (TR-ATPS) comprising poly(N-isopropylacrylamide) (PNIPAM) and dextran (DEX). Liquid membraneless compartments enriched in PNIPAM are phase-separated from the continuous DEX solution via liquid-liquid phase separation at 25 °C and shrink dramatically with small second-level compartments generated at the interface, resembling the structure of colloidosome, by increasing the temperature to 35 °C. The TR-ATPS can store biomolecules, program the spatial distribution of enzymes, and accelerate the overall biochemical reaction efficiency by nearly 7-fold. The TR-ATPS inspires on-demand, stimulus-triggered spatiotemporal enrichment of biomolecules via two-level compartmentalization, creating opportunities in synthetic biology and biochemical engineering.
Collapse
Affiliation(s)
- Huanqing Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yage Zhang
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, 518055, Shenzhen, Guangdong, China
| | - Sihan Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, 266071, Qingdao, China
| | - Yuan Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Haisong Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Chang Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yang Xiao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, China
| | - Sammer Ul Hassan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China.
| |
Collapse
|
9
|
Jin Z, Seong HG, Srivastava S, McGlasson A, Emrick T, Muthukumar M, Russell TP. 3D Printing of Aqueous Two-Phase Systems with Linear and Bottlebrush Polyelectrolytes. Angew Chem Int Ed Engl 2024; 63:e202404382. [PMID: 38616164 DOI: 10.1002/anie.202404382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
We formed core-shell-like polyelectrolyte complexes (PECs) from an anionic bottlebrush polymer with poly (acrylic acid) side chains with a cationic linear poly (allylamine hydrochloride). By varying the pH, the number of side chains of the polyanionic BB polymers (Nbb), the charge density of the polyelectrolytes, and the salt concentration, the phase separation behavior and salt resistance of the complexes could be tuned by the conformation of the BBs. By combining the linear/bottlebrush polyelectrolyte complexation with all-liquid 3D printing, flow-through tubular constructs were produced that showed selective transport across the PEC membrane comprising the walls of the tubules. These tubular constructs afford a new platform for flow-through delivery systems.
Collapse
Affiliation(s)
- Zichen Jin
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Hong-Gyu Seong
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Satyam Srivastava
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Alex McGlasson
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Todd Emrick
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| |
Collapse
|
10
|
Kamada H, Hata Y, Sugiura K, Sawada T, Serizawa T. Interfacial jamming of surface-alkylated synthetic nanocelluloses for structuring liquids. Carbohydr Polym 2024; 331:121896. [PMID: 38388029 DOI: 10.1016/j.carbpol.2024.121896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Nanocelluloses derived from natural cellulose sources are promising sustainable nanomaterials. Previous studies have reported that nanocelluloses are strongly adsorbed onto liquid-liquid interfaces with the concurrent use of ligands and allow for the structuring of liquids, that is, the kinetic trapping of nonequilibrium shapes of liquids. However, the structuring of liquids using nanocelluloses alone has yet to be demonstrated, despite its great potential in the development of sustainable liquid-based materials that are biocompatible and environmentally friendly. Herein, we demonstrated the structuring of liquids using rectangular sheet-shaped synthetic nanocelluloses with surface alkyl groups. Synthetic nanocelluloses with ethyl, butyl, and hexyl groups on their surfaces were readily prepared following our previous reports via the self-assembly of enzymatically synthesized cello-oligosaccharides having the corresponding alkyl groups. Among the alkylated synthetic nanocelluloses, the hexylated nanocellulose was adsorbed and jammed at water-n-undecane interfaces to form interfacial assemblies, which acted substantially as an integrated film for structuring liquids. These phenomena were attributed to the unique structural characteristics of the surface-hexylated synthetic nanocelluloses; their sheet shape offered a large area for adsorption onto interfaces, and their controlled surface hydrophilicity/hydrophobicity enhanced the affinity for both liquid phases. Our findings promote the development of all-liquid devices using nanocelluloses.
Collapse
Affiliation(s)
- Hirotaka Kamada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kai Sugiura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
11
|
Wu X, Xue H, Bordia G, Fink Z, Kim PY, Streubel R, Han J, Helms BA, Ashby PD, Omar AK, Russell TP. Self-Propulsion by Directed Explosive Emulsification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310435. [PMID: 38386499 DOI: 10.1002/adma.202310435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/15/2024] [Indexed: 02/24/2024]
Abstract
An active droplet system, programmed to repeatedly move autonomously at a specific velocity in a well-defined direction, is demonstrated. Coulombic energy is stored in oversaturated interfacial assemblies of charged nanoparticle-surfactants by an applied DC electric field and can be released on demand. Spontaneous emulsification is suppressed by an increase in the stiffness of the oversaturated assemblies. Rapidly removing the field releases the stored energy in an explosive event that propels the droplet, where thousands of charged microdroplets are ballistically ejected from the surface of the parent droplet. The ejection is made directional by a symmetry breaking of the interfacial assembly, and the combined interaction force of the microdroplet plume on one side of the droplet propels the droplet distances tens of times its size, making the droplet active. The propulsion is autonomous, repeatable, and agnostic to the chemical composition of the nanoparticles. The symmetry-breaking in the nanoparticle assembly controls the microdroplet velocity and direction of propulsion. This mechanism of droplet propulsion will advance soft micro-robotics, establishes a new type of active matter, and introduces new vehicles for compartmentalized delivery.
Collapse
Affiliation(s)
- Xuefei Wu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Han Xue
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Gautam Bordia
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Zachary Fink
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert Streubel
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jiale Han
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ahmad K Omar
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
12
|
Fu Y, Li Z, Zhao S, Hou H, Chai Y. Reconfigurable aqueous 3D printing with adaptive dual locks. SCIENCE ADVANCES 2024; 10:eadk4080. [PMID: 38657077 PMCID: PMC11042732 DOI: 10.1126/sciadv.adk4080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Using aqueous two-phase systems (ATPSs) for three-dimensional (3D) printed complex structures has attracted considerable attention in the field of biomedicine. In this study, we present an unusual approach to constructing reconfigurable 3D printed structures within an aqueous environment. Inspired by biological systems, we introduce both specific and nonspecific interactions to anchor functionalized nanoparticles to the water-water interface, thereby imparting adaptive dual locks of structural integrity and permeability to the 3D printed liquid structures. Using state-of-the-art in situ liquid-liquid interfacial atomic force microscopy imaging, we successfully demonstrate various morphologies of interfacial films formed at the ATPS interface. In addition, by incorporating d-glucose or sodium alginate into the systems, the dual locks can be easily manipulated. Our study paves a pathway for 3D printing multiresponsive all-aqueous systems with controllable structures and permeability, showing promising implications for the development of smart drug delivery systems and in vivo reactions.
Collapse
Affiliation(s)
- Yuchen Fu
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China
| | - Zhiyong Li
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Sai Zhao
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu Chai
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, China
| |
Collapse
|
13
|
Yu Y, Pan Y, Shen Y, Tian J, Zhang R, Guo W, Li C, Shum HC. Vascular network-inspired fluidic system (VasFluidics) with spatially functionalizable membranous walls. Nat Commun 2024; 15:1437. [PMID: 38365901 PMCID: PMC10873510 DOI: 10.1038/s41467-024-45781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
In vascular networks, the transport across different vessel walls regulates chemical compositions in blood over space and time. Replicating such trans-wall transport with spatial heterogeneity can empower synthetic fluidic systems to program fluid compositions spatiotemporally. However, it remains challenging as existing synthetic channel walls are typically impermeable or composed of homogeneous materials without functional heterogeneity. This work presents a vascular network-inspired fluidic system (VasFluidics), which is functionalizable for spatially different trans-wall transport. Facilitated by embedded three-dimensional (3D) printing, elastic, ultrathin, and semipermeable walls self-assemble electrostatically. Physicochemical reactions between fluids and walls are localized to vary the trans-wall molecules among separate regions, for instance, by confining solutions or locally immobilizing enzymes on the outside of channels. Therefore, fluid compositions can be regulated spatiotemporally, for example, to mimic blood changes during glucose absorption and metabolism. Our VasFluidics expands opportunities to replicate biofluid processing in nature, providing an alternative to traditional fluidics.
Collapse
Affiliation(s)
- Yafeng Yu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yi Pan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yanting Shen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Jingxuan Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Ruotong Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Wei Guo
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Chang Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China.
| |
Collapse
|
14
|
Ghaffarkhah A, Hashemi SA, Ahmadijokani F, Goodarzi M, Riazi H, Mhatre SE, Zaremba O, Rojas OJ, Soroush M, Russell TP, Wuttke S, Kamkar M, Arjmand M. Functional Janus structured liquids and aerogels. Nat Commun 2023; 14:7811. [PMID: 38016959 PMCID: PMC10684591 DOI: 10.1038/s41467-023-43319-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Janus structures have unique properties due to their distinct functionalities on opposing faces, but have yet to be realized with flowing liquids. We demonstrate such Janus liquids with a customizable distribution of nanoparticles (NPs) throughout their structures by joining two aqueous streams of NP dispersions in an apolar liquid. Using this anisotropic integration platform, different magnetic, conductive, or non-responsive NPs can be spatially confined to opposite sides of the original interface using magnetic graphene oxide (mGO)/GO, Ti3C2Tx/GO, or GO suspensions. The resultant Janus liquids can be used as templates for versatile, responsive, and mechanically robust aerogels suitable for piezoresistive sensing, human motion monitoring, and electromagnetic interference (EMI) shielding with a tuned absorption mechanism. The EMI shields outperform their current counterparts in terms of wave absorption, i.e., SET ≈ 51 dB, SER ≈ 0.4 dB, and A = 0.91, due to their high porosity ranging from micro- to macro-scales along with non-interfering magnetic and conductive networks imparted by the Janus architecture.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Milad Goodarzi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Hossein Riazi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Sameer E Mhatre
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Orysia Zaremba
- Basque Center for Materials, Applications and Nanostructures (BCMaterials), Bld. Martina Casiano, 3rd Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan.
| | - Stefan Wuttke
- Basque Center for Materials, Applications and Nanostructures (BCMaterials), Bld. Martina Casiano, 3rd Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| | - Milad Kamkar
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
15
|
Hashemi SA, Ghaffarkhah A, Goodarzi M, Nazemi A, Banvillet G, Milani AS, Soroush M, Rojas OJ, Ramakrishna S, Wuttke S, Russell TP, Kamkar M, Arjmand M. Liquid-Templating Aerogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302826. [PMID: 37562445 DOI: 10.1002/adma.202302826] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Indexed: 08/12/2023]
Abstract
Modern materials science has witnessed the era of advanced fabrication methods to engineer functionality from the nano- to macroscales. Versatile fabrication and additive manufacturing methods are developed, but the ability to design a material for a given application is still limited. Here, a novel strategy that enables target-oriented manufacturing of ultra-lightweight aerogels with on-demand characteristics is introduced. The process relies on controllable liquid templating through interfacial complexation to generate tunable, stimuli-responsive 3D-structured (multiphase) filamentous liquid templates. The methodology involves nanoscale chemistry and microscale assembly of nanoparticles (NPs) at liquid-liquid interfaces to produce hierarchical macroscopic aerogels featuring multiscale porosity, ultralow density (3.05-3.41 mg cm-3 ), and high compressibility (90%) combined with elastic resilience and instant shape recovery. The challenges are overcome facing ultra-lightweight aerogels, including poor mechanical integrity and the inability to form predefined 3D constructs with on-demand functionality, for a multitude of applications. The controllable nature of the coined methodology enables tunable electromagnetic interference shielding with high specific shielding effectiveness (39 893 dB cm2 g-1 ), and one of the highest-ever reported oil-absorption capacities (487 times the initial weight of aerogel for chloroform), to be obtained. These properties originate from the engineerable nature of liquid templating, pushing the boundaries of lightweight materials to systematic function design and applications.
Collapse
Affiliation(s)
- Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Milad Goodarzi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Amir Nazemi
- Composites Research Network-Okanagan Laboratory, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Gabriel Banvillet
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Abbas S Milani
- Composites Research Network-Okanagan Laboratory, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Stefan Wuttke
- Basque Centre for Materials, Applications & Nanostructures (BCMaterials), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Milad Kamkar
- Multi-scale Materials Design Center, Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
16
|
Seong HG, Fink Z, Chen Z, Emrick T, Russell TP. Bottlebrush Polymers at Liquid Interfaces: Assembly Dynamics, Mechanical Properties, and All-Liquid Printed Constructs. ACS NANO 2023. [PMID: 37490585 DOI: 10.1021/acsnano.3c02684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Bottlebrush polymer surfactants (BPSs), formed by the interfacial interactions between bottlebrush polymers (BPs) with poly(acrylic acid) side chains dissolved in an aqueous phase and amine-functionalized ligands dissolved in the oil phase, assemble and bind strongly to the fluid-fluid interface. The ratio between NBB (backbone degree of polymerization) and NSC (side chain degree of polymerization) defines the initial assembly kinetics, interface packing efficiency, and stress relaxation. The equilibrium interfacial tension (γ) increases when NBB < NSC, but decreases when NBB ≫ NSC, correlating to a pronounced change in the effective shape of the BPs from being spherical to worm-like structures. The apparent surface coverage (ASC), i.e., the interfacial packing efficiency, decreases as NBB increases. The dripping-to-jetting transition of an injected polymer solution, as well as fluorescence recovery after photobleaching experiments, revealed faster initial assembly kinetics for BPs with higher NBB. Euler buckling of BPS assemblies with different NBB values was used to characterize the stress relaxation behavior and bending modulus. The stress relaxation behavior was directly related to the ASC, reflecting the strong influence of macromolecular shape on packing efficiency. The bending modulus of BPSs decreases for NBB < NSC, but increased when NBB ≫ NSC, showing the effect of molecular architecture and multisite anchoring. All-liquid printed constructs with lower NBB BPs yielded more stable structured liquids, underscoring the importance of macromolecular packing efficiency at fluid interfaces. Overall, this work elucidates fundamental relationships between nanoscopic structures and macroscopic properties associated with various bottlebrush polymer architectures, which translate to the stabilization of all-fluidic printed constructs.
Collapse
Affiliation(s)
- Hong-Gyu Seong
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zachary Fink
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhan Chen
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Chen F, Li X, Yu Y, Li Q, Lin H, Xu L, Shum HC. Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel. Nat Commun 2023; 14:2793. [PMID: 37193701 DOI: 10.1038/s41467-023-38394-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
Engineering heterogeneous hydrogels with distinct phases at various lengths, which resemble biological tissues with high complexity, remains challenging by existing fabricating techniques that require complicated procedures and are often only applicable at bulk scales. Here, inspired by ubiquitous phase separation phenomena in biology, we present a one-step fabrication method based on aqueous phase separation to construct two-aqueous-phase gels that comprise multiple phases with distinct physicochemical properties. The gels fabricated by this approach exhibit enhanced interfacial mechanics compared with their counterparts obtained from conventional layer-by-layer methods. Moreover, two-aqueous-phase gels with programmable structures and tunable physicochemical properties can be conveniently constructed by adjusting the polymer constituents, gelation conditions, and combining different fabrication techniques, such as 3D-printing. The versatility of our approach is demonstrated by mimicking the key features of several biological architectures at different lengths: macroscale muscle-tendon connections; mesoscale cell patterning; microscale molecular compartmentalization. The present work advances the fabrication approach for designing heterogeneous multifunctional materials for various technological and biomedical applications.
Collapse
Affiliation(s)
- Feipeng Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Xiufeng Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Yafeng Yu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Qingchuan Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Haisong Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China.
| |
Collapse
|
18
|
Honaryar H, Amirfattahi S, Niroobakhsh Z. Associative Liquid-In-Liquid 3D Printing Techniques for Freeform Fabrication of Soft Matter. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206524. [PMID: 36670057 DOI: 10.1002/smll.202206524] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Shaping soft materials into prescribed 3D complex designs has been challenging yet feasible using various 3D printing technologies. For a broader range of soft matters to be printable, liquid-in-liquid 3D printing techniques have emerged in which an ink phase is printed into 3D constructs within a bath. Most of the attention in this field has been focused on using a support bath with favorable rheology (i.e., shear-thinning behavior) which limits the selection of materials, impeding the broad application of such techniques. However, a growing body of work has begun to leverage the interaction or association of the two involved phases (specifically at the liquid-liquid interface) to fabricate complex constructs from a myriad of soft materials with practical structural, mechanical, optical, magnetic, and communicative properties. This review article has provided an overview of the studies on such associative liquid-in-liquid 3D printing techniques along with their fundamentals, underlying mechanisms, various characterization techniques used for ensuring the structural stability, and practical properties of prints. Also, the future paths with the potential applications are discussed.
Collapse
Affiliation(s)
- Houman Honaryar
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Saba Amirfattahi
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Zahra Niroobakhsh
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| |
Collapse
|
19
|
Popple D, Shekhirev M, Dai C, Kim P, Wang KX, Ashby P, Helms BA, Gogotsi Y, Russell TP, Zettl A. All-Liquid Reconfigurable Electronics Using Jammed MXene Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208148. [PMID: 36302090 DOI: 10.1002/adma.202208148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Rigid, solid-state components represent the current paradigm for electronic systems, but they lack post-production reconfigurability and pose ever-increasing challenges to efficient end-of-life recycling. Liquid electronics may overcome these limitations by offering flexible in-the-field redesign and separation at end-of-life via simple liquid phase chemistries. Up to now, preliminary work on liquid electronics has focused on liquid metal components, but these devices still require an encapsulating polymer and typically use alloys of rare elements like indium. Here, using the self-assembly of jammed 2D titanium carbide (Ti3 C2 Tx ) MXene nanoparticles at liquid-liquid interfaces, "all-liquid" electrically conductive sheets, wires, and simple functional devices are described including electromechanical switches and photodetectors. These assemblies combine the high conductivity of MXene nanosheets with the controllable form and reconfigurability of structured liquids. Such configurations can have applications not only in electronics, but also in catalysis and microfluidics, especially in systems where the product and substrate have affinity for solvents of differing polarity.
Collapse
Affiliation(s)
- Derek Popple
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mikhail Shekhirev
- Department of Materials Science & Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, 19104, USA
| | - Chunhui Dai
- Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Paul Kim
- Materials Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | | | - Paul Ashby
- Materials Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Molecular Foundry Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Molecular Foundry Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Yury Gogotsi
- Department of Materials Science & Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, 19104, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Alex Zettl
- Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
20
|
Becker M, Gurian M, Schot M, Leijten J. Aqueous Two-Phase Enabled Low Viscosity 3D (LoV3D) Bioprinting of Living Matter. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204609. [PMID: 36585374 PMCID: PMC10015849 DOI: 10.1002/advs.202204609] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Embedded 3D bioprinting has great value for the freeform fabrication of living matter. However, embedded 3D bioprinting is currently limited to highly viscous liquid baths or liquid-like solid baths. In contrast, prior to crosslinking, most hydrogels are formulated as low-viscosity solutions and are therefore not directly compatible with bioprinting due to low shape fidelity and poor print stability. The authors here present a method to enable low-viscosity ink 3D (LoV3D) bioprinting, based on aqueous two-phase stabilization of the ink-bath interface. LoV3D allows for the printing of living constructs at high extrusion speeds (up to 1.8 m s-1 ) with high viability due to its exceedingly low-viscosity. Moreover, LoV3D liquid/liquid interfaces offer unique advantages for fusing printed structures, creating intricate vasculature, and modifying surfaces at higher efficiencies than traditional systems. Furthermore, the low interfacial tension of LoV3D bioprinting offers unprecedented nozzle-independent control over filament diameter via large-dimension strand-thinning, which allows for the printing of an exceptionally wide range of diameters down to the width of a single cell. Overall, LoV3D bioprinting is a unique all-aqueous approach with broad material compatibility without the need for rheological ink adaption, which opens new avenues of application in cell patterning, drug screening, engineered meat, and organ fabrication.
Collapse
Affiliation(s)
- Malin Becker
- Leijten LabDept. of Developmental BioEngineeringTechMed CentreUniversity of TwenteEnschede7522 NBThe Netherlands
| | - Melvin Gurian
- Leijten LabDept. of Developmental BioEngineeringTechMed CentreUniversity of TwenteEnschede7522 NBThe Netherlands
| | - Maik Schot
- Leijten LabDept. of Developmental BioEngineeringTechMed CentreUniversity of TwenteEnschede7522 NBThe Netherlands
| | - Jeroen Leijten
- Leijten LabDept. of Developmental BioEngineeringTechMed CentreUniversity of TwenteEnschede7522 NBThe Netherlands
| |
Collapse
|
21
|
Zhang S, Qi C, Zhang W, Zhou H, Wu N, Yang M, Meng S, Liu Z, Kong T. In Situ Endothelialization of Free-Form 3D Network of Interconnected Tubular Channels via Interfacial Coacervation by Aqueous-in-Aqueous Embedded Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209263. [PMID: 36448877 DOI: 10.1002/adma.202209263] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The challenge of bioprinting vascularized tissues is structure retention and in situ endothelialization. The issue is addressed by adopting an aqueous-in-aqueous 3D embedded bioprinting strategy, in which the interfacial coacervation of the cyto-mimic aqueous two-phase systems (ATPS) are employed for maintaining the suspending liquid architectures, and serving as filamentous scaffolds for cell attachment and growth. By incorporating endothelial cells in the ink phase of ATPS, tubular lumens enclosed by coacervated complexes of polylysine (PLL) and oxidized bacteria celluloses (oxBC) can be cellularized with a confluent endothelial layer, without any help of adhesive peptides. By applying PLL/oxBC ATPS for embedded bioprinting, free-form 3D vascular networks with in situ endothelialization of interconnected tubular lumens are achieved. This simple approach is a one-step process without any sacrificed templates and post-treatments. The resultant functional vessel networks with arbitrary complexity are suspended in liquid medium and can be conveniently handled, opening new routes for the in vitro production of thick vascularized tissues for pathological research, regeneration therapy and animal-free drug development.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wei Zhang
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Hui Zhou
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Nihuan Wu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Ming Yang
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Si Meng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Department of Urology, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| |
Collapse
|
22
|
Esquena J. Recent advances on water-in-water emulsions in segregative systems of two water-soluble polymers. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
23
|
Mendez-Ortiz W, Stebe KJ, Lee D. Ionic Strength-Dependent Assembly of Polyelectrolyte-Nanoparticle Membranes via Interfacial Complexation at a Water-Water Interface. ACS NANO 2022; 16:21087-21097. [PMID: 36449948 DOI: 10.1021/acsnano.2c08916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Complexation between oppositely charged nanoparticles (NPs) and polyelectrolytes (PEs) is a scalable approach to assemble functional, stimuli-responsive membranes. Complexation at interfaces of aqueous two-phase systems (ATPSs) has emerged as a powerful method to assemble these functional structures. Membranes formed at these interfaces can grow continuously to thicknesses approaching several millimeters and display a high degree of tunability via modification of solution properties such as ionic strength. To identify the membrane assembly mechanism, we study interfacial assembly in a prototypical dextran/PEG ATPS, in which silica (SiO2) NPs suspended in the PEG phase undergo interfacial complexation with poly(diallyldimethylammonium chloride) (PDADMAC) supplied in the dextran phase. Using a microfluidic device that facilitates sequential insertion of fluorescent and nonfluorescent PDADMAC, we observe a transition in the membrane growth mechanism with ionic strength. In the absence of added salt ([NaCl] = 0 mM) PDADMAC chains permeate through the existing membrane to complex with NPs on the PEG side of the membrane, leading to the formation of well-stratified structures. At elevated ionic strength ([NaCl] = 500 mM), this permeation mechanism is lost. Rather, the complexing species incorporate uniformly across the membrane. We attribute this transition to a rapid exchange of PE-counterion, NP-counterion, and PE/NP binding sites facilitated by an increase in extrinsically compensated charged groups on the NPs and PEs at high salinity. These PDADMAC/SiO2 NP membranes have tremendous potential for the formation of functional membranes, offering control over the internal structure and serving as an ideal system for the generation of targeted release systems.
Collapse
Affiliation(s)
- Wilfredo Mendez-Ortiz
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Cui H, Zhang Y, Shen Y, Zhu S, Tian J, Li Q, Shen Y, Liu S, Cao Y, Shum HC. Dynamic Assembly of Viscoelastic Networks by Aqueous Liquid-Liquid Phase Separation and Liquid-Solid Phase Separation (AqLL-LS PS 2 ). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205649. [PMID: 36222390 DOI: 10.1002/adma.202205649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Living cells comprise diverse subcellular structures, such as cytoskeletal networks, which can regulate essential cellular activities through dynamic assembly and synergistic interactions with biomolecular condensates. Despite extensive efforts, reproducing viscoelastic networks for modulating biomolecular condensates in synthetic systems remains challenging. Here, a new aqueous two-phase system (ATPS) is proposed, which consists of poly(N-isopropylacrylamide) (PNIPAM) and dextran (DEX), to construct viscoelastic networks capable of being assembled and dissociated dynamically to regulate the self-assembly of condensates on-demand. Viscoelastic networks are generated using liquid-liquid phase-separated DEX droplets as templates and the following liquid-to-solid transition of the PNIPAM-rich phase. The resulting networks can dissolve liquid fused in sarcoma (FUS) condensates within 5 min. This work demonstrates rich phase-separation behaviors in a single ATPS through incorporating stimuli-responsive polymers. The concept can potentially be applied to other macromolecules through other stimuli to develop materials with rich phase behaviors and hierarchical structures.
Collapse
Affiliation(s)
- Huanqing Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Yinan Shen
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Shipei Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Jingxuan Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Qingchuan Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- School of Chemistry & Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, 250100, China
| | - Yi Shen
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sihan Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
- The Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| |
Collapse
|
25
|
Aqueous two-phase emulsions toward biologically relevant applications. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Zhu S, Xie G, Cui H, Li Q, Forth J, Yuan S, Tian J, Pan Y, Guo W, Chai Y, Zhang Y, Yang Z, Yu RWH, Yu Y, Liu S, Chao Y, Shen Y, Zhao S, Russell TP, Shum HC. Aquabots. ACS NANO 2022; 16:13761-13770. [PMID: 35904791 DOI: 10.1021/acsnano.2c00619] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft robots, made from elastomers, easily bend and flex, but deformability constraints severely limit navigation through and within narrow, confined spaces. Using aqueous two-phase systems we print water-in-water constructs that, by aqueous phase-separation-induced self-assembly, produce ultrasoft liquid robots, termed aquabots, comprised of hierarchical structures that span in length scale from the nanoscopic to microsciopic, that are beyond the resolution limits of printing and overcome the deformability barrier. The exterior of the compartmentalized membranes is easily functionalized, for example, by binding enzymes, catalytic nanoparticles, and magnetic nanoparticles that impart sensitive magnetic responsiveness. These ultrasoft aquabots can adapt their shape for gripping and transporting objects and can be used for targeted photocatalysis, delivery, and release in confined and tortuous spaces. These biocompatible, multicompartmental, and multifunctional aquabots can be readily applied to medical micromanipulation, targeted cargo delivery, tissue engineering, and biomimetics.
Collapse
Affiliation(s)
- Shipei Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, (SAR), Hong Kong, P. R. China
| | - Ganhua Xie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94720, California, United States
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Huanqing Cui
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, (SAR), Hong Kong, P. R. China
| | - Qingchuan Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, (SAR), Hong Kong, P. R. China
- School of Chemistry & Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, P. R. China
| | - Joe Forth
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94720, California, United States
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Shuai Yuan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, (SAR), Hong Kong, P. R. China
| | - Jingxuan Tian
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, (SAR), Hong Kong, P. R. China
| | - Yi Pan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, (SAR), Hong Kong, P. R. China
| | - Wei Guo
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, (SAR), Hong Kong, P. R. China
| | - Yu Chai
- Department of Physics, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, (SAR), Hong Kong, P. R. China
| | - Zhenyu Yang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, (SAR), Hong Kong, P. R. China
| | - Ryan Wing Hei Yu
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K
| | - Yafeng Yu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, (SAR), Hong Kong, P. R. China
| | - Sihan Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, (SAR), Hong Kong, P. R. China
- Department of Electrical and Electronics Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Youchuang Chao
- Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
| | - Yinan Shen
- Department of Physics, Harvard University, Cambridge 02138, Massachusetts, United States
| | - Sai Zhao
- Department of Physics, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94720, California, United States
- Polymer Science and Engineering Department, University of Massachusetts, Amherst 01003, Massachusetts, United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, (SAR), Hong Kong, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077, (SAR), Hong Kong, P. R. China
| |
Collapse
|
27
|
Okuno Y, Nishimura T, Sasaki Y, Akiyoshi K. Glycopeptoid nanospheres: glycosylation-induced coacervation of poly(sarcosine). NANOSCALE ADVANCES 2022; 4:3707-3710. [PMID: 36133351 PMCID: PMC9470024 DOI: 10.1039/d2na00218c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/25/2022] [Indexed: 06/16/2023]
Abstract
Conjugation of maltopentaose to water-soluble homo-poly(sarcosine) induced self-association and formed nanospheres (-150 nm) in water although homo-poly(sarcosine) was water-soluble and did not form any aggregates. Fluorescent probe experiments showed that the spheres were non-ionic glycopeptoid coacervate-like particles with both hydrophobic and hydrophilic domains inside.
Collapse
Affiliation(s)
- Yota Okuno
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Kyoto Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamanote-cho Suita City Osaka Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida Nagano 386-8567 Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Kyoto Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Kyoto Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
28
|
Duraivel S, Subramaniam V, Chisolm S, Scheutz GM, Sumerlin BS, Bhattacharjee T, Angelini TE. Leveraging ultra-low interfacial tension and liquid-liquid phase separation in embedded 3D bioprinting. BIOPHYSICS REVIEWS 2022; 3:031307. [PMID: 38505275 PMCID: PMC10903370 DOI: 10.1063/5.0087387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/23/2022] [Indexed: 03/21/2024]
Abstract
Many recently developed 3D bioprinting strategies operate by extruding aqueous biopolymer solutions directly into a variety of different support materials constituted from swollen, solvated, aqueous, polymer assemblies. In developing these 3D printing methods and materials, great care is often taken to tune the rheological behaviors of both inks and 3D support media. By contrast, much less attention has been given to the physics of the interfaces created when structuring one polymer phase into another in embedded 3D printing applications. For example, it is currently unclear whether a dynamic interfacial tension between miscible phases stabilizes embedded 3D bioprinted structures as they are shaped while in a liquid state. Interest in the physics of interfaces between complex fluids has grown dramatically since the discovery of liquid-liquid phase separation (LLPS) in living cells. We believe that many new insights coming from this burst of investigation into LLPS within biological contexts can be leveraged to develop new materials and methods for improved 3D bioprinting that leverage LLPS in mixtures of biopolymers, biocompatible synthetic polymers, and proteins. Thus, in this review article, we highlight work at the interface between recent LLPS research and embedded 3D bioprinting methods and materials, and we introduce a 3D bioprinting method that leverages LLPS to stabilize printed biopolymer inks embedded in a bioprinting support material.
Collapse
Affiliation(s)
- Senthilkumar Duraivel
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Vignesh Subramaniam
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Steven Chisolm
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Georg M. Scheutz
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Brent. S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Tapomoy Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, Karnataka, India
| | - Thomas E. Angelini
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
29
|
Gonçalves RC, Vilabril S, Neves CMSS, Freire MG, Coutinho JAP, Oliveira MB, Mano JF. All-Aqueous Freeform Fabrication of Perfusable Self-Standing Soft Compartments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200352. [PMID: 35695028 DOI: 10.1002/adma.202200352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalized structures obtained in all-aqueous settings have shown promising properties as cell encapsulation devices, as well as reactors for trans-membrane chemical reactions. While most approaches focus on the preparation of spherical devices, advances on the production of complex architectures have been enabled by the interfacial stability conferred by emulsion systems, namely mild aqueous two-phase systems (ATPS), or non-equilibrated analogues. However, the application of non-spherical structures has mostly been reported while keeping the fabricated materials at a stable interface, limiting the free-standing character, mobility and transposition of the obtained structures to different setups. Here, the fabrication of self-standing, malleable and perfusable tubular systems through all-aqueous interfacial assembly is shown, culminating in the preparation of independent objects with stability and homogeneity after disruption of the polymer-based aqueous separating system. Those hollow structures can be fabricated with a variety of widths, and rapidly printed as long structures at flow rates of 15 mm s-1 . The materials are used as compartments for cell culture, showcasing high cytocompatibility, and can be tailored to promote cell adhesion. Such structures may find application in fields that benefit from freeform tubular structures, including the biomedical field with, for example, cell encapsulation, and benchtop preparation of microfluidic devices.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Sara Vilabril
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Catarina M S S Neves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Mara G Freire
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - João A P Coutinho
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
30
|
Zhao S, Zhang JY, Fu Y, Zhu S, Shum HC, Liu X, Wang Z, Ye R, Tang BZ, Russell TP, Chai Y. Shape-Reconfigurable Ferrofluids. NANO LETTERS 2022; 22:5538-5543. [PMID: 35766622 DOI: 10.1021/acs.nanolett.2c01721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ferrofluids (FFs) can adapt their shape to a magnetic field. However, they cannot maintain their shape when the magnetic field is removed. Here, with a magneto-responsive and reconfigurable interfacial self-assembly (MRRIS) process, we show that FFs can be structured by a magnetic field and maintain their shape, like solids, after removing the magnetic field. The competing self-assembly of magnetic and nonmagnetic nanoparticles at the liquid interface endow FFs with both reconfigurability and structural stability. By manipulating the external magnetic field, we show that it is possible to "write" and "erase" the shape of the FFs remotely and repeatedly. To gain an in-depth understanding of the effect of MRRIS on the structure of FFs, we systematically study the shape variation of these liquids under both the static and dynamic magnetic fields. Our study provides a simple yet novel way of manipulating FFs and opens opportunities for the fabrication of all-liquid devices.
Collapse
Affiliation(s)
- Sai Zhao
- Department of Physics, The City University of Hong Kong; 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Jun-Yan Zhang
- Department of Physics, The City University of Hong Kong; 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Yuchen Fu
- Department of Physics, The City University of Hong Kong; 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Shipei Zhu
- Department of Mechanical Engineering, The University of Hong Kong; Hong Kong (SAR), Hong Kong SAR 999077, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong; Hong Kong (SAR), Hong Kong SAR 999077, China
| | - Xubo Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaoyu Wang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study. The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Polymer Science and Engineering Department, University of Massachusetts; Amherst, Massachusetts 01003, United States
- Advanced Institute for Materials Research (AIMR), Tohoku University; Sendai 980-8577, Japan
| | - Yu Chai
- Department of Physics, The City University of Hong Kong; 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing first Road, Gaoxin District, Shenzhen 518057, China
| |
Collapse
|
31
|
Agashe C, Varshney R, Sangwan R, Gill AK, Alam M, Patra D. Anisotropic Compartmentalization of the Liquid-Liquid Interface using Dynamic Imine Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8296-8303. [PMID: 35762368 DOI: 10.1021/acs.langmuir.2c00725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liquid-liquid interface offers a fascinating avenue for generating hierarchical compartments. Herein, the dynamic imine chemistry is employed at the oil-water interface to investigate the effect of dynamic covalent bonds for modulating the droplet shape. The imine bond formation between oil-soluble aromatic aldehydes and water-soluble polyethyleneimine greatly stabilized the oil-water interface by substantially lowering the interfacial tension. The successful jamming of imine-mediated assemblies was observed when a compressive force was applied to the droplet. Thus, the anisotropic compartmentalization of the liquid-liquid interface was created, and it was later altered by changing the pH of the surrounding environment. Finally, a proof-of-concept demonstration of a pH-triggered cargo release across the interfacial membrane confirmed the feasibility of stimuli-responsive behavior of dynamic imine assemblies.
Collapse
Affiliation(s)
- Chinmayee Agashe
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Rohit Varshney
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Rekha Sangwan
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Arshdeep K Gill
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Mujeeb Alam
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Debabrata Patra
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
32
|
Yan J, Baird MA, Popple DC, Zettl A, Russell TP, Helms BA. Structured-Liquid Batteries. J Am Chem Soc 2022; 144:3979-3988. [PMID: 35196003 DOI: 10.1021/jacs.1c12417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chemical systems may be maintained far from equilibrium by sequestering otherwise reactive species into different microenvironments. It remains a significant challenge to control the amount of chemical energy stored in such systems and to utilize it on demand to perform useful work. Here, we show that redox-active molecules compartmentalized in multiphasic structured-liquid devices can be charged and discharged to power a load on an external circuit. The two liquid phases of these devices feature charge-complementary polyelectrolytes that serve a dual purpose: they generate an ionically conductive coacervate membrane at the liquid-liquid interface, providing structural support; they also mitigate active-material crossover between phases via ion pairing with the oppositely charged anolyte and catholyte active materials. Structured-liquid batteries enabled by this design were rechargeable over hundreds of hours. We envision that these devices may be integrated with soft electronics to enable functional circuits for smart textiles, medical implants, and wearables.
Collapse
Affiliation(s)
- Jiajun Yan
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Michael A Baird
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Derek C Popple
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States
| | - Alex Zettl
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Polymer Science and Engineering Department, University of Massachusetts, Conte Center for Polymer Research, Amherst, Massachusetts 01003, United States
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
33
|
Gu PY, Kim PY, Chai Y, Ashby PD, Xu QF, Liu F, Chen Q, Lu JM, Russell TP. Visualizing Assembly Dynamics of All-Liquid 3D Architectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105017. [PMID: 35142068 DOI: 10.1002/smll.202105017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/22/2021] [Indexed: 06/14/2023]
Abstract
To better exploit all-liquid 3D architectures, it is essential to understand dynamic processes that occur during printing one liquid in a second immiscible liquid. Here, the interfacial assembly and transition of 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (H6 TPPS) over time provides an opportunity to monitor the interfacial behavior of nanoparticle surfactants (NPSs) during all-liquid printing. The formation of J-aggregates of H4 TPPS2- at the interface and the interfacial conversion of the J-aggregates of H4 TPPS2- to H-aggregates of H2 TPPS4- is demonstrated by interfacial rheology and in situ atomic force microscopy. Equally important are the chromogenic changes that are characteristic of the state of aggregation, where J-aggregates are green in color and H-aggregates are red in color. In all-liquid 3D printed structures, the conversion in the aggregate state with time is reflected in a spatially varying change in the color, providing a simple, direct means of assessing the aggregation state of the molecules and the mechanical properties of the assemblies, linking a macroscopic observable (color) to mechanical properties.
Collapse
Affiliation(s)
- Pei-Yang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Yu Chai
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Qing-Feng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Feng Liu
- Department of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiaotong University, Shanghai, 200240, P. R. China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
34
|
Liu T, Yin Y, Yang Y, Russell TP, Shi S. Layer-by-Layer Engineered All-Liquid Microfluidic Chips for Enzyme Immobilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105386. [PMID: 34796557 DOI: 10.1002/adma.202105386] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/17/2021] [Indexed: 05/19/2023]
Abstract
Enzyme immobilization in the confines of microfluidic chips, that promote enzyme activity and stability, has become a powerful strategy to enhance biocatalysis and biomass conversion. Here, based on a newly developed all-liquid microfluidic chip, fabricated by the interfacial assembly of nanoparticle surfactants (NPSs) in a biphasic system, a layer-by-layer assembly strategy to generate polysaccharide multilayers on the surface of a microchannel, greatly enhancing the mechanical properties of the microchannel and offering a biocompatible microenvironment for enzyme immobilization, is presented. Using horseradish peroxidase and glucose oxidase as model enzymes, all-liquid microfluidic enzymatic and cascade reactors have been constructed and the crucial role of polysaccharide multilayers on enhancing the enzyme loading and catalytic efficiency is demonstrated.
Collapse
Affiliation(s)
- Tan Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yixuan Yin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
35
|
Continuous, autonomous subsurface cargo shuttling by nature-inspired meniscus-climbing systems. Nat Chem 2021; 14:208-215. [PMID: 34845343 DOI: 10.1038/s41557-021-00837-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
Water-walking insects can harness capillary forces by changing their body posture to climb or descend the meniscus between the surface of water and a solid object. Controlling surface tension in this manner is necessary for predation, escape and survival. Inspired by this behaviour, we demonstrate autonomous, aqueous-based synthetic systems that overcome the meniscus barrier and shuttle cargo subsurface to and from a landing site and a targeted drop-off site. We change the sign of the contact angle of a coacervate sac containing an aqueous phase or of a hydrogel droplet hanging from the surface by controlling the normal force acting on the sac or droplet. The cyclic buoyancy-induced cargo shuttling occurs continuously, as long as the supply of reactants diffusing to the sac or droplet from the surrounding aqueous phase is not exhausted. These findings may lead to potential applications in autonomously driven reaction or delivery systems and micro-/milli-robotics.
Collapse
|
36
|
Gu Y, Distler ME, Cheng HF, Huang C, Mirkin CA. A General DNA-Gated Hydrogel Strategy for Selective Transport of Chemical and Biological Cargos. J Am Chem Soc 2021; 143:17200-17208. [PMID: 34614359 DOI: 10.1021/jacs.1c08114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The selective transport of molecular cargo is critical in many biological and chemical/materials processes and applications. Although nature has evolved highly efficient in vivo biological transport systems, synthetic transport systems are often limited by the challenges associated with fine-tuning interactions between cargo and synthetic or natural transport barriers. Herein, deliberately designed DNA-DNA interactions are explored as a new modality for selective DNA-modified cargo transport through DNA-grafted hydrogel supports. The chemical and physical characteristics of the cargo and hydrogel barrier, including the number of nucleic acid strands on the cargo (i.e., the cargo valency) and DNA-DNA binding strength, can be used to regulate the efficiency of cargo transport. Regimes exist where a cargo-barrier interaction is attractive enough to yield high selectivity yet high mobility, while there are others where the attractive interactions are too strong to allow mobility. These observations led to the design of a DNA-dendron transport tag, which can be used to universally modify macromolecular cargo so that the barrier can differentiate specific species to be transported. These novel transport systems that leverage DNA-DNA interactions provide new chemical insights into the factors that control selective cargo mobility in hydrogels and open the door to designing a wide variety of drug/probe-delivery systems.
Collapse
Affiliation(s)
- Yuwei Gu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Max E Distler
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ho Fung Cheng
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Chi Huang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
37
|
Gu P, Zhou F, Xie G, Kim PY, Chai Y, Hu Q, Shi S, Xu Q, Liu F, Lu J, Russell TP. Visualizing Interfacial Jamming Using an Aggregation‐Induced‐Emission Molecular Reporter. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pei‐Yang Gu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Feng Zhou
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Ganhua Xie
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Paul Y. Kim
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Yu Chai
- Department of Physics City University of Hong Kong Kowloon China
| | - Qin Hu
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- School of Microelectronics University of Science and Technology of China Hefei Anhui 230026 China
- Polymer Science and Engineering Department University of Massachusetts Amherst MA 01003 USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Qing‐Feng Xu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Feng Liu
- Department of Physics and Astronomy Collaborative Innovation Center of IFSA (CICIFSA) Shanghai Jiaotong University Shanghai 200240 P. R. China
| | - Jian‐Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Thomas P. Russell
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- Polymer Science and Engineering Department University of Massachusetts Amherst MA 01003 USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Advanced Institute for Materials Research (WPI-AIMR) Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| |
Collapse
|
38
|
Gu P, Zhou F, Xie G, Kim PY, Chai Y, Hu Q, Shi S, Xu Q, Liu F, Lu J, Russell TP. Visualizing Interfacial Jamming Using an Aggregation‐Induced‐Emission Molecular Reporter. Angew Chem Int Ed Engl 2021; 60:8694-8699. [DOI: 10.1002/anie.202016217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Pei‐Yang Gu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Feng Zhou
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Ganhua Xie
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Paul Y. Kim
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Yu Chai
- Department of Physics City University of Hong Kong Kowloon China
| | - Qin Hu
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- School of Microelectronics University of Science and Technology of China Hefei Anhui 230026 China
- Polymer Science and Engineering Department University of Massachusetts Amherst MA 01003 USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Qing‐Feng Xu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Feng Liu
- Department of Physics and Astronomy Collaborative Innovation Center of IFSA (CICIFSA) Shanghai Jiaotong University Shanghai 200240 P. R. China
| | - Jian‐Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Thomas P. Russell
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- Polymer Science and Engineering Department University of Massachusetts Amherst MA 01003 USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Advanced Institute for Materials Research (WPI-AIMR) Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| |
Collapse
|
39
|
Khan MA, Haase MF. Stabilizing liquid drops in nonequilibrium shapes by the interfacial crosslinking of nanoparticles. SOFT MATTER 2021; 17:2034-2041. [PMID: 33443510 DOI: 10.1039/d0sm02120b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Droplets are spherical due to the principle of interfacial energy minimization. Here, we show that nonequilibrium droplet shapes can be stabilized via the interfacial self-assembly and crosslinking of nanoparticles. This principle allows for the stability of practically infinitely long liquid tubules and monodisperse cylindrical droplets. Droplets of oil-in-water are elongated via gravitational or hydrodynamic forces at a reduced interfacial tension. Silica nanoparticles self-assemble and cross-link on the interface triggered by the synergistic surface modification with hexyltrimethylammonium- and trivalent lanthanum-cations. The droplet length dependence is described by a scaling relationship and the rate of nanoparticle deposition on the droplets is estimated. Our approach potentially enables the 3D-printing of Newtonian Fluids, broadening the array of material options for additive manufacturing techniques.
Collapse
Affiliation(s)
- Mohd A Khan
- Van't Hoff Laboratory of Physical and Colloid Chemistry, Department of Chemistry, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, CH 3583, The Netherlands.
| | - Martin F Haase
- Van't Hoff Laboratory of Physical and Colloid Chemistry, Department of Chemistry, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, CH 3583, The Netherlands.
| |
Collapse
|
40
|
Cao Q, Amini S, Kumru B, Schmidt BVKJ. Molding and Encoding Carbon Nitride-Containing Edible Oil Liquid Objects via Interfacial Toughening in Waterborne Systems. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4643-4651. [PMID: 33463148 PMCID: PMC7877700 DOI: 10.1021/acsami.0c18064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Charge interaction-driven jamming of nanoparticle monolayers at the oil-water interface can be employed as a method to mold liquids into tailored stable 3D liquid objects. Here, 3D liquid objects are fabricated via a combination of biocompatible aqueous poly(vinyl sulfonic acid, sodium salt) solution and a colloidal dispersion of highly fluorescent organo-modified graphitic carbon nitride (g-C3N4) in edible sunflower oil. The as-formed liquid object shows stability in a broad pH range, as well as flexible pathways for efficient exchange of molecules at the liquid-liquid interphase, which allows for photodegradation of rhodamine B at the interface via visible light irradiation that also enables an encoding concept. The g-C3N4-based liquid objects point toward various applications, for example, all-liquid biphasic photocatalysis, artificial compartmentalized systems, liquid-liquid printing, or bioprinting.
Collapse
Affiliation(s)
- Qian Cao
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Shahrouz Amini
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Baris Kumru
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bernhard V. K. J. Schmidt
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- School
of Chemistry, University of Glasgow, Glasgow G128QQ, U.K.
| |
Collapse
|
41
|
Lin D, Liu T, Yuan Q, Yang H, Ma H, Shi S, Wang D, Russell TP. Stabilizing Aqueous Three-Dimensional Printed Constructs Using Chitosan-Cellulose Nanocrystal Assemblies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55426-55433. [PMID: 33228355 DOI: 10.1021/acsami.0c16602] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The assembly and binding of nanoparticles at the interfaces of aqueous two-phase systems enable the three-dimensional (3D) printing of all-aqueous naturally occurring materials. When a dispersion of cellulose nanocrystals (CNCs) in an aqueous solution of polyethylene glycol (PEG) is brought into contact with chitosan dissolved in an aqueous solution of dextran, the CNCs and chitosan diffuse to the interface between the two immiscible aqueous solutions, electrostatically interact, and form a solid, membranous layer sufficiently rapidly to 3D print tubules of one liquid in the other. The diameter, length, spatial arrangement, and stability of the printed tubules can be broadly controlled. Adsorption and directional diffusion of ionic species across the membranous layer make heavy metal ion removal possible. The results present a platform for fabricating and developing all-aqueous compartmentalized systems where function can be independently coupled to the inherent functionality of the nanoparticles or ligands.
Collapse
Affiliation(s)
- Dandan Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tan Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingqing Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongkun Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P Russell
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
42
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
43
|
Zhu S, Forth J, Xie G, Chao Y, Tian J, Russell TP, Shum HC. Rapid Multilevel Compartmentalization of Stable All-Aqueous Blastosomes by Interfacial Aqueous-Phase Separation. ACS NANO 2020; 14:11215-11224. [PMID: 32515582 DOI: 10.1021/acsnano.0c02923] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Producing artificial multicellular structures to process multistep cascade reactions and mimic the fundamental aspects of living systems is an outstanding challenge. Highly biocompatible, artificial systems consisting of all-aqueous, compartmentalized multicellular systems have yet to be realized. Here, a rapid multilevel compartmentalization of an all-aqueous system where a 3D sheet of subcolloidosomes encloses a mother colloidosome by interfacial phase separation is demonstrated. These spatially organized multicellular structures are termed "blastosomes" since they are similar to blastula in appearance. The barrier to nanoparticle assembly at the water-water interface is overcome using oppositely charged polyelectrolytes that form a coacervate-nanoparticle-composite network. The conditions required to trigger interfacial phase separation and form blastosomes are quantified in a mapped state diagram. We show a versatile model for constructing artificial multicellular spheroids in all-aqueous systems. The rapid interfacial assembly of charged particles and polyelectrolytes can lock in nonequilibrium shapes of water, which also enables top-down technologies, such as 3D printing and microfluidics, to program flexible compartmentalized structures.
Collapse
Affiliation(s)
- Shipei Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen 518000, China
| | - Joe Forth
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, California 94720, United States
| | - Ganhua Xie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, California 94720, United States
| | - Youchuang Chao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen 518000, China
| | - Jingxuan Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen 518000, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, California 94720, United States
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, Massachusetts 01003, United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen 518000, China
| |
Collapse
|
44
|
Chao Y, Hung LT, Feng J, Yuan H, Pan Y, Guo W, Zhang Y, Shum HC. Flower-like droplets obtained by self-emulsification of a phase-separating (SEPS) aqueous film. SOFT MATTER 2020; 16:6050-6055. [PMID: 32490476 DOI: 10.1039/d0sm00660b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-emulsification, referring to the spontaneous formation of droplets of one phase in another immiscible phase, is attracting growing interest because of its simplicity in creating droplets. Existing self-emulsification methods usually rely on phase inversion, temperature cycling, and solvent evaporation. However, achieving spatiotemporal control over the morphology of self-emulsified droplets remains challenging. In this work, a conceptually new approach of creating both simple and complex droplets by self-emulsification of a phase-separating (SEPS) aqueous film, is reported. The aqueous film is formed by depositing a surfactant-laden aqueous droplet onto an aqueous surface, and the fragmentation of the film into droplets is triggered by a wetting transition. Smaller and more uniform droplets can be achieved by introducing liquid-liquid phase separation (LLPS). Moreover, properly modulating quadruple LLPS and film fragmentation enables the creation of highly multicellular droplets such as flower-like droplets stabilized by the interfacial self-assembly of nanoparticles. This work provides a novel strategy to design aqueous droplets by LLPS, and it will inspire a wide range of applications such as membraneless organelle synthesis, cell mimics and delivery.
Collapse
Affiliation(s)
- Youchuang Chao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Lap Tak Hung
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana Champaign Urbana, Illinois 61801, USA
| | - Hao Yuan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China. and Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Yi Pan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Wei Guo
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
45
|
Arrabito G, Ferrara V, Bonasera A, Pignataro B. Artificial Biosystems by Printing Biology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907691. [PMID: 32511894 DOI: 10.1002/smll.201907691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/09/2020] [Indexed: 05/09/2023]
Abstract
The continuous progress of printing technologies over the past 20 years has fueled the development of a plethora of applications in materials sciences, flexible electronics, and biotechnologies. More recently, printing methodologies have started up to explore the world of Artificial Biology, offering new paradigms in the direct assembly of Artificial Biosystems (small condensates, compartments, networks, tissues, and organs) by mimicking the result of the evolution of living systems and also by redesigning natural biological systems, taking inspiration from them. This recent progress is reported in terms of a new field here defined as Printing Biology, resulting from the intersection between the field of printing and the bottom up Synthetic Biology. Printing Biology explores new approaches for the reconfigurable assembly of designed life-like or life-inspired structures. This work presents this emerging field, highlighting its main features, i.e., printing methodologies (from 2D to 3D), molecular ink properties, deposition mechanisms, and finally the applications and future challenges. Printing Biology is expected to show a growing impact on the development of biotechnology and life-inspired fabrication.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Vittorio Ferrara
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, Catania, 95125, Italy
| | - Aurelio Bonasera
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| |
Collapse
|
46
|
Perspective: Ferromagnetic Liquids. MATERIALS 2020; 13:ma13122712. [PMID: 32549201 PMCID: PMC7345949 DOI: 10.3390/ma13122712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022]
Abstract
Mechanical jamming of nanoparticles at liquid-liquid interfaces has evolved into a versatile approach to structure liquids with solid-state properties. Ferromagnetic liquids obtain their physical and magnetic properties, including a remanent magnetization that distinguishes them from ferrofluids, from the jamming of magnetic nanoparticles assembled at the interface between two distinct liquids to minimize surface tension. This perspective provides an overview of recent progress and discusses future directions, challenges and potential applications of jamming magnetic nanoparticles with regard to 3D nano-magnetism. We address the formation and characterization of curved magnetic geometries, and spin frustration between dipole-coupled nanostructures, and advance our understanding of particle jamming at liquid-liquid interfaces.
Collapse
|
47
|
Xu R, Liu T, Sun H, Wang B, Shi S, Russell TP. Interfacial Assembly and Jamming of Polyelectrolyte Surfactants: A Simple Route To Print Liquids in Low-Viscosity Solution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18116-18122. [PMID: 32091190 DOI: 10.1021/acsami.0c00577] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoparticle surfactants (NPSs) assembled at the oil-water interface can significantly lower the interfacial tension and be used to structure liquids. However, to realize the three-dimensional printing of one liquid in another, high-viscosity liquids, for example, silicone oil, have been generally used. Here, we present a simple, low-cost approach to print water in low-viscosity toluene by using a new type of polyelectrolyte surfactant, sodium carboxymethyl cellulose surfactant (CMCS), that forms and assembles at the oil-water interface. The interfacial activity of CMCSs can be enhanced by tuning parameters, such as pH and concentration, and the incorporation of a rigid ligand affords excellent mechanical strength to the resultant assemblies. With CMCS jammed at the interface, liquids can be easily printed or molded to the desired shapes, with biocompatible walls that can be used to encapsulate and adsorb active materials. This study opens a new pathway to generate complex, all-liquid devices with a myriad of potential applications in biology, catalysis, and chemical separation.
Collapse
Affiliation(s)
- Ruiyan Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tan Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huilou Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Beibei Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
48
|
Xie G, Forth J, Zhu S, Helms BA, Ashby PD, Shum HC, Russell TP. Hanging droplets from liquid surfaces. Proc Natl Acad Sci U S A 2020; 117:8360-8365. [PMID: 32220955 PMCID: PMC7165464 DOI: 10.1073/pnas.1922045117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Natural and man-made robotic systems use the interfacial tension between two fluids to support dense objects on liquid surfaces. Here, we show that coacervate-encased droplets of an aqueous polymer solution can be hung from the surface of a less dense aqueous polymer solution using surface tension. The forces acting on and the shapes of the hanging droplets can be controlled. Sacs with homogeneous and heterogeneous surfaces are hung from the surface and, by capillary forces, form well-ordered arrays. Locomotion and rotation can be achieved by embedding magnetic microparticles within the assemblies. Direct contact of the droplet with air enables in situ manipulation and compartmentalized cascading chemical reactions with selective transport. Applications including functional microreactors, motors, and biomimetic robots are evident.
Collapse
Affiliation(s)
- Ganhua Xie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003
| | - Joe Forth
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Shipei Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Brett A Helms
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Paul D Ashby
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
49
|
Ma Q, Song Y, Sun W, Cao J, Yuan H, Wang X, Sun Y, Shum HC. Cell-Inspired All-Aqueous Microfluidics: From Intracellular Liquid-Liquid Phase Separation toward Advanced Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903359. [PMID: 32274317 PMCID: PMC7141073 DOI: 10.1002/advs.201903359] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/06/2020] [Indexed: 05/24/2023]
Abstract
Living cells have evolved over billions of years to develop structural and functional complexity with numerous intracellular compartments that are formed due to liquid-liquid phase separation (LLPS). Discovery of the amazing and vital roles of cells in life has sparked tremendous efforts to investigate and replicate the intracellular LLPS. Among them, all-aqueous emulsions are a minimalistic liquid model that recapitulates the structural and functional features of membraneless organelles and protocells. Here, an emerging all-aqueous microfluidic technology derived from micrometer-scaled manipulation of LLPS is presented; the technology enables the state-of-art design of advanced biomaterials with exquisite structural proficiency and diversified biological functions. Moreover, a variety of emerging biomedical applications, including encapsulation and delivery of bioactive gradients, fabrication of artificial membraneless organelles, as well as printing and assembly of predesigned cell patterns and living tissues, are inspired by their cellular counterparts. Finally, the challenges and perspectives for further advancing the cell-inspired all-aqueous microfluidics toward a more powerful and versatile platform are discussed, particularly regarding new opportunities in multidisciplinary fundamental research and biomedical applications.
Collapse
Affiliation(s)
- Qingming Ma
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Yang Song
- Wallace H Coulter Department of Biomedical EngineeringGeorgia Institute of Technology & Emory School of MedicineAtlantaGA30332USA
| | - Wentao Sun
- Center for Basic Medical ResearchTEDA International Cardiovascular HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300457China
| | - Jie Cao
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Hao Yuan
- Institute of Applied MechanicsNational Taiwan UniversityTaipei10617Taiwan
| | - Xinyu Wang
- Institute of Thermal Science and TechnologyShandong UniversityJinan250061China
| | - Yong Sun
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Ho Cheung Shum
- Department of Mechanical EngineeringUniversity of Hong KongPokfulam RoadHong Kong
- HKU‐Shenzhen Institute of Research and Innovation (HKU‐SIRI)Shenzhen518000China
| |
Collapse
|
50
|
Chao Y, Shum HC. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem Soc Rev 2020; 49:114-142. [DOI: 10.1039/c9cs00466a] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes recent advances of aqueous two-phase systems (ATPSs), particularly their interfaces, with a focus on biomedical applications.
Collapse
Affiliation(s)
- Youchuang Chao
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| | - Ho Cheung Shum
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| |
Collapse
|