1
|
Kalibek MR, Ospanova AD, Suleimenova B, Soltan R, Orazbek T, Makhmet AM, Rafikova KS, Nuraje N. Solid-state hydrogen storage materials. DISCOVER NANO 2024; 19:195. [PMID: 39592515 PMCID: PMC11599665 DOI: 10.1186/s11671-024-04137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
The increasing global emphasis on sustainable energy alternatives, driven by concerns about climate change, has resulted in a deeper examination of hydrogen as a viable and ecologically safe energy carrier. The review paper analyzes the recent advancements achieved in materials used for storing hydrogen in solid-state, focusing particularly on the improvements made in both physical and chemical storage techniques. Metal-organic frameworks and covalent-organic frameworks are characterized by their porous structures and large surface areas, making them appropriate for physical adsorption. Additionally, the conversation centers on metal hydrides and complex hydrides because of their ability to form chemical bonds (absorption) with hydrogen, leading to substantial storage capacities. The combination of materials that adsorb and absorb hydrogen could enhance the overall efficiency. Moreover, the review discusses recent research, analyzes key factors that influence performance, and discusses the difficulties and strategies for enhancing material efficiency and cost-effectiveness. The provided observations emphasize the critical significance of improved materials in facilitating the transition towards a hydrogen-based economy. Furthermore, it is crucial to highlight the necessity for additional study and development in this vital field.
Collapse
Affiliation(s)
- M R Kalibek
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Science, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan
| | - A D Ospanova
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Science, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan
| | - B Suleimenova
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Science, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan
| | - R Soltan
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - T Orazbek
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - A M Makhmet
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Kh S Rafikova
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - N Nuraje
- Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan.
- Department of Chemical and Materials Engineering, School of Engineering and Digital Science, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan.
| |
Collapse
|
2
|
Chen Y, Jiang D. Photocatalysis with Covalent Organic Frameworks. Acc Chem Res 2024; 57:3182-3193. [PMID: 39370855 DOI: 10.1021/acs.accounts.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
ConspectusUtilizing light to enable chemical conversions presents a green and sustainable approach to produce fuels and chemicals, and photocatalysis is one of the key chemical technologies that needs to be well developed in this century. Despite continuous progress in the advancement of various photocatalysts based on small inorganic and organic compounds, polymers, and networks, designing and constructing photocatalysts that combine activity, selectivity, and reusability remains a challenging goal. For catalytic activity, the difficulty originates from the complexity of photochemical reactions, where the light-harvesting system, multielectron and multihole-involving processes, and pinpoint mass delivery simultaneously need to be established in the system. For selectivity, the difficulty stems from the elaborate design of catalytic sites and space, especially their orbital energy levels, spatial arrangement, and environment; developing a molecular strategy that enables an overall design and control of these factors of different aspects is necessary yet arduous. For reusability, the difficulty arises from the stability and recyclability of the photocatalysts upon continuous operation under photoredox reaction conditions. How to recover photocatalysts in an energy-saving way to enable their cyclic use while retaining activity and selectivity is at the core of this problem. These bottleneck issues reflect that molecular design of a photocatalyst is not a simple summation of the above requirements, but a systematic scheme that can organically interlock various aspects is needed.To enable such an elaborate design and precise control, a basic requirement of the scaffold for constructing a promising photocatalyst is that its primary and high-order structures should be molecularly predesignable and synthetically controllable. Such a molecular regime has successfully evolved in natural photosynthesis, where light-harvesting chlorophyll antennae and photocatalytic centers are spatially well-organized and energetically well-defined to build ways for exciton migration, photoinduced electron transfer and charge separation, electron and hole flows, and oxidation of water and reduction of carbon dioxide, thereby converting water into oxygen to release ATP and NADPH via the light reaction and carbon dioxide into glucose with ATP and NADPH through the dark reaction. Similarly, a predesignable polymeric scaffold would be promising for integrating these complex photochemical processes to construct photocatalysts.Covalent organic frameworks (COFs) are a class of extended yet polymeric materials that enable the organization of organic units or metallo-organic moieties into well-defined architectures. In principle, COFs are molecularly designable with topology diagrams and synthetically controllable through polymerization reactions, offering an irreplaceable platform for designing and synthesizing photocatalysts. This feature enticed researchers to develop various photocatalysts based on COFs and drove the rapid progress in this field over the past decade. In this Account, we summarize the recent advances in the molecular design and synthetic control of COF photocatalysts, by highlighting the key achievements in developing ways to enable light harvesting, trigger photoinduced electron transfer and charge separation, allow charge carrier transport and mass delivery, control energy level, catalytic space, and environmental engineering, and develop stability and recyclability with an aim to reveal a full picture of this field. By scrutinizing typical photocatalytic reactions, we show the key problems to be addressed for COFs and predict future directions.
Collapse
Affiliation(s)
- Yongzhi Chen
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
3
|
Pu ZF, Wen QL, Wu BC, Li CH, Li RS, Ling J, Cao Q. Synthesis of shape-controlled covalent organic frameworks for light scattering detection of iron and chromium ions. Talanta 2024; 279:126682. [PMID: 39116734 DOI: 10.1016/j.talanta.2024.126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Fabricating covalent organic frameworks with different morphologies based on the same structural motifs is both interesting and challenging. Here, a TTA-TFP-COF was synthesized by both solvothermal and room temperature methods, with 2,4,6-Tris(4-aminophenyl)-1,3,5-triazine (TTA) and 1,3,5-tris(4-formylphenyl)-benzene (TFP) as raw material. Using different synthesis conditions and adding aniline and benzaldehyde as regulators in the synthesis process, we found that these processes could slow down the reaction speed, increase the exchange and metathesis reactions of dynamic reversible reactions, and improve the reversibility of the reaction system. Thus, controllable synthesis of TTA-TFP-COF with different morphologies, including micro-particles, hollow tubes with controllable diameters, and micro-flowers was achieved. Our further study found that metal ions, Fe3+ and Cr3+ ions, could coordinate with N and O in TTA-TFP-COF and partially destroy the structure of TTA-TFP-COF. The particle size of the TTA-TFP-COF became smaller, thus resulting in the decrease of the light scattering intensity of the COF. An excellent linear relationship exists between the light scattering changes (ΔI) and metal ions concentration (c) from 2.0 to 350.0 μM for Fe3+ and 40.0-800.0 μM for Cr3+, respectively. Thus, rapid and selective analytical methods for detecting metal ions were developed by TTA-TFP-COF here.
Collapse
Affiliation(s)
- Zheng-Fen Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Qiu-Lin Wen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China; School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, China
| | - Bi-Chao Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Chun-Hua Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Jian Ling
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
| | - Qiue Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
4
|
Lin H, Zhang H, Li Y, Yuan F, Zheng X, He L, Li L, Zhang Y, Xiang S, Chen B, Zhang Z. A 3D Robust and Microporous B←N Framework with 8-connected Sandwich Nodes for Efficient Separation of Hexane Isomers. Angew Chem Int Ed Engl 2024:e202415968. [PMID: 39462762 DOI: 10.1002/anie.202415968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Recently B←N organic frameworks (BNFs) have gained substantial attention owing to their unique dative bond energy, which imparts them with specialized functionalities across a broad spectrum of applications. Despite previous reports on BNFs with permanent porosity, research endeavors towards three-dimensional (3D) BNFs with similar properties are scarce, with no report of robust 3D BNFs featuring permanent porosity to date. Herein, electrostatic complementary strategy is proposed to construct the first example of 3D robust and microporous BNF, BNF-100, featuring a reo topology with 8-connected sandwich nodes assembled via dative B←N bonds. The activated form BNF-100 a exhibits excellent chemical stability and permanent porosity with Langmuir surface area of 645.9 m2 g-1 and pore volume of 0.23 cm3 g-1. BNF-100 a can efficiently separate hexane isomers through sieving mechanisms, as confirmed by vapor adsorption experiments and dynamic breakthrough tests, surpassing the performance of most MOF materials. Finally, we achieved the purification of different branched hexane isomers using a single breakthrough column in a combined breakthrough and purging experiment, which is the first reported instance in the literature on hexane isomer separation.
Collapse
Affiliation(s)
- Hongyu Lin
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Furong Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Xiaoqing Zheng
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lei He
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lu Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yongfan Zhang
- College of Chemistry, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
5
|
Yu H, Heine T. Prediction of metal-free Stoner and Mott-Hubbard magnetism in triangulene-based two-dimensional polymers. SCIENCE ADVANCES 2024; 10:eadq7954. [PMID: 39356753 DOI: 10.1126/sciadv.adq7954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Ferromagnetism and antiferromagnetism require robust long-range magnetic ordering, which typically involves strongly interacting spins localized at transition metal atoms. However, in metal-free systems, the spin orbitals are largely delocalized, and weak coupling between the spins in the lattice hampers long-range ordering. Metal-free magnetism is of fundamental interest to physical sciences, unlocking unprecedented dimensions for strongly correlated materials and biocompatible magnets. Here, we present a strategy to achieve strong coupling between spin centers of planar radical monomers in π-conjugated two-dimensional (2D) polymers and rationally control the orderings. If the π-states in these triangulene-based 2D polymers are half-occupied, then we predict that they are antiferromagnetic Mott-Hubbard insulators. Incorporating a boron or nitrogen heteroatom per monomer results in Stoner ferromagnetism and half-metallicity, with the Fermi level located at spin-polarized Dirac points. An unprecedented antiferromagnetic half-semiconductor is observed in a binary boron-nitrogen-centered 2D polymer. Our findings pioneer Stoner and Mott-Hubbard magnetism emerging in the electronic π-system of crystalline-conjugated 2D polymers.
Collapse
Affiliation(s)
- Hongde Yu
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Centrum for Advanced Systems Understanding, CASUS, Untermarkt 20, 02826 Görlitz, Germany
- Department of Chemistry, Yonsei University and IBS Center for Nanomedicine, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
6
|
Zojer E. Electrostatically Designing Materials and Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406178. [PMID: 39194368 DOI: 10.1002/adma.202406178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Indexed: 08/29/2024]
Abstract
Collective electrostatic effects arise from the superposition of electrostatic potentials of periodically arranged (di)polar entities and are known to crucially impact the electronic structures of hybrid interfaces. Here, it is discussed, how they can be used outside the beaten paths of materials design for realizing systems with advanced and sometimes unprecedented properties. The versatility of the approach is demonstrated by applying electrostatic design not only to metal-organic interfaces and adsorbed (complex) monolayers, but also to inter-layer interfaces in van der Waals heterostructures, to polar metal-organic frameworks (MOFs), and to the cylindrical pores of covalent organic frameworks (COFs). The presented design ideas are straightforward to simulate and especially for metal-organic interfaces also their experimental implementation has been amply demonstrated. For van der Waals heterostructures, the needed building blocks are available, while the required assembly approaches are just being developed. Conversely, for MOFs the necessary growth techniques exist, but more work on advanced linker molecules is required. Finally, COF structures exist that contain pores decorated with polar groups, but the electrostatic impact of these groups has been largely ignored so far. All this suggest that the dawn of the age of electrostatic design is currently experienced with potential breakthroughs lying ahead.
Collapse
Affiliation(s)
- Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Petersgasse 16, Graz, A-8010, Austria
| |
Collapse
|
7
|
Mu X, Xie S, Ye X, Tao S, Li J, Jiang D. Ketazine-Linked Crystalline Porous Covalent Organic Frameworks. J Am Chem Soc 2024; 146:25118-25124. [PMID: 39213509 DOI: 10.1021/jacs.4c08231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Covalent organic frameworks (COFs) are a class of crystalline porous materials with well-defined π arrays and ordered channels, which can be predesigned with a topology diagram and prepared via a polycondensation reaction. Over the past decade, various types of π building units with different functional groups have been developed. Among them, aldehyde is one of the most widely used monomers that form COFs with azine, hydrazine, imine, squaranine, and C═C linkages. In contrast, its closest analogue, i.e., ketone, despite its broad structural diversity, has not yet been investigated for the design and synthesis of COFs. Herein we report the first examples of ketazine-linked COFs by developing ketones as monomers to enable polycondensation with hydrazine under solvothermal conditions. We observed that a careful screening of reaction conditions including solvent, catalyst, concentration, reaction temperature, and reaction time leads to the finding of optimal polymerization systems to produce highly crystalline and porous ketazine-linked COFs. Surprisingly, the ketazine linkage enables π conjugation between knot and linker sites and renders the resultant materials able to emit a strong blue fluorescence, highlighting the π electronic features of this new family of COFs. Our findings of ketones as monomers and ketazine as linkage bring unprecedented structures, functions, and applications to the field of COFs.
Collapse
Affiliation(s)
- Xinyu Mu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shuailei Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xingyao Ye
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shanshan Tao
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Juan Li
- Institute of Crystalline Materials, Shanxi University, Taiyuan 03006, China
| | - Donglin Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
8
|
Lu CJ, Shi WJ, Gong YN, Zhang JH, Wang YC, Mei JH, Ge ZM, Lu TB, Zhong DC. Modulating the Microenvironments of Robust Metal Hydrogen-Bonded Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202405451. [PMID: 39031893 DOI: 10.1002/anie.202405451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are outstanding candidates for photocatalytic hydrogen evolution. However, most of reported HOFs suffer from poor stability and photocatalytic activity in the absence of Pt cocatalyst. Herein, a series of metal HOFs (Co2-HOF-X, X=COOMe, Br, tBu and OMe) have been rationally constructed based on dinuclear cobalt complexes, which exhibit exceptional stability in the presence of strong acid (12 M HCl) and strong base (5 M NaOH) for at least 10 days. More impressively, by varying the -X groups of the dinuclear cobalt complexes, the microenvironment of Co2-HOF-X can be modulated, giving rise to obviously different photocatalytic H2 production rates, following the -X group sequence of -COOMe>-Br>-tBu>-OMe. The optimized Co2-HOF-COOMe shows H2 generation rate up to 12.8 mmol g-1 h-1 in the absence of any additional noble-metal photosensitizers and cocatalysts, which is superior to most reported Pt-assisted photocatalytic systems. Experiments and theoretical calculations reveal that the -X groups grafted on Co2-HOF-X possess different electron-withdrawing ability, thus regulating the electronic structures of Co catalytic centres and proton activation barrier for H2 production, and leading to the distinctly different photocatalytic activity.
Collapse
Affiliation(s)
- Chong-Jiu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Wen-Jie Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yun-Nan Gong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Ji-Hong Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yu-Chen Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jian-Hua Mei
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhao-Ming Ge
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
9
|
Berlanga I, Rosenkranz A. Covalent organic frameworks in tribology - A perspective. Adv Colloid Interface Sci 2024; 331:103228. [PMID: 38901060 DOI: 10.1016/j.cis.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) are an emerging class of crystalline porous materials formed through covalent bonds between organic building blocks. COFs uniquely combine a large surface area, an excellent stability, numerous abundant active sites, and tunable functionalities, thus making them highly attractive for numerous applications. Especially, their abundant active sites and weak interlayer interaction make these materials promising candidates for tribological research. Recently, notable attention has been paid to COFs as lubricant additives due to their excellent tribological performance. Our review aims at critically summarizing the state-of-art developments of 2D COFs in tribology. We discuss their structural and functional design principles, as well as synthetic strategies with a special focus on tribology. The generation of COF thin films is also assessed in detail, which can alleviate their most challenging drawbacks for this application. Subsequently, we analyze the existing state-of-the-art regarding the usage of COFs as lubricant additives, self-lubrication composite coatings, and solid lubricants at the nanoscale. Finally, critical challenges and future trends of 2D COFs in tribology are outlined to initiate and boost new research activities in this exciting field.
Collapse
Affiliation(s)
- Isadora Berlanga
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Santiago de Chile, Chile.
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Santiago de Chile, Chile; ANID - Millennium Science Initiative Program, Millennium Nuclei of Advanced MXenes for Sustainable Applications (AMXSA), Santiago, Chile.
| |
Collapse
|
10
|
Prieto T, Ponte C, Guntermann R, Medina DD, Salonen LM. Synthetic Strategies to Extended Aromatic Covalent Organic Frameworks. Chemistry 2024:e202401344. [PMID: 38771916 DOI: 10.1002/chem.202401344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
π-Conjugated materials are highly attractive owing to their unique optical and electronic properties. Covalent organic frameworks (COFs) offer a great opportunity for precise arrangement of building units in a π-conjugated crystalline matrix and tuning of the properties through choice of functionalities or post-synthetic modification. With this review, we aim at summarizing both the most representative as well as emerging strategies for the synthesis of π-conjugated COFs. We give examples of direct synthesis using large, π-extended building blocks. COFs featuring fully conjugated linkages such as vinylene, pyrazine, and azole are discussed. Then, post-synthetic modification methods that result in the extension of the COF π-system are reviewed. Throughout, mechanistic insights are presented when available. In the context of their utilization as film devices, we conduct a concise survey of the prominent COF layer deposition techniques reported and their aptness for the deposition of fused aromatic systems.
Collapse
Affiliation(s)
- Tania Prieto
- CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310, Vigo, Spain
| | - Clara Ponte
- Nanochemistry Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330, Braga, Portugal
- CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Roman Guntermann
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig Maximilians University (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Dana D Medina
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig Maximilians University (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Laura M Salonen
- CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310, Vigo, Spain
- Nanochemistry Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330, Braga, Portugal
| |
Collapse
|
11
|
Guo Z, Zhang Z, Sun J. Topological Analysis and Structural Determination of 3D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312889. [PMID: 38290005 DOI: 10.1002/adma.202312889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Indexed: 02/01/2024]
Abstract
3D covalent organic frameworks (3D COFs) constitute a new type of crystalline materials that consist of a range of porous structures with numerous applications in the fields of adsorption, separation, and catalysis. However, because of the complexity of the three-periodic net structure, it is desirable to develop a thorough structural comprehension, along with a means to precisely determine the actual structure. Indeed, such advancements would considerably contribute to the rational design and application of 3D COFs. In this review, the reported topologies of 3D COFs are introduced and categorized according to the configurations of their building blocks, and a comprehensive overview of diffraction-based structural determination methods is provided. The current challenges and future prospects for these materials will also be discussed.
Collapse
Affiliation(s)
- Zi'ang Guo
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Zeyue Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
12
|
Ren Y, Xu Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem Soc Rev 2024; 53:1823-1869. [PMID: 38192222 DOI: 10.1039/d3cs00782k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Two-dimensional polymers (2DPs) are a class of 2D crystalline polymer materials with definite structures, which have outstanding physical-chemical and electronic properties. They cleverly link organic building units through strong covalent bonds and can construct functional 2DPs through reasonable design and selection of different monomer units to meet various application requirements. As promising energy materials, 2DPs have developed rapidly in recent years. This review first introduces the basic overview of 2DPs, such as their historical development, inherent 2D characteristics and diversified topological advantages, followed by the summary of the typical 2DP synthesis methods recently (including "top-down" and "bottom-up" methods). The latest research progress in assembly and processing of 2DPs and the energy-related applications in energy storage and conversion are also discussed. Finally, we summarize and prospect the current research status, existing challenges, and future research directions of 2DPs.
Collapse
Affiliation(s)
- Yumei Ren
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
13
|
Xing G, Peng D, Ben T. Crystalline porous organic salts. Chem Soc Rev 2024; 53:1495-1513. [PMID: 38165686 DOI: 10.1039/d3cs00855j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Crystalline porous organic salts (CPOSs), formed by the self-assembly of organic acids and organic bases through ionic bonding, possess definite structures and permanent porosity and have rapidly emerged as an important class of porous organic materials in recent years. By rationally designing and controlling tectons, acidity/basicity (pKa), and topology, stable CPOSs with permanent porosity can be efficiently constructed. The characteristics of ionic bonds, charge-separated highly polar nano-confined channels, and permanent porosity endow CPOSs with unique physicochemical properties, offering extensive research opportunities for exploring their functionalities and application scenarios. In this review, we systematically summarize the latest progress in CPOS research, describe the synthetic strategies for synthesizing CPOSs, delineate their structural characteristics, and highlight the differences between CPOSs and hydrogen-bonded organic frameworks (HOFs). Furthermore, we provide an overview of the potential applications of CPOSs in areas such as negative linear compression (NLC), proton conduction, rapid transport of CO2, selective and rapid transport of K+ ions, atmospheric water harvesting (AWH), gas sorption, molecular rotors, fluorescence modulation, room-temperature phosphorescence (RTP) and catalysis. Finally, the challenges and future perspectives of CPOSs are presented.
Collapse
Affiliation(s)
- Guolong Xing
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China.
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310000, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Daoling Peng
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310000, P. R. China
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Teng Ben
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China.
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310000, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| |
Collapse
|
14
|
Pu ZF, She WZ, Li RS, Wen QL, Wu BC, Li CH, Ling J, Cao Q. Morphology regulation of isomeric covalent organic frameworks for high selective light scattering detection of lead. J Colloid Interface Sci 2024; 655:953-962. [PMID: 37951734 DOI: 10.1016/j.jcis.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Isomerism is an essential and ubiquitous phenomenon in organic chemistry, yet it is rarely observed in covalent organic frameworks (COFs). Herein, we synthesized two framework-isomeric COFs (BATD-Dma-COF-K and BATD-Dma-COF-R) and found for the first time that the light scattering signal of the COFs can be used for the analytical detection of lead ion. By using solvothermal and room temperature solvent synthesis methods, controlling different synthesis conditions, and introducing regulators to increase the energy difference between different products, the product with the lowest energy could be synthesized under specific conditions. This method could control the morphology of the synthesized COF and realize the precise synthesis of framework-isomeric COF by changing the experimental conditions. The structures of the two framework-isomeric COFs were characterized and confirmed by a series of analytical methods. Based on the principle that lead ions coordinate with N and O on the surface of two skeletal isomers BATD-Dma-COFs to enhance the light scattering signal of the COFs, a light scattering probe was developed by BATD-Dma-COF for the detection of metal lead ion in water samples. Lead ion concentration in the range from 2.0 to 250.0 μM had a good linear relationship with the light scattering intensity increase of the COFs with detection limit as low as 0.8397 μM by BATD-Dma-COF-K and 0.9207 μM by BATD-Dma-COF-R.
Collapse
Affiliation(s)
- Zheng-Fen Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Wen-Zhi She
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Qiu-Lin Wen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Bi-Chao Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Chun-Hua Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Jian Ling
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China.
| | - Qiue Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China.
| |
Collapse
|
15
|
Zhao L, Tang X, Ni X, Zhang J, Ineza Urujeni G, Wang D, He H, Dramou P. Efficient and Selective Adsorption of cis-Diols via the Suzuki-Miyaura Cross-Coupling-Modified Phenylboronic-Acid Functionalized Covalent Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1884-1891. [PMID: 38190755 DOI: 10.1021/acs.langmuir.3c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this work, a functional group (boronic acid) was modified onto a covalent organic framework (COF) using the Suzuki-Miyaura cross-coupling reaction to obtain a phenylboronic acid-functionalized covalent organic framework (BrCOF-PBA). This product was used as a selective adsorbent and largely as an efficient solid-phase extractant of flavonoids containing cis-diol structures like quercetin (QUE). Five or six-membered cyclic esters generated from the COF were characterized, and some physicochemical studies were performed, resulting in excellent chemical stability and crystallinity, high specific surface area, stable pore structure, and regular pore size. Unique selectivity of BrCOF-PBA was observed toward QUE and exhibited a huge adsorption capacity (213.96 mg g-1) in a relatively short time (90 min). In contrast, the adsorption properties of morin (MOR) and kaempferol (KAE) with a certain degree of chemical similarity to QUE were only 27.62 and 21.76 mg g-1, respectively. BrCOF-PBA also demonstrated good reusability and robustness, making it an attractive composite material for further analytical applicability.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xue Tang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xu Ni
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | | | - Dan Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hua He
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Pierre Dramou
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
16
|
Liu Y, Liu X, Su A, Gong C, Chen S, Xia L, Zhang C, Tao X, Li Y, Li Y, Sun T, Bu M, Shao W, Zhao J, Li X, Peng Y, Guo P, Han Y, Zhu Y. Revolutionizing the structural design and determination of covalent-organic frameworks: principles, methods, and techniques. Chem Soc Rev 2024; 53:502-544. [PMID: 38099340 DOI: 10.1039/d3cs00287j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covalent organic frameworks (COFs) represent an important class of crystalline porous materials with designable structures and functions. The interconnected organic monomers, featuring pre-designed symmetries and connectivities, dictate the structures of COFs, endowing them with high thermal and chemical stability, large surface area, and tunable micropores. Furthermore, by utilizing pre-functionalization or post-synthetic functionalization strategies, COFs can acquire multifunctionalities, leading to their versatile applications in gas separation/storage, catalysis, and optoelectronic devices. Our review provides a comprehensive account of the latest advancements in the principles, methods, and techniques for structural design and determination of COFs. These cutting-edge approaches enable the rational design and precise elucidation of COF structures, addressing fundamental physicochemical challenges associated with host-guest interactions, topological transformations, network interpenetration, and defect-mediated catalysis.
Collapse
Affiliation(s)
- Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaona Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - An Su
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengtao Gong
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Shenwei Chen
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Liwei Xia
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengwei Zhang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaohuan Tao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yue Li
- Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311121, China
| | - Yonghe Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Tulai Sun
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Mengru Bu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Wei Shao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Jia Zhao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaonian Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yongwu Peng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Peng Guo
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu Han
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
17
|
Tu J, Song W, Chen B, Li Y, Chen L. 2D Covalent Organic Frameworks with Kagome Lattice: Synthesis and Applications. Chemistry 2023; 29:e202302380. [PMID: 37668073 DOI: 10.1002/chem.202302380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
2D covalent organic frameworks with Kagome (kgm) topology are a promising class of crystalline frameworks that possess both triangular and hexagonal pores. These dual-pore structures enable kgm COFs to exhibit unique advantages in selective separation, mass transfer, and targeted drug release. However, the synthesis of 2D kgm COFs has been hindered by the reliance on empirical methods. This review systematically summarizes the conventional macrocycle-to-framework strategy, typical [4+2] co-polymerization synthetic strategy, and bifunctional molecules self-condensation approach for constructing 2D kgm COFs. Factors influencing the formation of kgm lattice are surveyed, such as monomer type, solvent polarity, substrate concentration, etc., and highlight the representative examples on targeted synthesis. Additionally, applications of 2D kgm COFs and relationships between structure and performances are summarized. Finally, key fundamental perspectives are proposed to accelerate the further development of this intriguing material.
Collapse
Affiliation(s)
- Jing Tu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| | - Wen Song
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for, High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and, Collaborative Innovation Center of, Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Bo Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| | - Yusen Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for, High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and, Collaborative Innovation Center of, Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
18
|
Zhang Z, Xu Y. Hydrothermal Synthesis of Highly Crystalline Zwitterionic Vinylene-Linked Covalent Organic Frameworks with Exceptional Photocatalytic Properties. J Am Chem Soc 2023; 145:25222-25232. [PMID: 37856866 DOI: 10.1021/jacs.3c08220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Ionic covalent organic frameworks (COFs) featuring both crystallinity and ionic characteristics have attracted tremendous attention in recent years. Compared with single anion- or cation-containing ionic COFs, zwitterionic COFs possess unique functionalities beyond single ionic COFs such as tunable charge density and superhydrophilic and highly ion-conductive characteristics, endowing them with huge potential in various applications. However, it remains a considerable challenge to directly synthesize robust, highly crystalline zwitterionic COFs from the original building blocks. Herein, we report a green hydrothermal synthesis strategy to prepare highly crystalline zwitterionic vinylene-linked COFs (ZVCOFs) from the predesigned zwitterionic building block by utilizing 4-dimethylaminopyridine (DMAP) as the high-efficiency catalyst for the first time. Detailed theoretical calculations and experiments revealed that both the high catalytic activity of DMAP and the unique role of water contributed to the formation of highly crystalline ZVCOFs. It was found that the participation of water could not only remarkably reduce the activation energy barrier and thus enhance the reaction reversibility but also enable the hydration of zwitterionic sites and facilitate ordered layered arrangement, which are favorable for the ZVCOF crystallization. Benefiting from the highly π-conjugated structure and hydrophilic characteristic, the obtained ZVCOFs achieved an ultrahigh sacrificial photocatalytic hydrogen evolution rate of 2052 μmol h-1 under visible light irradiation with an apparent quantum yield up to 47.1% at 420 nm, superior to nearly all COF-based photocatalysts ever reported. Moreover, the ZVCOFs could be deposited on a support as a photocatalytic film device, which demonstrated a remarkable photocatalytic performance of 402.1 mmol h-1 m-2 for hydrogen evolution.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
19
|
Wang F, Chen Y, Gong T, Gong J. From 3D to 2D: Directional Morphological Evolution of a Three-Dimensional Covalent Organic Framework. ACS Macro Lett 2023; 12:1576-1582. [PMID: 37934863 DOI: 10.1021/acsmacrolett.3c00424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The morphology of materials has a huge impact on their properties and functions; however, the precise control and direct evolution toward specific morphologies remains challenging. Herein, we outline a novel strategy for the morphology modulation of covalent organic frameworks based on COF-300 with the diamond structure, which usually exhibits a three-dimensional shuttle morphology. A monofunctional structural regulator has been designed to break the continuity of the three-dimensional structure. As the proportion of the monofunctional structural regulator increases, the morphology of COF-300 shows a directional evolution from a shuttle morphology to a two-dimensional nanosheet, while still retaining the consistency of the crystal structure. Our study reports the first two-dimensional nanosheet based on a three-dimensional structured COF to date and will inspire future research into the traced morphological evolution in materials by predesign.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yifu Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Yiheyuan Road 5, Beijing 100871, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Tingting Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
20
|
Zhang J, Zhou G, Un HI, Zheng F, Jastrzembski K, Wang M, Guo Q, Mücke D, Qi H, Lu Y, Wang Z, Liang Y, Löffler M, Kaiser U, Frauenheim T, Mateo-Alonso A, Huang Z, Sirringhaus H, Feng X, Dong R. Wavy Two-Dimensional Conjugated Metal-Organic Framework with Metallic Charge Transport. J Am Chem Soc 2023; 145:23630-23638. [PMID: 37852932 DOI: 10.1021/jacs.3c07682] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a new class of crystalline layered conducting materials that hold significant promise for applications in electronics and spintronics. However, current 2D c-MOFs are mainly made from organic planar ligands, whereas layered 2D c-MOFs constructed by curved or twisted ligands featuring novel orbital structures and electronic states remain less developed. Herein, we report a Cu-catecholate wavy 2D c-MOF (Cu3(HFcHBC)2) based on a fluorinated core-twisted contorted hexahydroxy-hexa-cata-hexabenzocoronene (HFcHBC) ligand. We show that the resulting film is composed of rod-like single crystals with lengths up to ∼4 μm. The crystal structure is resolved by high-resolution transmission electron microscopy (HRTEM) and continuous rotation electron diffraction (cRED), indicating a wavy honeycomb lattice with AA-eclipsed stacking. Cu3(HFcHBC)2 is predicted to be metallic based on theoretical calculation, while the crystalline film sample with numerous grain boundaries apparently exhibits semiconducting behavior at the macroscopic scale, characterized by obvious thermally activated conductivity. Temperature-dependent electrical conductivity measurements on the isolated single-crystal devices indeed demonstrate the metallic nature of Cu3(HFcHBC)2, with a very weak thermally activated transport behavior and a room-temperature conductivity of 5.2 S cm-1. Furthermore, the 2D c-MOFs can be utilized as potential electrode materials for energy storage, which display decent capacity (163.3 F g-1) and excellent cyclability in an aqueous 5 M LiCl electrolyte. Our work demonstrates that wavy 2D c-MOF using contorted ligands are capable of intrinsic metallic transport, marking the emergence of new conductive MOFs for electronic and energy applications.
Collapse
Affiliation(s)
- Jianjun Zhang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Guojun Zhou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Hio-Ieng Un
- Optoelectronics Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Fulu Zheng
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
| | - Kamil Jastrzembski
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Quanquan Guo
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle (Saale) 06120, Germany
| | - David Mücke
- Central Facility for Electron Microscopy, Electron Microscopy of Materials Science Central, Facility for Electron Microscopy, Ulm University, Ulm 89081, Germany
| | - Haoyuan Qi
- Central Facility for Electron Microscopy, Electron Microscopy of Materials Science Central, Facility for Electron Microscopy, Ulm University, Ulm 89081, Germany
| | - Yang Lu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle (Saale) 06120, Germany
| | - Zhiyong Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle (Saale) 06120, Germany
| | - Yan Liang
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
| | - Markus Löffler
- Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (Cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Ute Kaiser
- Central Facility for Electron Microscopy, Electron Microscopy of Materials Science Central, Facility for Electron Microscopy, Ulm University, Ulm 89081, Germany
| | - Thomas Frauenheim
- Constructor University, Campus Ring 1, Bremen 28759, Germany
- Beijing Computational Science Research Center, Beijing 100193, China
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518109, China
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, Donostia-San, Sebastian 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Henning Sirringhaus
- Optoelectronics Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle (Saale) 06120, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
21
|
Hu X, Tao W, Shi W, Zhong D, Lu TB. A cobalt metalized polymer modulates the electronic structure of Pt nanoparticles to accelerate water dissociation kinetics. Chem Commun (Camb) 2023. [PMID: 37326482 DOI: 10.1039/d3cc02082g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, we construct a composite material of Pt-NPs@NPCNs-Co by anchoring Pt nanoparticles (Pt NPs) and Co-salen covalent organic polymer (Co-COP) onto N, P co-doped carbon nanotubes (NPCNs), thereby offering an integrated approach to enhance H2O dissociation. The bimetallic catalyst Pt-NPs@NPCNs-Co demonstrates exceptional HER performance, and the overpotential at 40 mA cm-2 is lower than that of 20% Pt/C. When the overpotential is 50 mV, the mass activity of Pt-NPs@NPCNs-Co is 2.8 times that of the commercial Pt/C catalyst. Experimental results reveal that the synergistic interplay between Pt NPs and Co contributes to the excellent electrocatalytic performance observed. Density function theory calculations found that Co effectively modulates the electronic structure of Pt NPs and lowers the activation energy of the Volmer step, thereby accelerating the water dissociation kinetics of Pt NPs. This research contributes to the advancement of knowledge regarding the development of more efficient bimetallic co-catalytic electrocatalysts in alkaline media.
Collapse
Affiliation(s)
- Xiaomei Hu
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Weixue Tao
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Wenjie Shi
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, Guangdong, China
| | - Dichang Zhong
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Tong-Bu Lu
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
22
|
Haldar S, Schneemann A, Kaskel S. Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. J Am Chem Soc 2023. [PMID: 37307595 DOI: 10.1021/jacs.3c01131] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Redox-active covalent organic frameworks (COFs) have recently emerged as advanced electrodes in polymer batteries. COFs provide ideal molecular precision for understanding redox mechanisms and increasing the theoretical charge-storage capacities. Furthermore, the functional groups on the pore surface of COFs provide highly ordered and easily accessible interaction sites, which can be modeled to establish a synergy between ex situ/in situ mechanism studies and computational methods, permitting the creation of predesigned structure-property relationships. This perspective integrates and categorizes the redox functionalities of COFs, providing a deeper understanding of the mechanistic investigation of guest ion interactions in batteries. Additionally, it highlights the tunable electronic and structural properties that influence the activation of redox reactions in this promising organic electrode material.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
- Fraunhofer Institute for Material and Beam Technology (IWS), Dresden 01277, Germany
| |
Collapse
|
23
|
Chen B, Xie H, Shen L, Xu Y, Zhang M, Zhou M, Li B, Li R, Lin H. Covalent Organic Frameworks: The Rising-Star Platforms for the Design of CO 2 Separation Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207313. [PMID: 36709424 DOI: 10.1002/smll.202207313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/08/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based carbon dioxide (CO2 ) capture and separation technologies have aroused great interest in industry and academia due to their great potential to combat current global warming, reduce energy consumption in chemical separation of raw materials, and achieve carbon neutrality. The emerging covalent organic frameworks (COFs) composed of organic linkers via reversible covalent bonds are a class of porous crystalline polymers with regular and extended structures. The inherent structure and customizable organic linkers give COFs high and permanent porosity, short transport channel, tunable functionality, and excellent stability, thereby enabling them rising-star alternatives for developing advanced CO2 separation membranes. Therefore, the promising research areas ranging from development of COF membranes to their separation applications have emerged. Herein, this review first introduces the main advantages of COFs as the state-of-the-art membranes in CO2 separation, including tunable pore size, modifiable surfaces property, adjustable surface charge, excellent stability. Then, the preparation approaches of COF-based membranes are systematically summarized, including in situ growth, layer-by-layer stacking, blending, and interface engineering. Subsequently, the key advances of COF-based membranes in separating various CO2 mixed gases, such as CO2 /CH4 , CO2 /H2 , CO2 /N2 , and CO2 /He, are comprehensively discussed. Finally, the current issues and further research expectations in this field are proposed.
Collapse
Affiliation(s)
- Binghong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongli Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
24
|
Haldar S, Bhauriyal P, Ramuglia AR, Khan AH, De Kock S, Hazra A, Bon V, Pastoetter DL, Kirchhoff S, Shupletsov L, De A, Isaacs MA, Feng X, Walter M, Brunner E, Weidinger IM, Heine T, Schneemann A, Kaskel S. Sulfide-Bridged Covalent Quinoxaline Frameworks for Lithium-Organosulfide Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210151. [PMID: 36719245 DOI: 10.1002/adma.202210151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The chelating ability of quinoxaline cores and the redox activity of organosulfide bridges in layered covalent organic frameworks (COFs) offer dual active sites for reversible lithium (Li)-storage. The designed COFs combining these properties feature disulfide and polysulfide-bridged networks showcasing an intriguing Li-storage mechanism, which can be considered as a lithium-organosulfide (Li-OrS) battery. The experimental-computational elucidation of three quinoxaline COFs containing systematically enhanced sulfur atoms in sulfide bridging demonstrates fast kinetics during Li interactions with the quinoxaline core. Meanwhile, bilateral covalent bonding of sulfide bridges to the quinoxaline core enables a redox-mediated reversible cleavage of the sulfursulfur bond and the formation of covalently anchored lithium-sulfide chains or clusters during Li-interactions, accompanied by a marked reduction of Li-polysulfide (Li-PS) dissolution into the electrolyte, a frequent drawback of lithium-sulfur (Li-S) batteries. The electrochemical behavior of model compounds mimicking the sulfide linkages of the COFs and operando Raman studies on the framework structure unravels the reversibility of the profound Li-ion-organosulfide interactions. Thus, integrating redox-active organic-framework materials with covalently anchored sulfides enables a stable Li-OrS battery mechanism which shows benefits over a typical Li-S battery.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Preeti Bhauriyal
- Chair of Theoretical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Anthony R Ramuglia
- Chair of Electrochemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Arafat H Khan
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sunel De Kock
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Arpan Hazra
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Dominik L Pastoetter
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sebastian Kirchhoff
- Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, 01277, Dresden, Germany
| | - Leonid Shupletsov
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Mark A Isaacs
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Laboratories, Didcot, OX11 0FA, UK
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Inez M Weidinger
- Chair of Electrochemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Thomas Heine
- Chair of Theoretical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
- Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, 01277, Dresden, Germany
| |
Collapse
|
25
|
Li Y, Su X, Zheng W, Zheng JJ, Guo L, Bonn M, Gao X, Wang HI, Chen L. Targeted Synthesis of Isomeric Naphthalene-Based 2D Kagome Covalent Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202216795. [PMID: 36627239 DOI: 10.1002/anie.202216795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
Targeted synthesis of kagome (kgm) topologic 2D covalent organic frameworks remains challenging, presumably due to the severe dependence on building units and synthetic conditions. Herein, two isomeric "two-in-one" monomers with different lengths of substituted arms based on naphthalene core (p-Naph and m-Naph) are elaborately designed and utilized for the defined synthesis of isomeric kgm Naph-COFs. The two isomeric frameworks exhibit splendid crystallinity and showcase the same chemical composition and topologic structure with, however, different pore channels. Interestingly, C60 is able to uniformly be encapsulated into the triangle channels of m-Naph-COF via in situ incorporation method, while not the isomeric p-Naph-COF, likely due to the different pore structures of the two isomeric COFs. The resulting stable C60 @m-Naph-COF composite exhibits much higher photoconductivity than the m-Naph-COF owing to charge transfer between the conjugated skeletons and C60 guests.
Collapse
Affiliation(s)
- Yusen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Xi Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Jia-Jia Zheng
- laboratory of theoretical and computational nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Linshuo Guo
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Xingfa Gao
- laboratory of theoretical and computational nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hai I Wang
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
26
|
Chang JN, Li Q, Shi JW, Zhang M, Zhang L, Li S, Chen Y, Li SL, Lan YQ. Oxidation-Reduction Molecular Junction Covalent Organic Frameworks for Full Reaction Photosynthesis of H 2 O 2. Angew Chem Int Ed Engl 2023; 62:e202218868. [PMID: 36581593 DOI: 10.1002/anie.202218868] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The full reaction photosynthesis of H2 O2 that can combine water-oxidation and oxygen-reduction without sacrificial agents is highly demanded to maximize the light-utilization and overcome the complex reaction-process of anthraquinone-oxidation. Here, a kind of oxidation-reduction molecular junction covalent-organic-framework (TTF-BT-COF) has been synthesized through the covalent-coupling of tetrathiafulvalene (photo-oxidation site) and benzothiazole (photo-reduction site), which presents visible-light-adsorption region, effective electron-hole separation-efficiency and photo-redox sites that enables full reaction generation of H2 O2 . Specifically, a record-high yield (TTF-BT-COF, ≈276 000 μM h-1 g-1 ) for H2 O2 photosynthesis without sacrificial agents has been achieved among porous crystalline photocatalysts. This is the first work that can design oxidation-reduction molecular junction COFs for full reaction photosynthesis of H2 O2 , which might extend the scope of COFs in H2 O2 production.
Collapse
Affiliation(s)
- Jia-Nan Chang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Qi Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jing-Wen Shi
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Mi Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Lei Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shan Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
27
|
Guan Q, Zhou LL, Dong YB. Construction of Covalent Organic Frameworks via Multicomponent Reactions. J Am Chem Soc 2023; 145:1475-1496. [PMID: 36646043 DOI: 10.1021/jacs.2c11071] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longer confined to organic synthesis and have found applications in materials chemistry. In particular, MCRs can be used to prepare covalent organic frameworks (COFs), which are crystalline porous materials assembled from organic monomers and exhibit a broad range of properties and applications. This synthetic approach retains the advantages of small-molecule MCRs, not only strengthening the skeletal robustness of COFs, but also providing additional driving forces for their crystallization, and has been used to prepare a series of robust COFs with diverse applications. The present perspective article provides the general background for MCRs, discusses the types of MCRs employed for COF synthesis to date, and addresses the related critical challenges and future perspectives to inspire the MCR-based design of new robust COFs and promote further progress in this emerging field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
28
|
Ni X, Huang H, Brédas JL. Organic Higher-Order Topological Insulators: Heterotriangulene-Based Covalent Organic Frameworks. J Am Chem Soc 2022; 144:22778-22786. [PMID: 36469524 DOI: 10.1021/jacs.2c11229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to design and control the chemical characteristics of covalent organic frameworks (COFs) offers a new avenue for the development of functional materials, especially with respect to topological properties. Based on density functional theory calculations, by varying the core units through the choice of bridging groups [O, C═O, CH2, or C(CH3)2] and the linker units [acetylene, diacetylene, or benzene], we have designed heterotriangulene-based COFs that are predicted to be two-dimensional higher-order topological insulators (TIs). The higher-order TI characteristics of these COFs are identified via their topological invariants and the presence of in-gap topological corner modes and gapped edge states. The frontier molecular orbital energies of the building moieties play an important role in determining the size of the higher-order TI gap, which we find to be highly dependent on linker units. We also examined the deposition of the COFs on a boron nitride substrate to assess the feasibility of experimental observation of a higher-order TI phase in the organic layer. This work thus provides new insights into heterotriangulene-based COFs and guidance for the exploration of purely organic topological materials.
Collapse
Affiliation(s)
- Xiaojuan Ni
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona85721-0088, United States
| | - Huaqing Huang
- School of Physics, Peking University, Beijing100871, China.,Collaborative Innovation Center of Quantum Matter, Beijing100871, China
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona85721-0088, United States
| |
Collapse
|
29
|
Das S, Sekine T, Mabuchi H, Irie T, Sakai J, Zhao Y, Fang Q, Negishi Y. Three-Dimensional Covalent Organic Framework with scu-c Topology for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48045-48051. [PMID: 36252155 PMCID: PMC9614725 DOI: 10.1021/acsami.2c15152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Three-dimensional (3D) covalent organic frameworks (COFs) exemplify a new generation of crystalline extended solids with intriguing structures and unprecedented porosity. Notwithstanding substantial scope, the reticular synthesis of 3D COFs from pre-designed building units leading to new network topologies yet remains a demanding task owing to the shortage of 3D building units and inadequate reversibility of the linkages between the building units. In this work, by linking a tetragonal prism (8-connected) node with a square planar (4-connected) node, we report the first 3D COF with scu-c topology. The new COF, namely, TUS-84, features a two-fold interpenetrated structure with well-defined porosity and a Brunauer-Emmett-Teller surface area of 679 m2 g-1. In drug delivery applications, TUS-84 shows efficient drug loading and sustained release profile.
Collapse
Affiliation(s)
- Saikat Das
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Taishu Sekine
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Haruna Mabuchi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tsukasa Irie
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Jin Sakai
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yu Zhao
- Zhejiang
Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing
Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Qianrong Fang
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
30
|
A critical review of covalent organic frameworks-based sorbents in extraction methods. Anal Chim Acta 2022; 1224:340207. [DOI: 10.1016/j.aca.2022.340207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
|
31
|
Zhang Z, Xiao A, Yin C, Wang X, Shi X, Wang Y. Heterostructured two-dimensional covalent organic framework membranes for enhanced ion separation. Chem Commun (Camb) 2022; 58:7136-7139. [PMID: 35666182 DOI: 10.1039/d2cc01749k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterostructured covalent organic framework (COF) membrane is synthesized via in situ linker exchange. Narrowed pores can be formed at the interface between two types of COFs by adjusting the linker exchange duration. The resultant COF membrane demonstrates a high rejection rate toward Na2SO4 of up to 97%.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Ankang Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Congcong Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Xingyuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| |
Collapse
|
32
|
Two-dimensional conjugated N-rich covalent organic frameworks for superior sodium storage. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Lu Z, Yang C, He L, Hong J, Huang C, Wu T, Wang X, Wu Z, Liu X, Miao Z, Zeng B, Xu Y, Yuan C, Dai L. Asymmetric Hydrophosphonylation of Imines to Construct Highly Stable Covalent Organic Frameworks with Efficient Intrinsic Proton Conductivity. J Am Chem Soc 2022; 144:9624-9633. [PMID: 35605024 DOI: 10.1021/jacs.2c00429] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Imine-linked covalent organic frameworks (COFs) have received widespread attention because of their structure features such as high crystallinity and tunable pores. However, the intrinsic reversibility of the imine bond leads to the poor stability of imine-linked COFs under strong acid conditions. Also, their thermal stability is significantly lower than that of many other COFs. Herein, we report for the first time that the reversible imine bonds in the skeleton of COFs can be locked through the asymmetric hydrophosphonylation reaction of phosphite. The functionalized COFs not only retain the crystallinity and porous structure but also exhibit evidently improved chemical and thermal stabilities. In addition, the phosphorous acid groups generated by acidic hydrolysis attached to the skeleton endow the COFs with good intrinsic proton conductivity. Due to the diversity of phosphite derivatives and imine-linked COFs, this work may provide an avenue for extending the COF structures and functions through the asymmetric hydrophosphonylation reaction.
Collapse
Affiliation(s)
- Zhenwu Lu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Chunying Yang
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Liu He
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Jing Hong
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Chuhong Huang
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Tong Wu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiu Wang
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhangfeng Wu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiaohui Liu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhongxi Miao
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Birong Zeng
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yiting Xu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Conghui Yuan
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Lizong Dai
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|
34
|
Yang Y, Schäfer C, Börjesson K. Detachable all-carbon-linked 3D covalent organic framework films for semiconductor/COF heterojunctions by continuous flow synthesis. Chem 2022. [DOI: 10.1016/j.chempr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Vatsadze SZ, Maximov AL, Bukhtiyarov VI. Supramolecular Effects and Systems in Catalysis. A Review. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Zhang S, Liu D, Wang G. Covalent Organic Frameworks for Chemical and Biological Sensing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082586. [PMID: 35458784 PMCID: PMC9029239 DOI: 10.3390/molecules27082586] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of crystalline porous organic polymers with polygonal porosity and highly ordered structures. The most prominent feature of the COFs is their excellent crystallinity and highly ordered modifiable one-dimensional pores. Since the first report of them in 2005, COFs with various structures were successfully synthesized and their applications in a wide range of fields including gas storage, pollution removal, catalysis, and optoelectronics explored. In the meantime, COFs also exhibited good performance in chemical and biological sensing, because their highly ordered modifiable pores allowed the selective adsorption of the analytes, and the interaction between the analytes and the COFs’ skeletons may lead to a detectable change in the optical or electrical properties of the COFs. In this review, we firstly demonstrate the basic principles of COFs-based chemical and biological sensing, then briefly summarize the applications of COFs in sensing some substances of practical value, including some gases, ions, organic compounds, and biomolecules. Finally, we discuss the trends and the challenges of COFs-based chemical and biological sensing.
Collapse
Affiliation(s)
- Shiji Zhang
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China;
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China;
- Correspondence: (D.L.); (G.W.)
| | - Guangtong Wang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150080, China
- Correspondence: (D.L.); (G.W.)
| |
Collapse
|
37
|
Li R, Xing G, Li H, Li S, Chen L. A three-dimensional polycyclic aromatic hydrocarbon based covalent organic framework doped with iodine for electrical conduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
|
39
|
Xing G, Zheng W, Gao L, Zhang T, Wu X, Fu S, Song X, Zhao Z, Osella S, Martínez-Abadía M, Wang HI, Cai J, Mateo-Alonso A, Chen L. Nonplanar Rhombus and Kagome 2D Covalent Organic Frameworks from Distorted Aromatics for Electrical Conduction. J Am Chem Soc 2022; 144:5042-5050. [PMID: 35189061 DOI: 10.1021/jacs.1c13534] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two-dimensional (2D) covalent organic frameworks (COFs) are an emerging class of promising 2D materials with high crystallinity and tunable structures. However, the low electrical conductivity impedes their applications in electronics and optoelectronics. Integrating large π-conjugated building blocks into 2D lattices to enhance efficient π-stacking and chemical doping is an effective way to improve the conductivity of 2D COFs. Herein, two nonplanar 2D COFs with kagome (DHP-COF) and rhombus (c-HBC-COF) lattices have been designed and synthesized from distorted aromatics with different π-conjugated structures (flexible and rigid structure, respectively). DHP-COF shows a highly distorted 2D lattice that hampers stacking, consequently limiting its charge carrier transport properties. Conversely, c-HBC-COF, with distorted although concave-convex self-complementary nodes, shows a less distorted 2D lattice that does not interfere with interlayer π-stacking. Employing time- and frequency-resolved terahertz spectroscopy, we unveil a high charge-carrier mobility up to 44 cm2 V-1 s-1, among the highest reported for 2D COFs.
Collapse
Affiliation(s)
- Guolong Xing
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Wenhao Zheng
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Lei Gao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Ting Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Xiaowei Wu
- Fujian Institute of Research on the Structure of Matter, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shuai Fu
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiaoyu Song
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Ziqiang Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Marta Martínez-Abadía
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Hai I Wang
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
40
|
Yang J, Kang F, Wang X, Zhang Q. Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. MATERIALS HORIZONS 2022; 9:121-146. [PMID: 34842260 DOI: 10.1039/d1mh00809a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Highly crystalline covalent organic frameworks (COFs) or conjugated polymers (CPs) are very important and highly desirable because these materials would display better performance in diverse devices and provide more structure-property related information. However, how to achieve highly crystalline or single-crystal COFs and CPs is very challenging. Recently, many research studies have demonstrated the possibility of enhancing the crystallinity of COFs and CPs. Thus, it is timely to offer an overview of the important progress in improving the crystallinity of COFs and CPs from the viewpoint of design strategies. These strategies include polycondensation reaction optimization, improving the planarity, fluorine substitution, side chain engineering, and so on. Furthermore, the challenges and perspectives are also discussed to promote the realization of highly crystalline or single-crystal COFs and CPs.
Collapse
Affiliation(s)
- Jie Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, SAR 999077, P. R. China
| |
Collapse
|
41
|
Chakraborty J, Nath I, Verpoort F. A physicochemical introspection of porous organic polymer photocatalysts for wastewater treatment. Chem Soc Rev 2022; 51:1124-1138. [DOI: 10.1039/d1cs00916h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A detailed physicochemical explanation for experimental observations is provided for POPs as powerful photocatalysts for organic transformations and wastewater decontamination.
Collapse
Affiliation(s)
- Jeet Chakraborty
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Centre for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Ipsita Nath
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Centre for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| |
Collapse
|
42
|
Zhang Z, Yin C, Shi X, Yang G, Wang Y. Masking covalent organic frameworks (COFs) with loose polyamide networks for precise nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Sun Q, Niu H, Shi Y, Yang Y, Cai Y. Tuning the lattice parameters and porosity of 2D imine covalent organic frameworks by chemically integrating 4-aminobenzaldehyde as a bifunctional linker. Chem Commun (Camb) 2022; 58:12875-12878. [DOI: 10.1039/d2cc05211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
4-Aminobenzaldehyde can be used as a linker to construct a series of new COFs and can also tune the lattice parameters, crystallinity, and porosity of these COFs.
Collapse
Affiliation(s)
- Qing Sun
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yali Shi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongliang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Cai
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Wang LL, Zhang WD, Li T, Yan X, Gao J, Chen YX, Shi YX, Gu ZG. 2D Salphen-based heteropore covalent organic frameworks for highly efficient electrocatalytic water oxidation. Chem Commun (Camb) 2021; 57:13162-13165. [PMID: 34812801 DOI: 10.1039/d1cc04369b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of heteroporous covalent organic frameworks (COFs) is still a challenge. Herein, a series of 2D COFs with hexagonal and quadrilateral pores were constructed via in situ salphen or metal salphen formation. Metallized salphen-based COFs can be used as electrocatalysts towards water oxidation with an overpotential of 266 mV at 10 mA cm-2.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Tao Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Jie Gao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Yu-Xuan Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Ya-Xiang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China. .,International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
45
|
Xi SC, Guo HN, Yang CY, Wang R, Wang DY, Dong B. A bisimidazolium-based cationic covalent triazine framework for CO2 capture and dye adsorption. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Jin E, Geng K, Fu S, Yang S, Kanlayakan N, Addicoat MA, Kungwan N, Geurs J, Xu H, Bonn M, Wang HI, Smet J, Kowalczyk T, Jiang D. Exceptional electron conduction in two-dimensional covalent organic frameworks. Chem 2021. [DOI: 10.1016/j.chempr.2021.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Liu X, Qin X, Li X, Ding Z, Li X, Hu W, Yang J. Designing Two-Dimensional Versatile Room-Temperature Ferromagnets via Assembling Large-Scale Magnetic Quantum Dots. NANO LETTERS 2021; 21:9816-9823. [PMID: 34761940 DOI: 10.1021/acs.nanolett.1c03814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) ferromagnets possess astonishing potential in new-concept spintronics. However, most of the reported intrinsic 2D ferromagnets show a low Curie temperature far below room temperature. Here, we propose a series of 2D magnetic covalent and metal organic frameworks (COFs/MOFs) by assembling triangular zigzag graphene quantum dots (TZGDs) with various linkages, involving small-sized TZGDs, nonmetal atoms, magnetic metal atoms, and molecules. Upon first-principles calculations, we demonstrate 2D magnetic semiconductors with an enhanced Curie temperature of up to 472 K can be realized through the strong p(d)-p direct exchange interaction between TZGDs and linkages. Particularly, the TZGD size hardly affects the Curie temperature, whereas linkages can modulate the Curie temperature significantly. The TZGD size and linkages can regulate the electronic and magnetic properties of TZGD-based 2D ferromagnets. Our results confirm the possibility of designing 2D ferromagnets based on TZGDs and motivate the research of 2D ferromagnets on magnetic quantum dots and molecular magnets.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinming Qin
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangyang Li
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zijing Ding
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingxing Li
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Hu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
48
|
Zhong C, Ma W, He Y, Ouyang D, Li G, Yang Y, Zheng Q, Huang H, Cai Z, Lin Z. Controllable Synthesis of Hollow Microtubular Covalent Organic Frameworks as an Enzyme-Immobilized Platform for Enhancing Catalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52417-52424. [PMID: 34723457 DOI: 10.1021/acsami.1c16386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite great achievement that has been made in the synthesis of covalent organic frameworks (COFs), precise construction of COFs with well-defined nano/microstructures poses a rigorous challenge. Herein, we introduce a simple template-free strategy for controllable synthesis of hollow microtubular COFs. The obtained COFs show a spontaneous morphology transformation from a microfiber to a hollow microtubular structure when the concentrations of catalytic acid are regulated elaborately. Furthermore, the as-prepared COFs exhibit high crystallinity, well-defined hollow tubular morphology, and high surface areas (∼2600 m2/g). Taking the advantages of the unique morphological structure, the hollow microtubular COFs can serve as an ideal host material for enzymes. The resultant biocomposites show high catalytic performance and can be successfully applied to rapid and high-efficiency proteolysis of proteins. This work blazes a trail for controllable synthesis of the hollow microtubular COFs through a template-free process and expands the application of COFs as a promising platform for enzyme immobilization.
Collapse
Affiliation(s)
- Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wende Ma
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yanting He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Dan Ouyang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Guorong Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yixin Yang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiong Zheng
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Huan Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR 999077, P. R. China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
49
|
Xia C, Kirlikovali KO, Nguyen THC, Nguyen XC, Tran QB, Duong MK, Nguyen Dinh MT, Nguyen DLT, Singh P, Raizada P, Nguyen VH, Kim SY, Singh L, Nguyen CC, Shokouhimehr M, Le QV. The emerging covalent organic frameworks (COFs) for solar-driven fuels production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214117] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Azizi N, Heidarzadeh F, Farzaneh F. Facile fabrication of porous magnetic covalent organic frameworks as robust platform for multicomponent reaction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Najmedin Azizi
- Department of Green Chemistry Chemistry and Chemical Engineering Research Center of Iran Tehran Iran
| | - Fatemeh Heidarzadeh
- Department of Green Chemistry Chemistry and Chemical Engineering Research Center of Iran Tehran Iran
| | - Fezeh Farzaneh
- Department of Green Chemistry Chemistry and Chemical Engineering Research Center of Iran Tehran Iran
| |
Collapse
|