1
|
Ao X, Wang H, Zhang X, Wang C. Atomically Dispersed Metal-Nitrogen-Carbon Catalysts for Acidic Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2844-2862. [PMID: 39754738 DOI: 10.1021/acsami.4c16972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Designing efficient and cost-effective electrocatalysts toward oxygen reduction reaction (ORR) under demanding acidic environments plays a critical role in advancing proton exchange membrane fuel cells (PEMFCs). Metal-nitrogen-carbon (M-N-C) catalysts with atomically dispersed metals have gained attention for their affordability, excellent catalytic performance, and distinctive features including consistent active sites and high atomic utilization. Over the past decade, significant achievements have been made in this field. This review offers a comprehensive summary of the latest developments in atomically dispersed M-N-C catalysts for ORR in acidic environments along with their applications in PEMFCs. The ORR mechanisms, PEMFC configuration, and operational principles are presented first, followed by an in-depth discussion of strategies to improve the activity and stability of the PEMFC using atomically dispersed M-N-C catalysts at the cathode. Lastly, this review highlights the unresolved challenges and proposes future research pathways for advancing high-performance atomically dispersed M-N-C catalysts and PEMFCs.
Collapse
Affiliation(s)
- Xiang Ao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Haoran Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xia Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
2
|
Ma LJ, Zhang W, Wang J, Jia J, Wu HS. Supported Cu 3 cluster on N-doped graphene: An efficient triatom catalyst for CO electroreduction to propanol at low potential. J Colloid Interface Sci 2025; 678:1239-1248. [PMID: 39348791 DOI: 10.1016/j.jcis.2024.09.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Electroreduction of carbon monoxide into high-energy fuel is an excellent energy strategy for sustainable development, but the high yield of multi-carbon products remains a difficult challenge. Inspired by the successful synthesis of various trimer metal clusters and studies on electrocatalysis of CO to C3 products by Cu-based catalysts, Cu3 supported on N-doped graphene structures (Cu3@NG) are investigated as electrocatalysts for CORR toward propanol in this paper. Due to the appropriate Cu-Cu bond length, the moderate charge of the Cu site, mild CO adsorption energy, and 100 % CO coverage, the absorbed 3*CO substance can form the critical *CO-CO-CO intermediate with a rather low kinetic barrier of 0.25 eV. The limiting potential of the whole process for the formation of propanol is just -0.15 V. Our work not only showed that Cu3@NG is an excellent catalyst for the formation of propanol with high selectivity at low potential but also indicated that the *CO coverage can greatly reduce the CO hydrogenation potential and bonding of some intermediates such as *CH2O. This research will provide a new idea for the material design of products tending to multi-carbon.
Collapse
Affiliation(s)
- Li-Juan Ma
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| | - Wenlu Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| | - Jianfeng Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| | - Hai-Shun Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| |
Collapse
|
3
|
Zhai G, Yang S, Chen Y, Xu J, Si S, Zhang H, Liu Y, Ma J, Sun X, Huang W, Gao C, Liu D, Xiong Y. Direct Photocatalytic Oxidation of Methane to Formic Acid with High Selectivity via a Concerted Proton-Electron Transfer Process. J Am Chem Soc 2025. [PMID: 39772440 DOI: 10.1021/jacs.4c12758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Light-driven direct conversion of methane to formic acid is a promising approach to convert methane to value-added chemicals and promote sustainability. However, this process remains challenging due to the complex requirements for multiple protons and electrons. Herein, we report the design of WO3-based photocatalysts modified with Pt active sites to address this challenge. We demonstrate that modulating the dimensional effect of Pt on the WO3 support is key to enhancing the catalytic performance of selective CH4-to-HCOOH conversion. The Pt nanoparticles on WO3 exhibit superior conversion rate, selectivity and durability in the production of HCOOH compared to the Pt-free sample and WO3 decorated with Pt single atoms. The optimal PtNPs-WO3 catalyst achieves a HCOOH conversion rate of 17.7 mmol g-1, with 84% selectivity and stability maintained for up to 48 h. Mechanistic studies show that the protonation of O2 to hydroxyl radicals is the limiting step for HCOOH yield. Pt nanoparticles can facilitate electron transfer and promote O2 dissociation, generating hydroxyl radicals via a proton-coupled electron transfer process. This process provides sufficient protons to lower the formation barrier for •OH radicals, thereby promoting the activation of CH4. In addition, Pt nanoparticles regulate the adsorption of oxygenated hydrocarbon intermediates, increasing the selectivity of the reaction. This work advances our understanding of catalyst design for methane conversion and the effective regulation of complex reaction pathways.
Collapse
Affiliation(s)
- Guangyao Zhai
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Siyuan Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yihong Chen
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Junchi Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shenghe Si
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Honggang Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Jun Ma
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xiao Sun
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weixin Huang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chao Gao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yujie Xiong
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
4
|
Yan L, Mao Y, Li Y, Sha Q, Sun K, Li P, Waterhouse GIN, Wang Z, Tian S, Sun X. Sublimation Transformation Synthesis of Dual-Atom Fe Catalysts for Efficient Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2025; 64:e202413179. [PMID: 39225757 DOI: 10.1002/anie.202413179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Dual-atom catalysts (DACs) have garnered significant interest due to their remarkable catalytic reactivity. However, achieving atomically precise control in the fabrication of DACs remains a major challenge. Herein, we developed a straightforward and direct sublimation transformation synthesis strategy for dual-atom Fe catalysts (Fe2/NC) by utilizing in situ generated Fe2Cl6(g) dimers from FeCl3(s). The structure of Fe2/NC was investigated by aberration-corrected transmission electron microscopy and X-ray absorption fine structure (XAFS) spectroscopy. As-obtained Fe2/NC, with a Fe-Fe distance of 0.3 nm inherited from Fe2Cl6, displayed superior oxygen reduction performance with a half-wave potential of 0.90 V (vs. RHE), surpassing commercial Pt/C catalysts, Fe single-atom catalyst (Fe1/NC), and its counterpart with a common and shorter Fe-Fe distance of ~0.25 nm (Fe2/NC-S). Density functional theory (DFT) calculations and microkinetic analysis revealed the extended Fe-Fe distance in Fe2/NC is crucial for the O2 adsorption on catalytic sites and facilitating the subsequent protonation process, thereby boosting catalytic performance. This work not only introduces a new approach for fabricating atomically precise DACs, but also offers a deeper understanding of the intermetallic distance effect on dual-site catalysis.
Collapse
Affiliation(s)
- Li Yan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yu Mao
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Yingxin Li
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Qihao Sha
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kai Sun
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Panpan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | | | - Ziyun Wang
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Shubo Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
5
|
Li Z, Liu S, Kang W, Zeng S, Qu K, Meng F, Wang L, Li R, Yang Y, Song K, Xiong S, Nan B, Li H. Engineering the Local Atomic Environments of Te-Modulated Fe Single-Atom Catalysts for High-Efficiency O 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406659. [PMID: 39564721 DOI: 10.1002/smll.202406659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 11/21/2024]
Abstract
Atomically dispersed metal-nitrogen-carbon materials (AD-MNCs) are considered the most promising non-precious catalysts for the oxygen reduction reaction (ORR), but it remains a major challenge for simultaneously achieving high intrinsic activity, fast mass transport, and effective utilization of the active sites within a single catalyst. Here, an AD-MNCs consisting of defect-rich Fe-N3 sites dispersed with axially coordinated Te atoms on porous carbon frameworks (Fe1Te1-900) is designed. The local charge densities and energy band structures of the neighboring Fe and Te atoms in FeN3-Te are rearranged to facilitate the catalytic conversion of the O-intermediates. Meanwhile, the negative shift of the d-band center in FeN3-Te reduces the energy barrier limit for effective desorption of the final OH* intermediate. In the electrochemical evaluation, Fe1Te1-900 presents a more positive onset potential and half-wave potentials of 1.03 and 0.89 V versus the reversible hydrogen electrode, respectively. Furthermore, the liquid zinc-air batteries assembled with Fe1Te1-900 exhibited excellent performances compared to commercial Pt/C. This work opens up new ideas for the development of high-performance ORR electrocatalysts for applications in various energy conversion and storage technologies.
Collapse
Affiliation(s)
- Zongge Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Shuhua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Wenjun Kang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Suyuan Zeng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Konggang Qu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Fanpeng Meng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Lei Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Rui Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Yikai Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Kepeng Song
- Key Laboratory of the Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Shenglin Xiong
- Key Laboratory of the Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Bing Nan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Haibo Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| |
Collapse
|
6
|
Qin T, Pei Z, Qiu J, Wang J, Xu Z, Guo X. Layered Porous Ring-Like Carbon Network Protected FeNi Metal Atomic Pairs for Bifunctional Oxygen Electrocatalysis and Rechargeable Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2402762. [PMID: 39194587 DOI: 10.1002/smll.202402762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Bimetallic atom catalysts exhibit ultra-high oxygen electrocatalytic activity by harnessing mutual promotion and synergistic effects between adjacent metal active centers, surpassing the performance of single metal atomic catalysts. Herein, FeNi atom pairs protected by hierarchical porous annular carbon grids (P-FeNi-NPC) are introduced using a mediator-assisted MOFs-derived strategy. The introduction of the multi-block copolymer P123 ensures the uniform confinement and dispersion of metal ions, followed by thermal decomposition to form a "planetary-ring-like" carbon framework that anchors the bimetallic atomic pairs in the active region. The homogeneous distribution of adjacent Fe-N4 and Ni-N4 active sites significantly enhances catalytic activity and stability. Leveraging unique electronic and geometric structures, the resulting P-FeNi-NPC catalyst demonstrates exceptional ORR and OER activities with an ΔE value of 0.705 (E1/2 = 0.845 V, Ej = 10 = 1.55 V). Theoretical calculations unveil that FeNi bimetallic sites loaded on nitrogen-doped carbon frameworks with specific curvature effectively modulate the energy of d-band centers, thus balancing the free energy of oxygen-containing intermediates. This study presents a novel and versatile approach for synthesizing advanced bifunctional catalysts, poised to drive the future development of Zn-air batteries.
Collapse
Affiliation(s)
- Tengteng Qin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Pei
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiahao Qiu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Junzhang Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhou Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xingzhong Guo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| |
Collapse
|
7
|
Shen J, Chen J, Xu X, Li J, Wang Z, Wang Y, Lin P, Sun J, Huang B, Zhao T. Engineering d-p Orbital Hybridization in a Single-Atom-Based Solid-State Electrolyte for Lithium-Metal Batteries. Angew Chem Int Ed Engl 2024:e202419367. [PMID: 39659168 DOI: 10.1002/anie.202419367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Regulating lithium salt dissociation kinetics by enhancing the interaction between inorganic fillers and lithium salts is vital for enhancing the ionic conductivity in solid-state composite polymer electrolytes (CPEs). However, the influence of fillers' external electronic environments on lithium salt dissociation dynamics remains unclear. Here, we design single-atom sites in metal-organic framework fillers for poly(ethylene oxide) (PEO)-based CPEs, boosting lithium salt dissociation through an electrocatalytic strategy. This strategy enhances lithium-ion conductivity by tuning the coupling strength between the d and p orbitals of the fillers, as captured by a newly identified descriptor (λ) via high-throughput density functional theory (DFT) calculations and machine learning. The optimal single atom (Ti) sites are incorporated into a ZIF-8 matrix for PEO-based CPEs, achieving an ionic conductivity exceeding 10-3 S cm-1 at 30 °C. Additionally, the electrolyte forms a robust solid electrolyte interphase and is compatible with LiCoO2, LiNi0.9Co0.05Mn0.05O2, and sulfur cathodes. Consequently, the solid-state lithium metal battery with the electrolyte demonstrates excellent cycling stability, maintaining performance over 5000 cycles at 10 C with LiFePO4 cathodes and stable operation at -30 °C. These findings highlight the transformative potential of engineering d-p orbital hybridization by incorporating single-atom sites into inorganic fillers for designing highly ion-conductive CPEs.
Collapse
Affiliation(s)
- Jiadong Shen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Junjie Chen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiaosa Xu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jin Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhenyu Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yu Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Pengzhu Lin
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jing Sun
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Baoling Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Tianshou Zhao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Pang Y, Wan X, Li Y, Song M, Liu X, Shang J, Zheng L, Shui J. Evolution of Nitrogen-Coordinated Metal Single Atoms Toward Single-Atom Alloys on MgH₂ as Efficient and Stable Hydrogen Spillover Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412942. [PMID: 39439139 DOI: 10.1002/adma.202412942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
M-N-C catalysts with nitrogen-coordinated metal single-atom active sites have demonstrated high activity for hydrogen storage materials, but their stability in this application remains uncertain. This study addresses this issue by using nickel phthalocyanine (NiPc) molecules on MgH₂ particles as a model system. It is found that the N-coordinated high-valence Ni single atoms in the NiN₄ active site are unstable in the reducing environment of hydrogen storage, spontaneously evolving into zero-valence Ni, forming a Ni₁-Mg single-atom alloy (SAA). The Ni₁-Mg SAA exhibits remarkable stability in catalyzing Mg hydrogen storage reactions. Furthermore, it demonstrates comprehensive catalytic activity for each step of hydrogen absorption and desorption from Mg, surpassing the efficiency of the NiN₄ active site, especially in the critical steps of hydrogenation and dehydrogenation. Overall, the catalytic performance of Ni₁-Mg SAA is superior to most known nickel-based catalysts. This evolutionary process is also observed in FePc, CoPc, and tetraphenylporphyrin nickel (Ni-TPP), suggesting that this reducing transformation is a universal phenomenon for MN₄-type active sites in hydrogen storage catalysis.
Collapse
Affiliation(s)
- Yao Pang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Hangzhou, 310023, China
| | - Xin Wan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yongcheng Li
- Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai University, Xining, 810016, China
| | - Mengchen Song
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Hangzhou, 310023, China
| | - Xiaofang Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Jiaxiang Shang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Lirong Zheng
- Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Hangzhou, 310023, China
| |
Collapse
|
9
|
Du M, Chu B, Wang Q, Li C, Lu Y, Zhang Z, Xiao X, Xu CQ, Gu M, Li J, Pang H, Xu Q. Dual Fe/I Single-Atom Electrocatalyst for High-Performance Oxygen Reduction and Wide-Temperature Quasi-Solid-State Zn-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412978. [PMID: 39385614 DOI: 10.1002/adma.202412978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Oxygen reduction reaction (ORR) electrocatalysts are essential for widespread application of quasi-solid-state Zn-air batteries (ZABs), but the well-known Fe-N-C single-atom catalysts (SACs) suffer from low activity and stability because of unfavorable strong adsorption of oxygenated intermediates. Herein, the study synthesizes dual Fe/I single atoms anchored on N-doped carbon nanorods (Fe/I-N-CR) via a metal-organic framework (MOF)-mediated two-step tandem-pyrolysis method. Atomic-level I doping modulates the electronic structure of Fe-Nx centers via the long-range electron delocalization effect. Benefitting from the synergistic effect of dual Fe/I single-atom sites and the structural merits of 1D nanorods, the Fe/I-N-CR catalyst shows excellent ORR activity and stability, superior to Pt/C and Fe or I SACs. When the Fe/I-N-CR is employed as cathode for quasi-solid-state ZABs, a high power density of 197.9 mW cm-2 and an ultralong cycling lifespan of 280 h at 20 mA cm-2 are both achieved, greatly exceeding those of commercial Pt/C+IrO2 (119.1 mW cm-2 and 47 h). In addition, wide-temperature adaptability and superior stability from -40 to 60 °C are realized for the Fe/I-N-CR-based quasi-solid-state ZABs. This work provides a MOF-mediated two-step tandem-pyrolysis strategy to engineer high-performance dual SACs with metal/nonmetal centers for ORR and sustainable ZABs.
Collapse
Affiliation(s)
- Meng Du
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Bingxian Chu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Qichen Wang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Cheng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China
| | - Yu Lu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zhan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
10
|
Deshmukh MA, Bakandritsos A, Zbořil R. Bimetallic Single-Atom Catalysts for Water Splitting. NANO-MICRO LETTERS 2024; 17:1. [PMID: 39317789 PMCID: PMC11422407 DOI: 10.1007/s40820-024-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/10/2024] [Indexed: 09/26/2024]
Abstract
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports. BimSACs offer an avenue for rich metal-metal and metal-support cooperativity, potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton-electron exchanges, substrate activation with reversible redox cycles, simultaneous multi-electron transfer, regulation of spin states, tuning of electronic properties, and cyclic transition states with low activation energies. This review aims to encapsulate the growing advancements in bimSACs, with an emphasis on their pivotal role in hydrogen generation via water splitting. We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs, elucidate their electronic properties, and discuss their local coordination environment. Overall, we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction, the two half-reactions of the water electrolysis process.
Collapse
Affiliation(s)
- Megha A Deshmukh
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| |
Collapse
|
11
|
Lei L, Guo X, Han X, Fei L, Guo X, Wang DG. From Synthesis to Mechanisms: In-Depth Exploration of the Dual-Atom Catalytic Mechanisms Toward Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311434. [PMID: 38377407 DOI: 10.1002/adma.202311434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Dual-atom catalysts (DACs) hold a higher metal atom loading and provide greater flexibility in terms of the structural characteristics of their active sites in comparison to single-atom catalysts. Consequently, DACs hold great promise for achieving improved catalytic performance. This article aims to provide a focused overview of the latest advancements in DACs, covering their synthesis and mechanisms in reversible oxygen electrocatalysis, which plays a key role in sustainable energy conversion and storage technologies. The discussion starts by highlighting the structures of DACs and the differences in diatomic coordination induced by various substrates. Subsequently, the state-of-the-art fabrication strategies of DACs for oxygen electrocatalysis are discussed from several different perspectives. It particularly highlights the challenges of increasing the diatomic loading capacity. More importantly, the main focus of this overview is to investigate the correlation between the configuration and activity in DACs in order to gain a deeper understanding of their active roles in oxygen electrocatalysis. This will be achieved through density functional theory calculations and sophisticated in situ characterization technologies. The aim is to provide guidelines for optimizing and upgrading DACs in oxygen electrocatalysis. Additionally, the overview discusses the current challenges and future prospects in this rapidly evolving area of research.
Collapse
Affiliation(s)
- Lei Lei
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xinghua Guo
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xu Han
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ling Fei
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiao Guo
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Gao Wang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
12
|
Zhang SL, Li Y, Zhang J, Wang W, Tham NN, Li B, Zhang J, Liu Z. Anchoring Metal-Nitrogen Sites on Porous Carbon Polyhedra with Highly Accessible Multichannels for Efficient Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44728-44736. [PMID: 39141374 DOI: 10.1021/acsami.4c07385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Transition metal-nitrogen-carbon complexes, featuring single metal atoms embedded in a nitrogen-doped carbon matrix, emerge as promising alternatives to traditional platinum-based catalysts, offering cost-effectiveness, abundance, and enhanced catalytic performance. This work introduces a novel method for the etching and doping of zeolitic imidazolate frameworks (ZIFs) with transition metals, creating a uniform distribution of secondary metal centers on ZIF surfaces. By disrupting the crystalline symmetry of ZIFs through synthetic defect engineering, we gain access to their entire internal volume, creating multichannel pathways. The absorption of metal ions is theoretically simulated, demonstrating their thermodynamically spontaneous nature. The selective removal of defect channels under Lewis acidic conditions, induced by metal ion alcoholysis/hydrolysis, facilitates the introduction of metal atoms into ZIF cavities. The resulting single-atom catalyst, after pyrolysis, features a three-dimensional (3D) multichannel structure, high surface area, and uniformly dispersed metal atoms within the N-doped carbon matrix, establishing it as an exceptional catalyst for the oxygen reduction reaction (ORR). Our findings highlight the potential of using metal etching in defect-engineered metal-organic frameworks (MOFs) for single-atom catalyst preparation, paving the way for the next generation of high-performance, cost-effective ORR catalysts in sustainable energy systems.
Collapse
Affiliation(s)
- Song Lin Zhang
- Agency for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yuke Li
- Agency for Science, Technology and Research (A*STAR), Institute of High Performance Computing (IHPC), 1 Fusionopolis Way #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Jintao Zhang
- Agency for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Wanwan Wang
- Agency for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Nguk Neng Tham
- Agency for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Bing Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Jia Zhang
- Agency for Science, Technology and Research (A*STAR), Institute of High Performance Computing (IHPC), 1 Fusionopolis Way #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Zhaolin Liu
- Agency for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
13
|
Wang X, Zhang N, Guo S, Shang H, Luo X, Sun Z, Wei Z, Lei Y, Zhang L, Wang D, Zhao Y, Zhang F, Zhang L, Xiang X, Chen W, Zhang B. p-d Orbital Hybridization Induced by Asymmetrical FeSn Dual Atom Sites Promotes the Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:21357-21366. [PMID: 39051140 DOI: 10.1021/jacs.4c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
With more flexible active sites and intermetal interaction, dual-atom catalysts (DACs) have emerged as a new frontier in various electrocatalytic reactions. Constructing a typical p-d orbital hybridization between p-block and d-block metal atoms may bring new avenues for manipulating the electronic properties and thus boosting the electrocatalytic activities. Herein, we report a distinctive heteronuclear dual-metal atom catalyst with asymmetrical FeSn dual atom sites embedded on a two-dimensional C2N nanosheet (FeSn-C2N), which displays excellent oxygen reduction reaction (ORR) performance with a half-wave potential of 0.914 V in an alkaline electrolyte. Theoretical calculations further unveil the powerful p-d orbital hybridization between p-block stannum and d-block ferrum in FeSn dual atom sites, which triggers electron delocalization and lowers the energy barrier of *OH protonation, consequently enhancing the ORR activity. In addition, the FeSn-C2N-based Zn-air battery provides a high maximum power density (265.5 mW cm-2) and a high specific capacity (754.6 mA h g-1). Consequently, this work validates the immense potential of p-d orbital hybridization along dual-metal atom catalysts and provides new perception into the logical design of heteronuclear DACs.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ning Zhang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Shuohai Guo
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, P. R. China
| | - Huishan Shang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xuan Luo
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, P. R. China
| | - Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zihao Wei
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuanting Lei
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lili Zhang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dan Wang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yafei Zhao
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Fang Zhang
- Analysis and Testing Center, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Liang Zhang
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bing Zhang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
14
|
Cheng L, Wu Q, Sun H, Tang Y, Xiang Q. Toward Functionality and Deactivation of Metal-Single-Atom in Heterogeneous Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406807. [PMID: 38923045 DOI: 10.1002/adma.202406807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Single-atom heterogeneous catalysts (SAHCs) provide an enticing platform for understanding catalyst structure-property-performance relationships. The 100% atom utilization and adjustable local coordination configurations make it easy to probe reaction mechanisms at the atomic level. However, the progressive deactivation of metal-single-atom (MSA) with high surface energy leads to frequent limitations on their commercial viability. This review focuses on the atomistic-sensitive reactivity and atomistic-progressive deactivation of MSA to provide a unifying framework for specific functionality and potential deactivation drivers of MSA, thereby bridging function, purpose-modification structure-performance insights with the atomistic-progressive deactivation for sustainable structure-property-performance accessibility. The dominant functionalization of atomically precise MSA acting on properties and reactivity encompassing precise photocatalytic reactions is first systematically explored. Afterward, a detailed analysis of various deactivation modes of MSA and strategies to enhance their durability is presented, providing valuable insights into the design of SAHCs with deactivation-resistant stability. Finally, the remaining challenges and future perspectives of SAHCs toward industrialization, anticipating shedding some light on the next stage of atom-economic chemical/energy transformations are presented.
Collapse
Affiliation(s)
- Lei Cheng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Qiaolin Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
15
|
Wu D, Chen K, Lv P, Ma Z, Chu K, Ma D. Direct Eight-Electron N 2O Electroreduction to NH 3 Enabled by an Fe Double-Atom Catalyst. NANO LETTERS 2024; 24:8502-8509. [PMID: 38949570 DOI: 10.1021/acs.nanolett.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
N2O is a dominant atmosphere pollutant, causing ozone depletion and global warming. Currently, electrochemical reduction of N2O has gained increasing attention to remove N2O, but its product is worthless N2. Here, we propose a direct eight-electron (8e) pathway to electrochemically convert N2O into NH3. As a proof of concept, using density functional theory calculation, an Fe2 double-atom catalyst (DAC) anchored by N-doped porous graphene (Fe2@NG) was screened out to be the most active and selective catalyst for N2O electroreduction toward NH3 via the novel 8e pathway, which benefits from the unique bent N2O adsorption configuration. Guided by theoretical prediction, Fe2@NG DAC was fabricated experimentally, and it can achieve a high N2O-to-NH3 Faradaic efficiency of 77.8% with a large NH3 yield rate of 2.9 mg h-1 cm-2 at -0.6 V vs RHE in a neutral electrolyte. Our study offers a feasible strategy to synthesize NH3 from pollutant N2O with simultaneous N2O removal.
Collapse
Affiliation(s)
- Donghai Wu
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000, China
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Peng Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Ziyu Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Dongwei Ma
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000, China
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
16
|
Bai J, Lin Y, Xu J, Zhou W, Zhou P, Deng Y, Lian Y. PGM-free single atom catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:7113-7123. [PMID: 38912537 DOI: 10.1039/d4cc02106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The progress of proton exchange membrane fuel cells (PEMFCs) in the clean energy sector is notable for its efficiency and eco-friendliness, although challenges remain in terms of durability, cost and power density. The oxygen reduction reaction (ORR) is a key sluggish process and although current platinum-based catalysts are effective, their high cost and instability is a significant barrier. Single-atom catalysts (SACs) offer an economically viable alternative with comparable catalytic activity for ORR. The primary concern regarding SACs is their operational stability under PEMFCs conditions. In this article, we review current strategies for increasing the catalytic activity of SACs, including increasing active site density, optimizing metal center coordination through heteroatom doping, and engineering porous substrates. To enhance durability, we discuss methods to stabilize metal centers, mitigate the effects of the Fenton reaction, and improve graphitization of the carbon matrix. Future research should apply computational chemistry to predict catalyst properties, develop in situ characterization for real-time active site analysis, explore novel catalysts without the use of platinum-based catalysts to reduce dependence on rare and noble metal, and investigate the long-term stability of catalyst under operating conditions. The aim is to engineer SACs that meet and surpass the performance benchmarks of PEMFCs, contributing to a sustainable energy future.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yao Lin
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Jinnan Xu
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Wangkai Zhou
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Pin Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yuebin Lian
- School of Optoelectronics, Changzhou Institute of Technology, Changzhou, 213022, China.
| |
Collapse
|
17
|
Shen X, Li H, Ma T, Jiao Q, Zhao Y, Li H, Feng C. Construction of Heterojunction-Rich Metal Nitrides Porous Nanosheets Electrocatalyst for Alkaline Water/Seawater Splitting at Large Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310535. [PMID: 38420898 DOI: 10.1002/smll.202310535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The exploiting electrocatalysts for water/seawater electrolysis with remarkable activity and outstanding durability at industrial grade current density remains a huge challenge. Herein, CoMoNx and Fe-doped CoMoNx nanosheet arrays are in-situ grown on Ni foam, which possess plentiful holes, multilevel heterostructure, and lavish Co5.47N/MoN@NF and Fe-Co5.47N/MoN@NF interfaces. They require low overpotentials of 213 and 296 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under alkaline media to achieve current density of 800 mA cm-2, respectively, and both possess low Tafel slopes (51.1 and 49.1 mV dec-1) and undiminished stability over 80 h. Moreover, the coupled Co5.47N/MoN@NF and Fe-Co5.47N/MoN@NF electrolyzer requires low voltages of 1.735 V to yield 500 mA cm-2 in alkaline water. Notably, they also exhibit exceptional electrocatalytic properties in alkaline seawater (1.833 V@500 mA cm-2). The experimental studies and theoretical calculations verify that Fe doping does reduce the energy barrier from OH* to O* intermediates during OER process after catalyst reconstruction, and the non-metallic N site from MoN exhibits the lowest theoretical overpotential. The splendid catalytic performance is attributed to the optimized local electron configuration and porous structure. This discovery provides a new design method toward low-cost and excellent catalysts for water/seawater splitting to produce hydrogen.
Collapse
Affiliation(s)
- Xueran Shen
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huanjun Li
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Tiantian Ma
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qingze Jiao
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Materials and Environment, Beijing Institute of Technology, Jinfeng Road No.6, Xiangzhou District, Zhuhai, 519085, P. R. China
| | - Yun Zhao
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hansheng Li
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Caihong Feng
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
18
|
Yu Z, Xia G, Diaconescu VM, Simonelli L, LaGrow AP, Tai Z, Xiang X, Xiong D, Liu L. Atomically dispersed dinuclear iridium active sites for efficient and stable electrocatalytic chlorine evolution reaction. Chem Sci 2024; 15:9216-9223. [PMID: 38903208 PMCID: PMC11186302 DOI: 10.1039/d4sc01220h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
The electrochemical chlorine evolution reaction (CER) is a critical anode reaction in chlor-alkali electrolysis. Although precious metal-based mixed metal oxides (MMOs) have long been used as CER catalysts, they suffer from high cost and poor selectivity due to the competing oxygen evolution reaction (OER). Single-atom catalysts (SACs), featuring high atom utilization efficiency, have captured widespread interest in diverse applications. However, the single-atom sites in SACs are generally recognized as independent motifs and the interplay of adjacent sites is largely overlooked. Herein, we report a "precursor-preselected" cage-encapsulated strategy to synthesize atomically dispersed dinuclear iridium active sites bridged by oxygen that are supported on nitrogen-doped carbon (Ir2-ONC). The dinuclear Ir2-ONC catalyst exhibits a CER onset potential of 1.375 V vs. normal hydrogen electrode, a high faradaic efficiency of >95%, and a high mass activity of 14321.6 A gIr -1, much better than the Ir SACs, which demonstrates the significance of coordination and electronic structure regulation for atomically dispersed catalysts. Density functional theory calculations and ab initio molecular dynamics simulations confirm that the unique dinuclear structure facilitates Cl- adsorption, resulting in improved catalytic CER performance.
Collapse
Affiliation(s)
- Zhipeng Yu
- Songshan Lake Materials Laboratory Dongguan 523808 P. R. China
- International Iberian Nanotechnology Laboratory (INL) Avenida Mestre Jose Veiga 4715-330 Braga Portugal
| | - Guangjie Xia
- School of Physical Sciences, Great Bay University Dongguan 523808 P. R. China
- Great Bay Institute for Advanced Study Dongguan 523000 P. R. China
| | | | - Laura Simonelli
- ALBA Synchrotron, Carrer Llum 2-26 Cerdanyola del Valles Barcelona 08290 Spain
| | - Alec P LaGrow
- International Iberian Nanotechnology Laboratory (INL) Avenida Mestre Jose Veiga 4715-330 Braga Portugal
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University Kunigami-gun Okinawa 904-0412 Japan
| | - Zhixin Tai
- International Iberian Nanotechnology Laboratory (INL) Avenida Mestre Jose Veiga 4715-330 Braga Portugal
| | - Xinyi Xiang
- Songshan Lake Materials Laboratory Dongguan 523808 P. R. China
| | - Dehua Xiong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Lifeng Liu
- Songshan Lake Materials Laboratory Dongguan 523808 P. R. China
- International Iberian Nanotechnology Laboratory (INL) Avenida Mestre Jose Veiga 4715-330 Braga Portugal
| |
Collapse
|
19
|
Yang R, Gao D, Li W, Lu F, Yi D, Yang Y, Wang X. Iron Monomers or Trimers on Nitrogen-Doped Carbon: Which Is Better for the Electrocatalytic Nitrogen Reduction Reaction? ACS APPLIED MATERIALS & INTERFACES 2024; 16:28452-28460. [PMID: 38775640 DOI: 10.1021/acsami.4c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) presents an alternative method for the Haber-Bosch process, and single-atom catalysts (SACs) to achieve efficient NRR have attracted considerable attention in the past decades. However, whether SACs are more suitable for NRR compared to atomic-cluster catalysts (ACCs) remains to be studied. Herein, we have successfully synthesized both the Fe monomers (Fe1) and trimers (Fe3) on nitrogen-doped carbon catalysts. Both the experiments and DFT calculations indicate that compared to the end-on adsorption of N2 on Fe1 catalysts, N2 activation is enhanced via the side-on adsorption on Fe3 catalysts, and the reaction follows the enzymatic pathway with a reduced free energy barrier for NRR. As a result, the Fe3 catalysts achieved better NRR performance (NH3 yield rate of 27.89 μg h-1 mg-1cat. and Faradaic efficiency of 45.13%) than Fe1 catalysts (10.98 μg h-1 mg-1cat. and 20.98%). Therefore, our research presents guidance to prepare more efficient NRR catalysts.
Collapse
Affiliation(s)
- Rui Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, P. R. China
| | - Denglei Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, P. R. China
| | - Wei Li
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Fei Lu
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, P. R. China
| | - Ding Yi
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Yongan Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, P. R. China
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Xi Wang
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| |
Collapse
|
20
|
Cai G, Lv H, Zhang G, Liu D, Zhang J, Zhu J, Xu J, Kong X, Jin S, Wu X, Ji H. A Volcano Correlation between Catalytic Activity for Sulfur Reduction Reaction and Fe Atom Count in Metal Center. J Am Chem Soc 2024; 146:13055-13065. [PMID: 38695850 DOI: 10.1021/jacs.3c14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Sulfur reduction reaction (SRR) facilitates up to 16 electrons, which endows lithium-sulfur (Li-S) batteries with a high energy density that is twice that of typical Li-ion batteries. However, its sluggish reaction kinetics render batteries with only a low capacity and cycling life, thus remaining the main challenge to practical Li-S batteries, which require efficient electrocatalysts of balanced atom utilization and site-specific requirements toward highly efficient SRR, calling for an in-depth understanding of the atomic structural sensitivity for the catalytic active sites. Herein, we manipulated the number of Fe atoms in iron assemblies, ranging from single Fe atom to diatomic and triatomic Fe atom groupings, all embedded within a carbon matrix. This led to the revelation of a "volcano peak" correlation between SRR catalytic activity and the count of Fe atoms at the active sites. Utilizing operando X-ray absorption and X-ray diffraction spectroscopies, we observed that polysulfide adsorption-desorption and electrochemical conversion kinetics varied up and down with the incremental addition of even a single iron atom to the catalyst's metal center. Our results demonstrate that the metal center with exactly two iron atoms represents the optimal configuration, maximizing atom utility and adeptly handling the conversion of varied intermediate sulfur species, rendering the Li-S battery with a high areal capacity of 23.8 mAh cm-2 at a high sulfur loading of 21.8 mg cm-2. Our results illuminate the pivotal balance between atom utilization and site-specific requirements for optimal electrocatalytic performance in SRR and diverse electrocatalytic reactions.
Collapse
Affiliation(s)
- Guolei Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Haifeng Lv
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Guikai Zhang
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Danqing Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Junjie Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xianghua Kong
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Song Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiaojun Wu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Hengxing Ji
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Ye T, Wang Y, Yao X, Li H, Xiao T, Ba K, Tang Y, Zheng C, Yang X, Sun Z. Synthesis of Rhenium-Doped Copper Twin Boundary for High-Turnover-Frequency Electrochemical Nitrogen Reduction. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38706440 DOI: 10.1021/acsami.4c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The precise design and synthesis of active sites to improve catalyst's performance has emerged as a promising tactic for electrochemistry. However, it is challenging to combine different types of active sites and manipulate them simultaneously at atomic resolution. Here, we present a strategy to synthesize Re atom-doped Cu twin boundaries (TBs), through pulsed electrodeposition and boundary segregation. The Re-doped Cu TBs demonstrate a highly efficient nitrogen reduction reaction (NRR) performance. Re-doped Cu TBs showed a turnover frequency of ∼5889 s-1, ∼800 times higher than the pure Cu TB active centers (∼7 s-1). In addition to the "acceptance-donation" activation of N2 molecules, theoretical calculations also reveal that the Re-Re dimer on TB can boost the NRR and impede the hydrogen evolution reaction synchronously, rendering Re-doped Cu TB catalysts with high NRR activity and selectivity.
Collapse
Affiliation(s)
- Tong Ye
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
- School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, P. R. China
| | - Yajie Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Yao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hongbin Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Taishi Xiao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Kun Ba
- School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, P. R. China
| | - Yi Tang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Changlin Zheng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, P. R. China
| | - Xiaoyong Yang
- School of National Defense Science and Technology, State Key Laboratory for Environment Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala 75120, Sweden
| | - Zhengzong Sun
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
- School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
| |
Collapse
|
22
|
Liu S, Zhang Y, Zhu F, Liu J, Wan X, Liu R, Liu X, Shang J, Yu R, Feng Q, Wang Z, Shui J. Mg-MOF-74 Derived Defective Framework for Hydrogen Storage at Above-Ambient Temperature Assisted by Pt Catalyst. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401868. [PMID: 38460160 PMCID: PMC11095220 DOI: 10.1002/advs.202401868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Metal-organic frameworks (MOFs) are promising candidates for room-temperature hydrogen storage materials after modification, thanks to their ability to chemisorb hydrogen. However, the hydrogen adsorption strength of these modified MOFs remains insufficient to meet the capacity and safety requirements of hydrogen storage systems. To address this challenge, a highly defective framework material known as de-MgMOF is prepared by gently annealing Mg-MOF-74. This material retains some of the crystal properties of the original Mg-MOF-74 and exhibits exceptional hydrogen storage capacity at above-ambient temperatures. The MgO5 knots around linker vacancies in de-MgMOF can adsorb a significant amount of dissociated and nondissociated hydrogen, with adsorption enthalpies ranging from -22.7 to -43.6 kJ mol-1, indicating a strong chemisorption interaction. By leveraging a spillover catalyst of Pt, the material achieves a reversible hydrogen storage capacity of 2.55 wt.% at 160 °C and 81 bar. Additionally, this material offers rapid hydrogen uptake/release, stable cycling, and convenient storage capabilities. A comprehensive techno-economic analysis demonstrates that this material outperforms many other hydrogen storage materials at the system level for on-board applications.
Collapse
Affiliation(s)
- Shiyuan Liu
- Tianmushan LaboratoryHangzhou310023China
- School of Materials Science and EngineeringBeihang UniversityBeijing100191China
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong KongHong Kong SAR999077China
| | - Yue Zhang
- School of Reliability and Systems EngineeringBeihang UniversityBeijing100191China
| | - Fangzhou Zhu
- School of Materials Science and EngineeringBeihang UniversityBeijing100191China
| | - Jieyuan Liu
- School of Materials Science and EngineeringBeihang UniversityBeijing100191China
| | - Xin Wan
- School of Materials Science and EngineeringBeihang UniversityBeijing100191China
| | - Ruonan Liu
- School of Materials Science and EngineeringBeihang UniversityBeijing100191China
| | - Xiaofang Liu
- School of Materials Science and EngineeringBeihang UniversityBeijing100191China
| | - Jia‐Xiang Shang
- School of Materials Science and EngineeringBeihang UniversityBeijing100191China
| | - Ronghai Yu
- School of Materials Science and EngineeringBeihang UniversityBeijing100191China
| | - Qiang Feng
- School of Reliability and Systems EngineeringBeihang UniversityBeijing100191China
| | - Zili Wang
- School of Reliability and Systems EngineeringBeihang UniversityBeijing100191China
| | - Jianglan Shui
- Tianmushan LaboratoryHangzhou310023China
- School of Materials Science and EngineeringBeihang UniversityBeijing100191China
| |
Collapse
|
23
|
Shi X, Lv J, Deng S, Zhou F, Mei J, Zheng L, Zhang J. Construction of Interlayer Coupling Diatomic Nanozyme with Peroxidase-Like and Photothermal Activities for Efficient Synergistic Antibacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305823. [PMID: 38460176 PMCID: PMC11132033 DOI: 10.1002/advs.202305823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/05/2024] [Indexed: 03/11/2024]
Abstract
Pathogenic bacteria are the main cause of bacterial infectious diseases, which have posed a grave threat to public health. Single-atom nanozymes have emerged as promising candidates for antibacterial applications, but their activities need to be further improved. Considering diatomic nanozymes exhibit superior metal loading capacities and enhanced catalytic performance, a new interlayer coupling diatomic nanozyme (IC-DAN) is constructed by modulating the coordination environment in an atomic-level engineering. It is well demonstrated that IC-DAN exhibited superior peroxidase-mimetic activity in the presence of H2O2 to yield abundant ∙OH and possessed high photothermal conversion ability, which synergistically achieves efficient antibacterial therapy. Therefore, IC-DAN shows great potential used as antibacterial agent in clinic and this study open a new route to developing high-performance artificial enzymes.
Collapse
Affiliation(s)
- Xiudong Shi
- Department of Laboratory Medicine Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jie Lv
- Department of Laboratory Medicine Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Shuangling Deng
- Department of Laboratory Medicine Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Fang Zhou
- Department of Laboratory Medicine Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jiangang Mei
- Department of Laboratory Medicine Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Lei Zheng
- Department of Laboratory Medicine Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jing Zhang
- Department of Laboratory Medicine Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
24
|
Huang H, Deng L, Zhang L, Zhang Q, Ren X, Li Y. Well-dispersed Pt/Nb 2O 5on zeolitic imidazolate framework derived nitrogen-doped carbon for efficient oxygen reduction reaction. NANOTECHNOLOGY 2024; 35:295401. [PMID: 38593763 DOI: 10.1088/1361-6528/ad3c4d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
In this work, an advanced hybrid material was constructed by incorporating niobium pentoxide (Nb2O5) nanocrystals with nitrogen-doped carbon (NC) derived from ZIF-8 dodecahedrons, serving as a support, referred to as Nb2O5/NC. Pt nanocrystals were dispersed onto Nb2O5/NC using a simple impregnation reduction method. The obtained Pt/Nb2O5/NC electrocatalyst showed high oxygen reduction reaction (ORR) activity due to three-phase mutual contacting structure with well-dispersed Pt and Nb2O5NPs. In addition, the conductive NC benefits electron transfer, while the induced Nb2O5can regulate the electronic structure of Pt element and anchor Pt nanocrystals, thereby enhancing the ORR activity and stability. The half-wave potential (E1/2) for Pt/Nb2O5/NC is 0.886 V, which is higher than that of Pt/NC (E1/2= 0.826 V). The stability examinations demonstrated that Pt/Nb2O5/NC exhibited higher electrocatalytic durability than Pt/NC. Our work provides a new direction for synthesis and structural design of precious metal/oxides hybrid electrocatalysts.
Collapse
Affiliation(s)
- Hongying Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Libo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yongliang Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Centre, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
25
|
Zhang Y, Chen ZW, Liu X, Wen Z, Singh CV, Yang CC, Jiang Q. Vacancy-Enhanced Sb-N 4 Sites for the Oxygen Reduction Reaction and Zn-Air Battery. NANO LETTERS 2024; 24:4291-4299. [PMID: 38551180 DOI: 10.1021/acs.nanolett.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
With the advantages of a Fenton-inactive characteristic and unique p electrons that can hybridize with O2 molecules, p-block metal-based single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) have tremendous potential. Nevertheless, their undesirable intrinsic activity caused by the closed d10 electronic configuration remains a major challenge. Herein, an Sb-based SAC featuring carbon vacancy-enhanced Sb-N4 active centers, corroborated by the results of high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure, has been developed for an incredibly effective ORR. The obtained SbSA-N-C demonstrates a positive half-wave potential of 0.905 V and excellent structural stability in alkaline environments. Density functional theory calculations reveal that the carbon vacancies weaken the adsorption between Sb atoms and the OH* intermediate, thus promoting the ORR performance. Practically, the SbSA-N-C-based Zn-air batteries achieve impressive outcomes, such as a high power density of 181 mW cm-2, showing great potential in real-world applications.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zhi-Wen Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Xu Liu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Chun Cheng Yang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
26
|
Deng H, Deng D, Jin S, Tian Z, Yang LM. Unraveling the Activity and Mechanism of TM@g-C 4N 3 Electrocatalysts in the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17617-17625. [PMID: 38530989 DOI: 10.1021/acsami.4c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In this work, a high-throughput screening strategy and density functional theory (DFT) are jointly employed to identify high-performance TM@g-C4N3 (TM = 3d, 4d, 5d transition metals) single-atom catalysts (SACs) for the oxygen reduction reaction (ORR). Comprehensive studies demonstrated that Cu@, Zn@, and Ag@g-C4N3 show high ORR catalytic activities under both acidic and alkaline conditions with favorable overpotentials (ηORR) of 0.70, 0.89, and 0.89 V, respectively; among them, Cu@g-C4N3 is the best candidate. The ORR follows a four-electron mechanism with the final product H2O/OH-. Cu@, Zn@, and Ag@g-C4N3 catalysts also exhibit good thermal (500 K) and electrochemical (0.93-3.14 V) stabilities. Cu@, Zn@, and Ag@g-C4N3 demonstrate superior activities with low ηORR due to its moderate adsorption strength of *OH. The ηORR and the Gibbs free energy changes of *OH (ΔG4(acidic)/ΔG4(alkaline)) resemble a volcano-type relationship under acidic/alkaline conditions, respectively. Additionally, the O-O bond length in *OOH emerged as an effective structural descriptor for rapidly identifying the promising electrocatalysts. This research provides valuable insights into the origin of the ORR activity on TM@g-C4N3 and offers useful guidance for the efficient exploration of high-performance catalyst candidates.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shangbin Jin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, PR China
| | - Li-Ming Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
27
|
Wang W, Yu Q, Shao Z, Guo Y, Wang Y, Yang Y, Zhao W, Zhao C. Exudate-Induced Gelatinizable Nanofiber Membrane with High Exudate Absorption and Super Bactericidal Capacity for Bacteria-Infected Wound Management. Adv Healthc Mater 2024; 13:e2303293. [PMID: 38060135 DOI: 10.1002/adhm.202303293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Invasion of bacteria and continuous oozing of exudate are significant causes of interference with the healing of infected wounds. Therefore, an exudate-induced gelatinizable and near-infrared (NIR)-responsive nanofiber membrane composed of polyvinyl alcohol (PVA), carboxymethyl chitosan (CMC), and Fe-doped phosphomolybdic acid (Fe-PMA) with exceptional exudate absorption capacity and potent bactericidal efficacy is developed and denoted as the PVA-FP-CMC membrane. After absorbing exudate, the fiber membrane can transform into a hydrogel membrane, forming coordination bonds between the Fe-PMA and CMC. The unique exudate-induced gelation process imparts the membrane with high exudate absorption and retention capability, and the formed hydrogel also traps the bacteria that thrive in the exudate. Moreover, it is discovered for the first time that the Fe-PMA exhibits an enhanced photothermal conversion capability and photocatalytic activity compared to the PMA. Therefore, the presence of Fe-PMA provides the membrane with a photothermal and photodynamic therapeutic effect for killing bacteria. The PVA-FP-CMC membrane is proven with a liquid absorption ratio of 520.7%, a light-heat conversion efficiency of 41.9%, high-level generation of hydroxyl radical (•OH) and singlet oxygen (1O2), and a bacterial killing ratio of 100% for S. aureus and 99.6% for E. coli. The treatment of infected wounds on the backs of rats further confirms the promotion of wound healing by the PVA-FP-CMC membrane with NIR irradiation. Overall, this novel functional dressing for the synergistic management of bacteria-infected wounds presents a promising therapeutic strategy for tissue repair and regeneration.
Collapse
Affiliation(s)
- Wenjie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiao Yu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207, China
| | - Zijian Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuxuan Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yilin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ye Yang
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
28
|
Shi X, Pu Z, Chi B, Yu S, Hu J, Sun S, Liao S. Concave Structural Carbon Co-Doped with Iron Atom Pairs and Nitrogen as Ultra-High Performance Catalyst Toward Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307011. [PMID: 37946683 DOI: 10.1002/smll.202307011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Indexed: 11/12/2023]
Abstract
It is crucial to rationally design and synthesize atomic-scale transition metal-doped carbon catalysts with high electrocatalytic activity to achieve a high-efficient oxygen reduction reaction (ORR). Herein, an electrocatalyst comprised of Fe-Fe dual atom pairs and N-doped concave carbon are reported (N-CC@Fe DA) that achieves ultrahigh electrocatalytic ORR activity. The catalyst is prepared by a gaseous doping approach, with zeolitic imidazolate framework-8 (ZIF-8) as the carbon framework precursor and cyclopentadienyliron dicarbonyl dimer as the Fe-Fe atom pair precursor. The catalyst exhibits high cathodic ORR catalytic performance in an alkaline Zn/air battery and proton exchange membrane fuel cell (PEMFC), yielding peak power densities of 241 mW cm-2 and 724 mW cm-2, respectively, compared to 127 mW cm-2 and 1.20 W cm-2 with conventional Pt/C catalysts as cathodes. The presence of Fe atom pairs coordinate with N atoms is revealed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analysis, and Density Functional Theory (DFT) calculation results show that the Fe-Fe pair structure is beneficial for adsorbing oxygen molecules, activating the O─O bond, and desorbing OH* intermediates formed during oxygen reduction, resulting in a more efficient oxygen reaction. The findings may provide a new pathway for preparing ultra-high-performance doped carbon catalysts with Fe-Fe atom pair structures.
Collapse
Affiliation(s)
- Xiudong Shi
- The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zonghua Pu
- The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- Centre Énergie, Matériaux et Télécommunications, Institute National de la Recherche Scientifique, Varennes, Québec, J3X1P7, Canada
| | - Bin Chi
- The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Siyan Yu
- The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jingsong Hu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Shuhui Sun
- Centre Énergie, Matériaux et Télécommunications, Institute National de la Recherche Scientifique, Varennes, Québec, J3X1P7, Canada
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
29
|
Li Y, Li Y, Sun H, Gao L, Jin X, Li Y, Lv Z, Xu L, Liu W, Sun X. Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization. NANO-MICRO LETTERS 2024; 16:139. [PMID: 38421549 PMCID: PMC10904713 DOI: 10.1007/s40820-024-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
The exploration of sustainable energy utilization requires the implementation of advanced electrochemical devices for efficient energy conversion and storage, which are enabled by the usage of cost-effective, high-performance electrocatalysts. Currently, heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications. Compared to conventional catalysts, atomically dispersed metal atoms in carbon-based catalysts have more unsaturated coordination sites, quantum size effect, and strong metal-support interactions, resulting in exceptional catalytic activity. Of these, dual-atomic catalysts (DACs) have attracted extensive attention due to the additional synergistic effect between two adjacent metal atoms. DACs have the advantages of full active site exposure, high selectivity, theoretical 100% atom utilization, and the ability to break the scaling relationship of adsorption free energy on active sites. In this review, we summarize recent research advancement of DACs, which includes (1) the comprehensive understanding of the synergy between atomic pairs; (2) the synthesis of DACs; (3) characterization methods, especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy; and (4) electrochemical energy-related applications. The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules, such as oxygen reduction reaction, CO2 reduction reaction, hydrogen evolution reaction, and N2 reduction reaction. The future research challenges and opportunities are also raised in prospective section.
Collapse
Affiliation(s)
- Yizhe Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yajie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Liyao Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiangrong Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhi Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lijun Xu
- Xinjiang Coal Mine Mechanical and Electrical Engineering Technology Research Center, Xinjiang Institute of Engineering, Ürümqi, 830023, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
30
|
Gao Y, Li Q, Yin Z, Wang H, Wei Z, Gao J. Transition metal small clusters anchored on biphenylene for effective electrocatalytic nitrogen reduction. Phys Chem Chem Phys 2024; 26:6991-7000. [PMID: 38344948 DOI: 10.1039/d3cp05763a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The synthesis of ammonia via an electrochemical nitrogen reduction reaction (NRR, N2 + 6H+ + 6e- → 2NH3), which can weaken but not directly break an inert NN bond under mild conditions via multiple progressive protonation steps, has been proposed as one of the most attractive alternatives for the production of NH3. However, the development of appropriate catalyst materials is a major challenge in the application of NRRs. Recently, single- or multi-metal atoms anchored on two-dimensional (2D) substrates have been demonstrated as ideal candidates for facilitating NRRs. In this work, by applying spin-polarized density functional theory and ab initio molecular dynamic simulations, we systematically explored the performances of nine types of transition metal multi-atoms anchored on a recently developed 2D biphenylene (BPN) sheet in nitrogen reduction. Structural stability and NRR performance catalyzed by TMn (TM = V, Fe, Ni, Mo, Ru, Rh, W, Re, Ir; n = 1-4) clusters anchored on BPN sheets were systematically explored. After a strict six-step screening strategy, it was found that W2, Ru2 and Mo4 clusters loaded on BPN demonstrate superior potential for nitrogen reduction with extremely low onset potentials of -0.26, -0.36 and -0.17 V, respectively. Electronic structure analysis revealed that the enhanced ability of these multi-atom catalysts to effectively capture and reduce the N2 molecule can be attributed to bidirectional charge transfer between the d orbitals of transition metal atoms and molecular orbitals of the adsorbed N2 through a "donation-back donation" mechanism. Our findings highlight the value of BPN sheets as a substrate for designing multi-atom nitrogen reduction reaction catalysts.
Collapse
Affiliation(s)
- Yan Gao
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
- Department of Physics, College of Science, Shihezi University, Shihezi 832003, China.
| | - Qingchen Li
- Department of Physics, College of Science, Shihezi University, Shihezi 832003, China.
| | - Zhilii Yin
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Haifeng Wang
- Department of Physics, College of Science, Shihezi University, Shihezi 832003, China.
| | - Zhong Wei
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Junfeng Gao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| |
Collapse
|
31
|
Cao Y, Sun Y, Wang H, Li X, Wang Q, Si W, Lan W, Wang F, Han N. Fundamental understanding of nitrogen in biomass electrocatalysts for oxygen reduction and zinc-air batteries. iScience 2024; 27:108913. [PMID: 38318364 PMCID: PMC10839687 DOI: 10.1016/j.isci.2024.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Exploring high-efficiency catalysts for oxygen reduction reactions (ORRs) is essential for the development of large-scale applications of fuel cell and metal-air batteries technology. The as-prepared Fe-NC-800 via polymerization-pyrolysis strategy exhibited superior ORR activity with onset potential of 1.030 V vs. reversible hydrogen electrode (RHE) and half-wave potential of 0.908 V vs. RHE, which is higher than that of the Pt/C catalyst and most of other Fe-based catalysts. The different d-band center values can be attributed to the influence of different N-doped carbon, leading to the adjustment in the ORR activity. In addition, Fe-NC-800-based Zn-air battery showed better electrochemical performance with a high discharge specific capacity of 806 mA h g-1 and a high-power density of 220 mW cm-2 than that of the Pt/C-based battery. Therefore, the biomass Fe-NC-800 catalyst may become a promising substitute for Pt/C catalysts in energy storage and conversion devices.
Collapse
Affiliation(s)
- Yue Cao
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yegeng Sun
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Haowei Wang
- Shandong Sunway Chemical Group Co., Ltd, Zibo 255000, China
| | - Xue Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Qing Wang
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Weimeng Si
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Wentao Lan
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Fagang Wang
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| |
Collapse
|
32
|
Lian Y, Xu J, Zhou W, Lin Y, Bai J. Research Progress on Atomically Dispersed Fe-N-C Catalysts for the Oxygen Reduction Reaction. Molecules 2024; 29:771. [PMID: 38398523 PMCID: PMC10892989 DOI: 10.3390/molecules29040771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The efficiency and performance of proton exchange membrane fuel cells (PEMFCs) are primarily influenced by ORR electrocatalysts. In recent years, atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have gained significant attention due to their high active center density, high atomic utilization, and high activity. These catalysts are now considered the preferred alternative to traditional noble metal electrocatalysts. The unique properties of M-N-C catalysts are anticipated to enhance the energy conversion efficiency and lower the manufacturing cost of the entire system, thereby facilitating the commercialization and widespread application of fuel cell technology. This article initially delves into the origin of performance and degradation mechanisms of Fe-N-C catalysts from both experimental and theoretical perspectives. Building on this foundation, the focus shifts to strategies aimed at enhancing the activity and durability of atomically dispersed Fe-N-C catalysts. These strategies encompass the use of bimetallic atoms, atomic clusters, heteroatoms (B, S, and P), and morphology regulation to optimize catalytic active sites. This article concludes by detailing the current challenges and future prospects of atomically dispersed Fe-N-C catalysts.
Collapse
Affiliation(s)
- Yuebin Lian
- School of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Jinnan Xu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.X.)
| | - Wangkai Zhou
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.X.)
| | - Yao Lin
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China;
| | - Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China;
| |
Collapse
|
33
|
Sheng X, Mei Z, Jing Q, Zou X, Wang L, Xu Q, Guo H. Revealing the Orbital Interactions between Dissimilar Metal Sites during Oxygen Reduction Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305390. [PMID: 37797192 DOI: 10.1002/smll.202305390] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Indexed: 10/07/2023]
Abstract
A FeCo/DA@NC catalyst with the well-defined FeCoN6 moiety is customized through a novel and ultrafast Joule heating technique. This catalyst demonstrates superior oxygen reduction reaction activity and stability in an alkaline environment. The power density and charge-discharge cycling of znic-air batteries driven by FeCo/DA@NC also surpass those of Pt/C catalyst. The source of the excellent oxygen reduction reaction activity of FeCo/DA@NC originates from the significantly changed charge environment and 3d orbital spin state. These not only improve the bonding strength between active sites and oxygen-containing intermediates, but also provide spare reaction sites for oxygen-containing intermediates. Moreover, various in situ detection techniques reveal that the rate-determining step in the four-electron oxygen reduction reaction is *O2 protonation. This work provides strong support for the precise design and rapid preparation of bimetallic catalysts and opens up new ideas for understanding orbital interactions during oxygen reduction reactions.
Collapse
Affiliation(s)
- Xuelin Sheng
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Zhiyuan Mei
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Qi Jing
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Xiaoxiao Zou
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Lilian Wang
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Qijun Xu
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Hong Guo
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
34
|
Liu X, Wang Z, Feng G, Sun Y, Zhang X, Chen X, Sa R, Li Q, Sun C, Ma Z. Coordination Engineering of Heteronuclear Fe-Mo Dual-Atom Catalyst for Promoted Electrocatalytic Nitrogen Fixation: A DFT Study. Chemistry 2024; 30:e202303148. [PMID: 37943116 DOI: 10.1002/chem.202303148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Developing efficient nanostructured electrocatalysts for N2 reduction to NH3 under mild conditions remains a major challenge. The Fe-Mo cofactor serves as the archetypal active site in nitrogenase. Inspired by nitrogenase, we designed a series of heteronuclear dual-atom catalysts (DACs) labeled as FeMoN6-a Xa (a=1, 2, 3; X=B, C, O, S) anchored on the pore of g-C3 N4 to probe the impact of coordination on FeMo-catalyzed nitrogen fixation. The stability, reaction paths, activity, and selectivity of 12 different FeMoN6-a Xa DACs have been systematically studied using density functional theory. Of these, four DACs (FeMoN5 B1 , FeMoN5 O1 , FeMoN4 O2 , and FeMoN3 C3 ) displayed promising nitrogen reduction reaction (NRR) performance. Notably, FeMoN5 O1 stands out with an ultralow limiting potential of -0.11 V and high selectivity. Analysis of the density of states and charge/spin changes shows FeMoN5 O1 's high activity arises from optimal N2 binding on Fe initially and synergy of the FeMo dimer enabling protonation in NRR. This work contributes to the advancement of rational design for efficient NRR catalysts by regulating atomic coordination environments.
Collapse
Affiliation(s)
- Xiaojing Liu
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| | - Zhiwei Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| | - Guoning Feng
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| | - Yujie Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| | - Xintao Zhang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| | - Xin Chen
- School of Computer and Control Engineering, Yantai University, Yantai, 264005, China
| | - Rongjian Sa
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
| | - Qiaohong Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Zuju Ma
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
35
|
Song W, Xiao C, Ding J, Huang Z, Yang X, Zhang T, Mitlin D, Hu W. Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301477. [PMID: 37078970 DOI: 10.1002/adma.202301477] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Indexed: 05/03/2023]
Abstract
This topical review focuses on the distinct role of carbon support coordination environment of single-atom catalysts (SACs) for electrocatalysis. The article begins with an overview of atomic coordination configurations in SACs, including a discussion of the advanced characterization techniques and simulation used for understanding the active sites. A summary of key electrocatalysis applications is then provided. These processes are oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2 RR). The review then shifts to modulation of the metal atom-carbon coordination environments, focusing on nitrogen and other non-metal coordination through modulation at the first coordination shell and modulation in the second and higher coordination shells. Representative case studies are provided, starting with the classic four-nitrogen-coordinated single metal atom (MN4 ) based SACs. Bimetallic coordination models including homo-paired and hetero-paired active sites are also discussed, being categorized as emerging approaches. The theme of the discussions is the correlation between synthesis methods for selective doping, the carbon structure-electron configuration changes associated with the doping, the analytical techniques used to ascertain these changes, and the resultant electrocatalysis performance. Critical unanswered questions as well as promising underexplored research directions are identified.
Collapse
Affiliation(s)
- Wanqing Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Caixia Xiao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zechuan Huang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinyi Yang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Tao Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - David Mitlin
- Materials Science Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
36
|
Li R, Zhao J, Liu B, Wang D. Atomic Distance Engineering in Metal Catalysts to Regulate Catalytic Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308653. [PMID: 37779465 DOI: 10.1002/adma.202308653] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Indexed: 10/03/2023]
Abstract
It is very important to understand the structure-performance relationship of metal catalysts by adjusting the microstructure of catalysts at the atomic scale. The atomic distance has an essential influence on the composition of the environment of active metal atom, which is a key factor for the design of targeted catalysts with desired function. In this review, we discuss and summarize strategies for changing the atomic distance from three aspects and relate their effects on the reactivity of catalysts. First, the effects of regulating bond length between metal and coordination atom at one single-atom site on the catalytic performance are introduced. The bond lengths are affected by the strain effect of the support and high-shell doping and can evolve during the reaction. Next, the influence of the distance between single-atom sites on the catalytic performance is discussed. Due to the space matching of adsorption and electron transport, the catalytic performance can be adjusted with the shortening of site distance. In addition, the effect of the arrangement spacing of the surface metal active atoms on the catalytic performance of metal nanocatalysts is studied. Finally, a comprehensive summary and outlook of the relationship between atomic distance and catalytic performance is given.
Collapse
Affiliation(s)
- Runze Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry Tsinghua University, Beijing, 100084, China
| | - Jie Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Baozhong Liu
- Henan Polytechnic University, College of Chemistry and Chemical Engineering, 2001 Century Ave, Jiaozuo, Henan, 454000, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry Tsinghua University, Beijing, 100084, China
| |
Collapse
|
37
|
Zhang Z, Yang T, Wang J, Yu Z, Qiao Y, Wang C, Yue Z, Wu H. Hollow Mesoporous Molybdenum Single-Atom Nanozyme-Based Reactor for Enhanced Cascade Catalytic Antibacterial Therapy. Int J Nanomedicine 2023; 18:7209-7223. [PMID: 38076729 PMCID: PMC10710243 DOI: 10.2147/ijn.s438278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose The remarkable peroxidase-like activity of single-atom nanozymes (SAzymes) allows them to catalyze the conversion of H2O2 to •OH, rendering them highly promising for antibacterial applications. However, their practical in vivo application is hindered by the near-neutral pH and insufficient H2O2 levels present in physiological systems. This study was aimed at developing a SAzyme-based nanoreactor and investigating its in vivo antibacterial activity. Methods We developed a hollow mesoporous molybdenum single-atom nanozyme (HMMo-SAzyme) using a controlled chemical etching approach and pyrolysis strategy. The HMMo-SAzyme not only exhibited excellent catalytic activity but also served as an effective nanocarrier. By loading glucose oxidase (GOx) with HMMo-SAzyme and encapsulating it with hyaluronic acid (HA), a nanoreactor (HMMo/GOx@HA) was constructed as glucose-triggered cascade catalyst for combating bacterial infection in vivo. Results Hyaluronidase (HAase) at the site of infection degraded HA, allowing GOx to convert glucose into gluconic acid and H2O2. An acid environment significantly enhanced the catalytic activity of HMMo-SAzyme to promote the further catalytic conversion of H2O2 to •OH for bacterial elimination. In vitro and in vivo experiments demonstrated that the nanoreactor had excellent antibacterial activity and negligible biological toxicity. Conclusion This study represents a significant advancement in developing a cascade catalytic system with high efficiency based on hollow mesoporous SAzyme, promising the advancement of biological applications of SAzyme.
Collapse
Affiliation(s)
- Zhijun Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, People’s Republic of China
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Tiehong Yang
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Jingwei Wang
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Zhe Yu
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Youbei Qiao
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Chaoli Wang
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Zhenggang Yue
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, People’s Republic of China
| | - Hong Wu
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
38
|
Xie X, Zhai Z, Peng L, Zhang J, Shang L, Zhang T. Recent advances in bifunctional dual-sites single-atom catalysts for oxygen electrocatalysis toward rechargeable zinc-air batteries. Sci Bull (Beijing) 2023; 68:2862-2875. [PMID: 37884426 DOI: 10.1016/j.scib.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
Rechargeable zinc-air batteries (ZABs) with high energy density and low pollutant emissions are regarded as the promising energy storage and conversion devices. However, the sluggish kinetics and complex four-electron processes of oxygen reduction reaction and oxygen evolution reaction occurring at air electrodes in rechargeable ZABs pose significant challenges for their large-scale application. Carbon-supported single-atom catalysts (SACs) exhibit great potential in oxygen electrocatalysis, but needs to further improve their bifunctional electrocatalytic performance, which is highly related to the coordination environment of the active sites. As an extension of SACs, dual-sites SACs with wide combination of two active sites provide limitless opportunities to tailor coordination environment at the atomic level and improve catalytic performance. The review systematically summarizes recent achievements in the fabrication of dual-site SACs as bifunctional oxygen electrocatalysts, starting by illustrating the design fundament of the electrocatalysts according to their catalytic mechanisms. Subsequently, metal-nonmetal-atom synergies and dual-metal-atom synergies to synthesize dual-sites SACs toward enhancing rechargeable ZABs performance are overviewed. Finally, the perspectives and challenges for the development of dual-sites SACs are proposed, shedding light on the rational design of efficient bifunctional oxygen electrocatalysts for practical rechargeable ZABs.
Collapse
Affiliation(s)
- Xiaoying Xie
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zeyu Zhai
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lishan Peng
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Jingbo Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
Liu J, Xu H, Zhu J, Cheng D. Understanding the Pathway Switch of the Oxygen Reduction Reaction from Single- to Double-/Triple-Atom Catalysts: A Dual Channel for Electron Acceptance-Backdonation. JACS AU 2023; 3:3031-3044. [PMID: 38034973 PMCID: PMC10685438 DOI: 10.1021/jacsau.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 12/02/2023]
Abstract
Recently, a lot of attention has been dedicated to double- or triple-atom catalysts (DACs/TACs) as promising alternatives to platinum-based catalysts for the oxygen reduction reaction (ORR) in fuel cell applications. However, the ORR activity of DACs/TACs is usually theoretically understood or predicted using the single-site association pathway (O2 → OOH* → O* → OH* → H2O) proposed from Pt-based alloy and single-atom catalysts (SACs). Here, we investigate the ORR process on a series of graphene-supported Fe-Co DACs/TACs by means of first-principles calculation and an electrode microkinetic model. We propose that a dual channel for electron acceptance-backdonation on adjacent metal sites of DACs/TACs efficiently promotes O-O bond breakage compared with SACs, which makes ORR switch to proceed through dual-site dissociation pathways (O2 → O* + OH* → 2OH* → OH* → H2O) from the traditional single-site association pathway. Following this revised ORR network, a complete reaction phase diagram of DACs/TACs is established, where the preferential ORR pathways and activity can be described by a three-dimensional volcano plot spanned by the adsorption free energies of ΔG(O*) and ΔG(OH*). Besides, the kinetics preferability of dual-site dissociation pathways is also appropriate for other graphene- or oxide-supported DACs/TACs. The contribution of dual-site dissociation pathways, rather than the traditional single-site association pathway, makes the theoretical ORR activity of DACs/TACs in better agreement with available experiments, rationalizing the superior kinetic behavior of DACs/TACs to that of SACs. This work reveals the origin of ORR pathway switching from SACs to DACs/TACs, which broadens the ideas and lays the theoretical foundation for the rational design of DACs/TACs and may also be heuristic for other reactions catalyzed by DACs/TACs.
Collapse
Affiliation(s)
- Jin Liu
- State
Key Laboratory of Organic−Inorganic Composites, Interdisciplinary
Research Center for hydrogen energy, Beijing
University of Chemical Technology, 100029 Beijing, People’s Republic of China
| | - Haoxiang Xu
- State
Key Laboratory of Organic−Inorganic Composites, Interdisciplinary
Research Center for hydrogen energy, Beijing
University of Chemical Technology, 100029 Beijing, People’s Republic of China
| | - Jiqin Zhu
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, People’s Republic of China
| | - Daojian Cheng
- State
Key Laboratory of Organic−Inorganic Composites, Interdisciplinary
Research Center for hydrogen energy, Beijing
University of Chemical Technology, 100029 Beijing, People’s Republic of China
| |
Collapse
|
40
|
Li B, Ma R, Chen L, Zhou C, Zhang YX, Wang X, Huang H, Hu Q, Zheng X, Yang J, Shao M, Hao P, Wu Y, Che Y, Li C, Qin T, Gao L, Niu Z, Li Y. Diatomic iron nanozyme with lipoxidase-like activity for efficient inactivation of enveloped virus. Nat Commun 2023; 14:7312. [PMID: 37951992 PMCID: PMC10640610 DOI: 10.1038/s41467-023-43176-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Enveloped viruses encased within a lipid bilayer membrane are highly contagious and can cause many infectious diseases like influenza and COVID-19, thus calling for effective prevention and inactivation strategies. Here, we develop a diatomic iron nanozyme with lipoxidase-like (LOX-like) activity for the inactivation of enveloped virus. The diatomic iron sites can destruct the viral envelope via lipid peroxidation, thus displaying non-specific virucidal property. In contrast, natural LOX exhibits low antiviral performance, manifesting the advantage of nanozyme over the natural enzyme. Theoretical studies suggest that the Fe-O-Fe motif can match well the energy levels of Fe2 minority β-spin d orbitals and pentadiene moiety π* orbitals, and thus significantly lower the activation barrier of cis,cis-1,4-pentadiene moiety in the vesicle membrane. We showcase that the diatomic iron nanozyme can be incorporated into air purifier to disinfect airborne flu virus. The present strategy promises a future application in comprehensive biosecurity control.
Collapse
Affiliation(s)
- Beibei Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, China
| | - Ruonan Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine, Yangzhou University, 225001, Yangzhou, China
| | - Caiyu Zhou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yu-Xiao Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Xiaonan Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Helai Huang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Qikun Hu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Xiaobo Zheng
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Mengjuan Shao
- College of Veterinary Medicine, Yangzhou University, 225001, Yangzhou, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 130000, Changchun, China
| | - Yanfen Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Yizhen Che
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 130000, Changchun, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, 225001, Yangzhou, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Zhiqiang Niu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
41
|
Zhao S, Ran S, Shi N, Liu M, Sun W, Yu Y, Zhu Z. Structural Design Induced Electronic Optimization in Single-Phase MoCoP Nanocrystal for Boosting Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302414. [PMID: 37420333 DOI: 10.1002/smll.202302414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/19/2023] [Indexed: 07/09/2023]
Abstract
Structural and compositional design of multifunctional materials is critical for electrocatalysis, but their rational modulation and effective synthesis remain a challenge. Herein, a controllable one-pot synthesis for construction of trifunctional sites and preparation of porous structures is adopted for synthesizing dispersed MoCoP sites on N, P codoped carbonized substance. This tunable synthetic strategy also endorses the exploration of the electrochemical activities of Mo (Co)-based unitary, Mo/Co-based dual and MoCo-based binary metallic sites. Eventually benefiting from the structural regulation, MoCoP-NPC shows excellent oxygen reduction abilities with a half-wave potential of 0.880 V, and outstanding oxygen evolution and hydrogen evolution performance with an overpotential of 316 mV and 91 mV, respectively. MoCoP-NPC-based Zn-air battery achieves excellent cycle stability for 300 h and a high open-circuit voltage of 1.50 V. When assembled in a water-splitting device, MoCoP-NPC reaches 10 mA cm-2 at 1.65 V. Theoretical calculations demonstrate that the Co atom in the single-phase MoCoP has a low energy barrier for oxygen evolution reaction (OER) owing to the migration of Co 3d orbital toward the Fermi level. This work shows a simplified method for controllable preparation of prominent trifunctional catalysts.
Collapse
Affiliation(s)
- Songlin Zhao
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Siyi Ran
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ning Shi
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Maolin Liu
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of, Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| | - Ying Yu
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| | - Zhihong Zhu
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
42
|
Li X, Mitchell S, Fang Y, Li J, Perez-Ramirez J, Lu J. Advances in heterogeneous single-cluster catalysis. Nat Rev Chem 2023; 7:754-767. [PMID: 37814032 DOI: 10.1038/s41570-023-00540-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/11/2023]
Abstract
Heterogeneous single-cluster catalysts (SCCs) comprising atomically precise and isolated metal clusters stabilized on appropriately chosen supports offer exciting prospects for enabling novel chemical reactions owing to their broad structural diversity with unparalled opportunities for engineering their properties. Although the pioneering work revealed intriguing performance trends of size-selected metal clusters deposited on supports, synthetic and analytical challenges hindered a thorough understanding of surface chemistry under realistic conditions. This Review underscores the importance of considering the cluster environment in SCCs, encompassing the development of robust metal-support interactions, precise control over the ligand sphere, the influence of reaction media and dynamic behaviour, to uncover new reactivities. Through examples, we illustrate the criticality of tailoring the entire catalytic ensemble in SCCs to achieve stable and selective performance with practically relevant metal coverages. This expansion in application scope transcends from model reactions to complex and technically relevant reactions. Furthermore, we provide a perspective on the opportunities and future directions for SCC design within this rapidly evolving field.
Collapse
Affiliation(s)
- Xinzhe Li
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Yiyun Fang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing, China.
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, China.
| | - Javier Perez-Ramirez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
43
|
Wu J, Wu D, Li H, Song Y, Lv W, Yu X, Ma D. Tailoring the coordination environment of double-atom catalysts to boost electrocatalytic nitrogen reduction: a first-principles study. NANOSCALE 2023; 15:16056-16067. [PMID: 37728053 DOI: 10.1039/d3nr03310d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Tailoring the coordination environment is an effective strategy to modulate the electronic structure and catalytic activity of atomically dispersed transition-metal (TM) catalysts, which has been widely investigated for single-atom catalysts but received less attention for emerging double-atom catalysts (DACs). Herein, based on first-principles calculations, taking the commonly studied N-coordinated graphene-based DACs as references, we explored the effect of coordination engineering on the catalytic behaviors of DACs towards the electrocatalytic nitrogen reduction reaction (NRR), which is realized through replacing one N atom by the B or O atom to form B, N or O, N co-coordinated DACs. We found that B, N or O, N co-coordination could significantly strengthen N2 adsorption and alter the N2 adsorption pattern of the TM dimer active center, which greatly facilitates N2 activation. Moreover, on the studied DACs, the linear scaling relationship between the binding strengths of key intermediates can be attenuated. Consequently, the O, N co-coordinated Mn2 DACs, exhibiting an ultralow limiting potential of -0.27 V, climb to the peak of the activity volcano. In addition, the experimental feasibility of this DAC system was also identified. Overall, benefiting from the coordination engineering effect, the chemical activity and catalytic performance of the DACs for NRR can be significantly boosted. This phenomena can be understood from the adjusted electronic structure of the TM dimer active center due to the changes of its coordination microenvironment, which significantly affects the binding strength (pattern) of key intermediates and changes the reaction pathways, leading to enhanced NRR activity and selectivity. This work highlights the importance of coordination engineering in developing DACs for the electrocatalytic NRR and other important reactions.
Collapse
Affiliation(s)
- Jiarui Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Haobo Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Yanhao Song
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Wenjing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Xiaohu Yu
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
44
|
Yang J, Liu Q, Chen S, Ding X, Chen Y, Cai D, Wang X. Single-Atom and Dual-Atom Electrocatalysts: Synthesis and Applications. Chempluschem 2023; 88:e202300407. [PMID: 37666797 DOI: 10.1002/cplu.202300407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Distinguishing themselves from nanostructured catalysts, single-atom catalysts (SACs) typically consist of positively charged single metal and coordination atoms without any metal-metal bonds. Dual-atom catalysts (DACs) have emerged as extended family members of SACs in recent years. Both SACs and DACs possess characteristics that combine both homogeneous and heterogeneous catalysis, offering advantages such as uniform active sites and adjustable interactions with ligands, while also inheriting the high stability and recyclability associated with heterogeneous catalyst systems. They offer numerous advantages and are extensively utilized in the field of electrocatalysis, so they have emerged as one of the most prominent material research platforms in the direction of electrocatalysis. This review provides a comprehensive review of SACs and DACs in the field of electrocatalysis: encompassing economic production, elucidating electrocatalytic reaction pathways and associated mechanisms, uncovering structure-performance relationships, and addressing major challenges and opportunities within this domain. Our objective is to present novel ideas for developing advanced synthesis strategies, precisely controlling the microstructure of catalytic active sites, establishing accurate structure-activity relationships, unraveling potential mechanisms underlying electrocatalytic reactions, identifying more efficient reaction paths, and enhancing overall performance in electrocatalytic reactions.
Collapse
Affiliation(s)
- Jianjian Yang
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Qiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shian Chen
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Xiangnong Ding
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Yuqi Chen
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Dongsong Cai
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Xi Wang
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| |
Collapse
|
45
|
Zhang S, Hou M, Zhai Y, Liu H, Zhai D, Zhu Y, Ma L, Wei B, Huang J. Dual-Active-Sites Single-Atom Catalysts for Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302739. [PMID: 37322318 DOI: 10.1002/smll.202302739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Dual-Active-Sites Single-Atom catalysts (DASs SACs) are not only the improvement of SACs but also the expansion of dual-atom catalysts. The DASs SACs contains dual active sites, one of which is a single atomic active site, and the other active site can be a single atom or other type of active site, endowing DASs SACs with excellent catalytic performance and a wide range of applications. The DASs SACs are categorized into seven types, including the neighboring mono metallic DASs SACs, bonded DASs SACs, non-bonded DASs SACs, bridged DASs SACs, asymmetric DASs SACs, metal and nonmetal combined DASs SACs and space separated DASs SACs. Based on the above classification, the general methods for the preparation of DASs SACs are comprehensively described, especially their structural characteristics are discussed in detail. Meanwhile, the in-depth assessments of DASs SACs for variety applications including electrocatalysis, thermocatalysis and photocatalysis are provided, as well as their unique catalytic mechanism are addressed. Moreover, the prospects and challenges for DASs SACs and related applications are highlighted. The authors believe the great expectations for DASs SACs, and this review will provide novel conceptual and methodological perspectives and exciting opportunities for further development and application of DASs SACs.
Collapse
Affiliation(s)
- Shaolong Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Minchen Hou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yanliang Zhai
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Youqi Zhu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Ma
- Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, 530023, P. R. China
| | - Bin Wei
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Jing Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| |
Collapse
|
46
|
Li X, Deng P, Xu M, Peng Z, Zhou Y, Jia G, Ye W, Gao P, Wang W. Multi-layer core-shell metal oxide/nitride/carbon and its high-rate electroreduction of nitrate to ammonia. NANOSCALE 2023; 15:14439-14447. [PMID: 37642315 DOI: 10.1039/d3nr02972g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The electroreduction of nitrate to ammonia is both an alternative strategy to industrial Haber-Bosch ammonia synthesis and a prospective idea for changing waste (nitrate pollution of groundwater around the world) into valuable chemicals, but still hindered by its in-process strongly competitive hydrogen evolution reaction (HER), low ammonia conversion efficiency, and the absence of stability and sustainability. Considering the unique electronic structure of anti-perovskite structured Fe4N, a tandem disproportionation reaction and nitridation-carbonation route for building a multi-layer core-shell oxide/nitride/C catalyst, such as MoO2/Fe4N/C, is designed and executed, in which abundant Fe-N active sites and rich phase interfaces are in situ formed for both suppressing HER and fast transport of electrons and reaction intermediates. As a result, the sample's NO3RR conversion displays a very high NH3 yield rate of up to 11.10 molNH3 gcat.-1 h-1 (1.67 mmol cm-2 h-1) with a superior 99.3% faradaic efficiency and the highest half-cell energy efficiency of 30%, surpassing that of most previous reports. In addition, it is proved that the NO3RR assisted by the MoO2/Fe4N/C electrocatalyst can be carried out in 0.50-1.00 M KNO3 electrolyte at a pH value of 6-14 for a long time. These results guide the rational design of highly active, selective, and durable electrocatalysts based on anti-perovskite Fe4N for the NO3RR.
Collapse
Affiliation(s)
- Xiaoyu Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ping Deng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Mengqiu Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Zhenbo Peng
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China
| | - Yuhu Zhou
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Gan Jia
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Wei Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Peng Gao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Wei Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
47
|
Wang Q, Kaushik S, Xiao X, Xu Q. Sustainable zinc-air battery chemistry: advances, challenges and prospects. Chem Soc Rev 2023; 52:6139-6190. [PMID: 37565571 DOI: 10.1039/d2cs00684g] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Sustainable zinc-air batteries (ZABs) are considered promising energy storage devices owing to their inherent safety, high energy density, wide operating temperature window, environmental friendliness, etc., showing great prospect for future large-scale applications. Thus, tremendous efforts have been devoted to addressing the critical challenges associated with sustainable ZABs, aiming to significantly improve their energy efficiency and prolong their operation lifespan. The growing interest in sustainable ZABs requires in-depth research on oxygen electrocatalysts, electrolytes, and Zn anodes, which have not been systematically reviewed to date. In this review, the fundamentals of ZABs, oxygen electrocatalysts for air cathodes, physicochemical properties of ZAB electrolytes, and issues and strategies for the stabilization of Zn anodes are systematically summarized from the perspective of fundamental characteristics and design principles. Meanwhile, significant advances in the in situ/operando characterization of ZABs are highlighted to provide insights into the reaction mechanism and dynamic evolution of the electrolyte|electrode interface. Finally, several critical thoughts and perspectives are provided regarding the challenges and opportunities for sustainable ZABs. Therefore, this review provides a thorough understanding of the advanced sustainable ZAB chemistry, hoping that this timely and comprehensive review can shed light on the upcoming research horizons of this prosperous area.
Collapse
Affiliation(s)
- Qichen Wang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Shubham Kaushik
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| |
Collapse
|
48
|
Kumar K, Dubau L, Jaouen F, Maillard F. Review on the Degradation Mechanisms of Metal-N-C Catalysts for the Oxygen Reduction Reaction in Acid Electrolyte: Current Understanding and Mitigation Approaches. Chem Rev 2023; 123:9265-9326. [PMID: 37432676 DOI: 10.1021/acs.chemrev.2c00685] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
One bottleneck hampering the widespread use of fuel cell vehicles, in particular of proton exchange membrane fuel cells (PEMFCs), is the high cost of the cathode where the oxygen reduction reaction (ORR) occurs, due to the current need of precious metals to catalyze this reaction. Electrochemists tackle this issue in the short/medium term by developing catalysts with improved utilization or efficiency of platinum, and in the longer term, by developing catalysts based on Earth-abundant elements. Considerable progress has been achieved in the initial performance of Metal-nitrogen-carbon (Metal-N-C) catalysts for the ORR, especially with Fe-N-C materials. However, until now, this high performance cannot be maintained for a sufficiently long time in an operating PEMFC. The identification and mitigation of the degradation mechanisms of Metal-N-C electrocatalysts in the acidic environment of PEMFCs has therefore become an important research topic. Here, we review recent advances in the understanding of the degradation mechanisms of Metal-N-C electrocatalysts, including the recently identified importance of combined oxygen and electrochemical potential. Results obtained in a liquid electrolyte and a PEMFC device are discussed, as well as insights gained from in situ and operando techniques. We also review the mitigation approaches that the scientific community has hitherto investigated to overcome the durability issues of Metal-N-C electrocatalysts.
Collapse
Affiliation(s)
- Kavita Kumar
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| | - Laetitia Dubau
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| | - Frédéric Jaouen
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34293 Montpellier, France
| | - Frédéric Maillard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| |
Collapse
|
49
|
Fang C, Zhou J, Zhang L, Wan W, Ding Y, Sun X. Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction. Nat Commun 2023; 14:4449. [PMID: 37488102 PMCID: PMC10366111 DOI: 10.1038/s41467-023-40177-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
Dual-atom catalysts, particularly those with heteronuclear active sites, have the potential to outperform the well-established single-atom catalysts for oxygen evolution reaction, but the underlying mechanistic understanding is still lacking. Herein, a large-scale density functional theory is employed to explore the feasibility of *O-*O coupling mechanism, which can circumvent the scaling relationship with improving the catalytic performance of N-doped graphene supported Fe-, Co-, Ni-, and Cu-containing heteronuclear dual-atom catalysts, namely, M'M@NC. Based on the constructed activity maps, a rationally designed descriptor can be obtained to predict homonuclear catalysts. Seven heteronuclear and four homonuclear dual-atom catalysts possess high activities that outperform the minimum theoretical overpotential. The chemical and structural origin in favor of *O-*O coupling mechanism thus leading to enhanced reaction activity have been revealed. This work not only provides additional insights into the fundamental understanding of reaction mechanisms, but also offers a guideline for the accelerated discovery of efficient catalysts.
Collapse
Affiliation(s)
- Cong Fang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Shandong Energy Institute, 266101, Qingdao, China
| | - Jian Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Shandong Energy Institute, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lili Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Shandong Energy Institute, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenchao Wan
- Max-Plank Institute for Chemical Energy Conversion, Mülheim an der Ruhr, 45470, Germany
| | - Yuxiao Ding
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.
- Shandong Energy Institute, 266101, Qingdao, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
50
|
Bai J, Tang Y, Lin C, Jiang X, Zhang C, Qin H, Zhou Q, Xiang M, Lian Y, Deng Y. Iron clusters regulate local charge distribution in Fe-N 4 sites to boost oxygen electroreduction. J Colloid Interface Sci 2023; 648:440-447. [PMID: 37302227 DOI: 10.1016/j.jcis.2023.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
The atomically-dispersed and nitrogen-coordinated iron (FeNC) on a carbon catalyst is a potential non-noble metal catalyst that can replace precious metal electrocatalysts. However, its activity is often unsatisfactory owing to the symmetric charge distribution around the iron matrix. In this study, atomically- dispersed Fe-N4 and Fe nanoclusters loaded with N-doped porous carbon (FeNCs/FeSAs-NC-Z8@34) were rationally fabricated by introducing homologous metal clusters and increasing the N content of the support. FeNCs/FeSAs-NC-Z8@34 exhibited a half-wave potential of 0.918 V, which exceeded that of the commercial benchmark Pt/C catalyst. Theoretical calculations verified that introducing Fe nanoclusters can break the symmetric electronic structure of Fe-N4, thus inducing charge redistribution. Furthermore, it can optimize a part of Fe 3d occupancy orbitals and accelerate OO fracture in OOH* (rate-determining step), thus significantly improving oxygen reduction reaction activity. This work provides a reasonably advanced pathway to modulate the electronic structure of the single-atom center and optimize the catalytic activity of single-atom catalysts.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yiming Tang
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Cheng Lin
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Xiankai Jiang
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Chunyong Zhang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Hengfei Qin
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Quanfa Zhou
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Mei Xiang
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Yuebin Lian
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Yaoyao Deng
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| |
Collapse
|