1
|
Gao H, Wang G, Wang T, Ye Z, Yan Q, Chong Q, Chan CY, Wang B, Zhang K. Achieving High-Performance Organic Long Persistent Luminescence Materials via Manipulation of Radical Cation Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416853. [PMID: 39985245 DOI: 10.1002/advs.202416853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/30/2025] [Indexed: 02/24/2025]
Abstract
Organic long persistent luminescence (OLPL) materials, with their hour-long afterglow, hold great promise across numerous applications, yet their performance lags behind that of inorganic counterparts. A deeper understanding of the underlying photophysical mechanisms, particularly the effective control of radical intermediates, is essential for developing high-performance OLPL materials; while systematic studies on the intrinsic stability of radical intermediates and their impact on OLPL performance remain scarce. Here biphenyl groups is introduced into a luminophore-matrix-donor three-component OLPL system. By varying substituents at the ortho-position of the biphenyl groups, the stability of radical cations is systematically modulated, and their influence on OLPL properties is investigated. Combined experimental results and theoretical calculations reveal that increased flexibility of the biphenyl bond and adjustable conformations lead to higher stability of radical cations, thereby significantly enhancing OLPL performance. Based on this understanding, a luminophore with two biphenyl groups is designed to successfully achieve remarkable afterglow brightness close to inorganic Sr2Al14O25/Eu2+, Dy3+ materials. Furthermore, these OLPL materials exhibit time-encoded afterglow properties and promising applications in advanced anti-counterfeiting, as well as background-independent bioimaging functions. This work not only provides a novel strategy for constructing high-performance OLPL materials but also lays a foundation for their widespread application in various fields.
Collapse
Affiliation(s)
- Hongxin Gao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, 21 Gehuzhong Road, Changzhou, 213100, P. R. China
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Guangming Wang
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Tengyue Wang
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zi Ye
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Qianqian Yan
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Qianhui Chong
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, 21 Gehuzhong Road, Changzhou, 213100, P. R. China
| | - Chin-Yiu Chan
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Biaobing Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, 21 Gehuzhong Road, Changzhou, 213100, P. R. China
| | - Kaka Zhang
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
2
|
Bar-David J, Daaoub A, Chen S, Sibug-Torres SM, Rocchetti S, Kang G, Davidson RJ, Salthouse RJ, Guo C, Mueller NS, Sangtarash S, Bryce MR, Sadeghi H, Baumberg JJ. Electronically Perturbed Vibrational Excitations of the Luminescing Stable Blatter Radical. ACS NANO 2025. [PMID: 39981951 DOI: 10.1021/acsnano.4c09661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Stable radicals are spin-active species with a plethora of proposed applications in fields from energy storage and molecular electronics to quantum communications. However, their optical properties and vibrational modes are so far not well understood. Furthermore, it is not yet clear how these are affected by the radical oxidation state, which is key to understanding their electronic transport. Here, we identify the properties of 1,2,4-benzotriazin-4-yl, a stable doubly thiolated variant of the Blatter radical, using surface-enhanced Raman scattering (SERS). Embedding molecular monolayers in plasmonic nanocavities gives access to their vibrational modes, photoluminescence, and optical response during redox processes. We reveal the influence of the adjacent metallic surfaces and identify fluctuating SERS signals that suggest a coupling between the unpaired radical electron and a spatially overlapping vibrational mode. This can potentially be exploited for information-storage devices and chemically designed molecular qubits.
Collapse
Affiliation(s)
- Jonathan Bar-David
- NanoPhotonics Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Abdalghani Daaoub
- Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Shangzhi Chen
- NanoPhotonics Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Sarah May Sibug-Torres
- NanoPhotonics Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Sara Rocchetti
- NanoPhotonics Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Gyeongwon Kang
- NanoPhotonics Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K
| | | | | | - Chenyang Guo
- NanoPhotonics Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Niclas Sven Mueller
- NanoPhotonics Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Sara Sangtarash
- Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Martin R Bryce
- Dept. of Chemistry, Durham University, Durham DH1 3LE, U.K
| | - Hatef Sadeghi
- Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K
| |
Collapse
|
3
|
Shmakov AS, Shurikov MK, Korchagin DV, Votkina DE, Postnikov PS, Akimov AV, Petunin PV, Tretyakov EV. The Ground State of Multispin Systems Based on Verdazyl and Nitrene Radicals: An EPR and Quantum-Chemical Study. J Phys Chem A 2025; 129:1808-1816. [PMID: 39739569 DOI: 10.1021/acs.jpca.4c06823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
In this study, low-temperature EPR spectroscopy and quantum-chemical techniques were employed to investigate multispin systems─1,5-diphenyl-3-(3-nitrenophenyl)-6-oxoverdazyl and 1,5-diphenyl-3-(4-nitrenophenyl)-6-oxoverdazyl─that contain a nitrene center at either a meta- or para-position, respectively. Ground states and magnetic zero-field splitting (ZFS) parameters of these multispin systems were determined by experimental and computational methods. The results indicated that the high-spin quartet state is a ground state, and the quartet-doublet energy gap is close to 10 kcal/mol for the para-position of the nitrene group, with ZFS parameters D = 0.292 cm-1 and E/D = 0.002 cm-1. In contrast, for the meta-position, the low-spin doublet state is favored with an energy gap of 1 kcal/mol. The observed difference in the ground states could be qualitatively explained by an analysis of the spin density distribution and by delocalization of the unpaired π-electron of the nitrene center. Overall, this study provides valuable insights into the electronic structures and magnetic parameters of such multispin systems.
Collapse
Affiliation(s)
- Alexandr S Shmakov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Academician Semenov Ave. 1, Chernogolovka 142432, Russian Federation
| | - Matvey K Shurikov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russian Federation
| | - Denis V Korchagin
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Academician Semenov Ave. 1, Chernogolovka 142432, Russian Federation
| | - Darya E Votkina
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russian Federation
| | - Aleksander V Akimov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Academician Semenov Ave. 1, Chernogolovka 142432, Russian Federation
| | - Pavel V Petunin
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russian Federation
| | - Evgeny V Tretyakov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, Moscow 119991, Russian Federation
| |
Collapse
|
4
|
Sun Q, Brédas JL, Li H. Reliable Diradical Characterization via Precise Singlet-Triplet Gap Calculations: Application to Thiele, Chichibabin, and Müller Analogous Diradicals. J Chem Theory Comput 2025; 21:1194-1202. [PMID: 39883848 DOI: 10.1021/acs.jctc.4c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Accurately calculating the diradical character (y0) of molecular systems remains a significant challenge due to the scarcity of experimental data and the inherent multireference nature of the electronic structure. In this study, various quantum mechanical approaches, including broken symmetry density functional theory (BS-DFT), spin-flip time-dependent density functional theory (SF-TDDFT), mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT), complete active space self-consistent field (CASSCF), complete active space second-order perturbation theory (CASPT2), and multiconfigurational pair-density functional theory (MCPDFT), are employed to compute the singlet-triplet energy gaps (EST) and y0 values in Thiele, Chichibabin, and Müller analogous diradicals. By systematically comparing the results from these computational methods, we identify optimally tuned long-range corrected functional CAM-B3LYP in the BS-DFT framework as a most efficient method for accurately and affordably predicting both EST and y0 values. Additionally, our results demonstrate that (i) MRSF-TDDFT performs much better than SF-TDDFT; (ii) the MCPDFT method is robust in determining EST with minimal dependence on the choice of active space. These findings provide insight into the electronic structure and diradical character of the investigated molecules and highlight effective computational strategies for future studies in this domain. Thus, this work not only advances our understanding of diradical systems but also offers practical guidelines for their computational investigation.
Collapse
Affiliation(s)
- Qi Sun
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0041, United States
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0041, United States
| | - Hong Li
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0041, United States
| |
Collapse
|
5
|
Jiang W, Wu S, Xu D, Tu L, Xie Y, Pasqués-Gramage P, Boj PG, Díaz-García MA, Li F, Wu J, Li Z. Stable Xanthene Radicals and Their Heavy Chalcogen Analogues Showing Tunable Doublet Emission from Green to Near-infrared. Angew Chem Int Ed Engl 2025; 64:e202418762. [PMID: 39450583 DOI: 10.1002/anie.202418762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 10/26/2024]
Abstract
Organic luminescent radicals, unlike traditional closed-shell fluorescent emitters, exhibit distinct luminescence mechanisms, offering promising potential for optoelectronic devices. To date, stable luminescent radicals have predominantly been confined to polychlorinated triphenylmethyl radicals, underscoring the need for new platforms to expand their emission spectra. In this study, we report the synthesis of stable 9-aryl-substituted xanthene radicals and their heavy chalcogen analogues (1 a-c and 2 a-c), which exhibited excellent chemical stability and emission ranging from green to near-infrared (527-714 nm). Notably, the selenium-substituted radical (1 c) demonstrates a significantly enhanced photoluminescence quantum yield of 41 % when doped into its precursor solid. Additionally, the introduction of methoxyphenyl groups has largely enhanced the stability of the radical, showcasing an excellent photostability with the longest half-life of around 1792 h. The high internal quantum efficiency of up to 81 % was further validated in organic light-emitting diode. This study introduces a novel class of stable carbon-centered radicals with high tunability and functionality for photoelectric applications.
Collapse
Affiliation(s)
- Wanqing Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of chemistry, National University of, Singapore, 3 Science Drive 3, 117543, Singapore
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Shaofei Wu
- Department of chemistry, National University of, Singapore, 3 Science Drive 3, 117543, Singapore
| | - Duo Xu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
| | - Liangjing Tu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Pablo Pasqués-Gramage
- Departamento Física Aplicada and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante, 03080, Spain
| | - Pedro G Boj
- Departamento de Óptica, Farmacología y Anatomía and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante 03080, Spain
| | - María A Díaz-García
- Departamento Física Aplicada and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante, 03080, Spain
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of chemistry, National University of, Singapore, 3 Science Drive 3, 117543, Singapore
| | - Zhen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
6
|
Kulshrestha M, Nandy A, Banerjee S, Tothadi S, Ramachandran CN, Sadhu KK. Hydroxyl Radical-π Interaction in a Single Crystal. JACS AU 2025; 5:61-66. [PMID: 39886575 PMCID: PMC11775668 DOI: 10.1021/jacsau.4c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
Numerous attempts for organic radical stability mostly entail steric hindrance, spin-delocalization, supramolecular interaction with the host, π-π interactions, and hydrogen bonding. To date, there is no report of single crystals containing a hydroxyl radical (•OH). In this work, we have stabilized •OH in the crystal, which has been obtained from the filtrate after separating the precipitate of the chromenopyridine radical (DCP(2)•) from the reaction mixture. DCP(2)• abstracts a hydrogen atom from dissolved water in the ethanolic filtrate to grow the single crystal containing DCPH(2) and •OH in the asymmetric unit. The crystal packing and computational studies suggest that π-•OH and •OH···N hydrogen-bonding interactions are responsible for stabilizing •OH. The presence of •OH has been further confirmed by mass analysis with the 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) adduct. Solid-state electron paramagnetic resonance (EPR), solution state nitroblue tetrazolium (NBT) assay, and spin trapping with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in the presence of super oxide dismutase suggest •OH formation in the single crystal.
Collapse
Affiliation(s)
- Mohit Kulshrestha
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Abhijit Nandy
- Department
of Chemistry, Indian Institute of Science
Education and Research Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Shibdas Banerjee
- Department
of Chemistry, Indian Institute of Science
Education and Research Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Srinu Tothadi
- Analytical
and Environmental Sciences Division and Centralized Instrumentation
Facility, CSIR- Central Salt and Marine
Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Bhavnagar − 364002, India
| | - C. N. Ramachandran
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kalyan K. Sadhu
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
7
|
Li T, Fu S, Ding S, Wang L, Li S, Zhang D, Ke Y, Sun S, Sun L, Zhang X, Hu W. Advancing Room-Temperature Magnetic Semiconductors with Organic Radical Charge Transfer Cocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414719. [PMID: 39865947 DOI: 10.1002/adma.202414719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/12/2025] [Indexed: 01/28/2025]
Abstract
Developing purely organic room-temperature magnetic semiconductors has been a long-sought goal in the material community toward the simultaneous control of spin and charge. Organic cocrystals, known for their structural versatility and multifunctionality, are ideal candidates for these magnetoelectric coupling applications. However, organic room-temperature magnetic semiconductor cocrystals have rarely been reported, and their mechanisms remain poorly understood due to the complexity of cocrystal structures. Here, doping organic cocrystals with radicals offers a promising strategy for boosting their magnetism and conductivity while maintaining their cocrystal structures. The fluoranthene-7,7,8,8-tetracyanoquinodimethane radical (FA-HTCNQ•) is constructed through a simple, rapid, and eco-friendly solution-processing approach. The conductive FA-HTCNQ• exhibits excellent room-temperature ferromagnetism with the coercive fields of 96 Oe and the Curie temperature near 400 K, superior to its structural-identical undoped counterpart. Meanwhile, the room-temperature magnetoelectric coupling is demonstrated in the conductive FA-HTCNQ•. The stronger ferromagnetism and conductivity in organic cocrystals are attributed to the enhanced charge-transfer (CT) interactions induced by radicals, rather than the spin exchange interactions between these radicals alone. The research manifests the origin of ferromagnetism in organic cocrystals and provides a simple strategy to fabricate pure organic room-temperature magnetic semiconductor materials for future integrated magnetoelectric devices.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Siyao Fu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Shuaishuai Ding
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Lingsong Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Shuyu Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Dong Zhang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yunzhe Ke
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Shiyue Sun
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Lingjie Sun
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaotao Zhang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
8
|
Zhou W, Fei Y, Zhang YS, Miao X, Jiang SD, Liu J. Triplet-ground-state nonalternant nanographene with high stability and long spin lifetimes. Nat Commun 2025; 16:1006. [PMID: 39856036 PMCID: PMC11760968 DOI: 10.1038/s41467-024-54276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 11/05/2024] [Indexed: 01/27/2025] Open
Abstract
High-spin carbon-based polyradicals exhibit significant potential for applications in quantum information storage and sensing; however, their practical application is hampered by limited structural diversity and chemical instability. Here, we report a straightforward synthetic and isolation method for synthesizing a nonalternant nanographene (1) with a triplet ground state. Moving beyond the classic m-xylylene scaffold for high-spin organic molecules, seven-five-seven (7-5-7)-membered rings are introduced to create stable high-spin diradicals with half-lives (t1/2) as long as 101 days. Moreover, considering the spin relaxation of compound 1, with a spin-lattice relaxation time (T1) of 53.55 ms and a coherence time (Tm) of 3.41 μs at 10 K, the compound 1 shows great promise for applications in spin-based information retention and quantum computing.
Collapse
Affiliation(s)
- Weixiang Zhou
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Hong Kong, China
| | - Yiyang Fei
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Hong Kong, China
| | - Yu-Shuang Zhang
- Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, China
| | - Shang-Da Jiang
- Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| | - Junzhi Liu
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China.
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China.
| |
Collapse
|
9
|
Zhang Z, Zhang J, Zhi Sun J, Zhang H, Zhang X, Zhong Tang B. Luminescent Radical Polymers. Chemistry 2025; 31:e202403493. [PMID: 39475206 DOI: 10.1002/chem.202403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Indexed: 11/19/2024]
Abstract
Organic radicals are gaining significant interest in luminescent materials due to their unique properties, which present unprecedented opportunities for innovation across various fields, from display technology to biomedical applications. However, addressing challenges related to stability and low fluorescence efficiency is crucial to unlocking their full potential for practical applications. Polymerization has emerged as an effective strategy to enhance intra- and interchain through-space interactions, enabling the creation of stable luminescent radicals with excellent processing and multifunctional properties. This concept emphasizes the strategic use of polymerization in designing and synthesizing stable main-chain and side-chain radical polymers. This approach not only broadens the scope of stable radicals but also improves their luminescence properties as photofunctional materials.
Collapse
Affiliation(s)
- Ziteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Jianyu Zhang
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Xinghong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK Shenzhen), Guangdong, 518172, China
| |
Collapse
|
10
|
Dong P, Li Z, Gu K, Xu L, Wei Y, Wang J, Yue L, Rao B. Engineering Air-Stable Triarylmethyl Radicals with One Pyrrole Ring. Org Lett 2025; 27:686-691. [PMID: 39745709 DOI: 10.1021/acs.orglett.4c04590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Herein, seven air-stable triarylmethyl radicals (3b-3h), each featuring a pyrrole ring, were successfully synthesized. A comprehensive investigation into the linkages at the α-, β-, and N-positions of the pyrrole ring, along with various substituents, revealed that the p-π conjugation between the central radical carbon and the pyrrole ring plays a crucial role in the distribution of spin density and overall stability. Notably, radicals 3c to 3h displayed excellent electrochemical and photostability.
Collapse
Affiliation(s)
- Pengfei Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zenghui Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kaixing Gu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yu Wei
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jing Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ling Yue
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Rao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Zhu Y, Zhu Z, Wang S, Peng Q, Abdurahman A. Stable Luminescent Diradicals: The Emergence and Potential Applications. Angew Chem Int Ed Engl 2025:e202423470. [PMID: 39823144 DOI: 10.1002/anie.202423470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Stable luminescent diradicals, characterized by the presence of two unpaired electrons, exhibit unique photophysical properties that are sensitive to external stimuli such as temperature, magnetic fields, and microwaves. This sensitivity allows the manipulation of their spin states and luminescence, setting them apart from traditional closed-shell luminescent molecules and luminescent monoradicals. As a result, luminescent diradicals are emerging as promising candidates for a variety of applications. This minireview discusses recent advances in the design and synthesis of luminescent diradicals, explores their photophysical properties and potential applications. It also examines the challenges and prospects in the development of these materials, shedding light on their potential to drive technological innovation.
Collapse
Affiliation(s)
- Yujie Zhu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Zihao Zhu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Saixue Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible, Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible, Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Alim Abdurahman
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| |
Collapse
|
12
|
Jacquot de Rouville HP, Gourlaouen C, Bardelang D, Le Breton N, Ward JS, Ruhlmann L, Vincent JM, Jardel D, Rissanen K, Clément JL, Choua S, Heitz V. Viridium: A Stable Radical and Its π-Dimerization. J Am Chem Soc 2025; 147:1823-1830. [PMID: 39812087 DOI: 10.1021/jacs.4c13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The discovery of a stable organic radical formed under mild, clean, and efficient light-mediated conditions is reported. The structure of the stable acridinium-based radical photoproduct was unambiguously established by single-crystal X-ray diffraction, mass spectrometry, and in solution by EPR, UV/vis, and NMR spectroscopies. The photochemical mechanism of its formation has been elucidated by photophysical experiments coupled with EPR experiments and theoretical investigations. This unique aromatic radical is featured by amphoteric redox behavior and π-dimerization properties. Its ability to π-dimerize has been demonstrated in water and in the less studied perfluorohexane, two solvents of opposite polarity. By a simple counterion exchange, direct comparison of π-dimer thermodynamics between both antagonist solvents allowed an elucidation of the solvophobic behavior in perfluorocarbon.
Collapse
Affiliation(s)
| | - Christophe Gourlaouen
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France
| | | | - Nolwenn Le Breton
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, Jyväskylä 40014, Finland
| | - Laurent Ruhlmann
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France
| | - Jean-Marc Vincent
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351 cours de la Libération, Talence 33405, France
| | - Damien Jardel
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351 cours de la Libération, Talence 33405, France
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, Jyväskylä 40014, Finland
| | | | - Sylvie Choua
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France
| | - Valérie Heitz
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France
| |
Collapse
|
13
|
Li Z, Liu X, Bao Q, Wang J, Liu X, Gong H, Han T, Feng C, Lu D, Yue L, Wu C, He G, Su Y, Rao B. The SUMO (Singly Unoccupied Molecular Orbital)-LUMO (Lowest Unoccupied Molecular Orbital) Inversion Radicals. J Am Chem Soc 2025; 147:1452-1457. [PMID: 39737560 DOI: 10.1021/jacs.4c16614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
Herein, SUMO-LUMO inversion (SLI) radicals 2a-2c were designed by the combination of the tris(2,4,6-trichlorophenyl)methyl (TTM) radical and pyridinium derivatives (electron-withdrawing groups) for the first time. The energy of the LUMO lies below that of the SUMO, which deviated from the Aufbau principle as an alternative electronic configuration beyond the well-established SOMO-HOMO inversed system. Thus, for SLI radicals, the injection of one extra electron preferred to occupy the LUMO rather than the SUMO, giving diradicals, one of which 3 had been fully confirmed by single crystal analysis, VT-NMR and VT-EPR experiments, as well as DFT calculations. Furthermore, SLI radicals 2a-2c exhibit photoluminescent properties and good photostability under UV irradiation (t1/2 > 24 days for 2c). This finding would open up new exploration on SLI radicals and their potential applications as photoelectromagnetic material.
Collapse
Affiliation(s)
- Zenghui Li
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
| | - Xiaoyang Liu
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qidi Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jing Wang
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
| | - Xu Liu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Honghong Gong
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
| | - Tian Han
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
| | - Chao Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dongmei Lu
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
| | - Ling Yue
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
| | - Chao Wu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Bin Rao
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
| |
Collapse
|
14
|
Mu Y, Xiong C, Cui M, Sun M, Chen X, Xiao B, Sang H, Wang Z, Liu H, Lan Z, Song Y, Wan X. A recyclable dynamic semiconducting polymer consisting of Pauli-paramagnetic diradicaloids promoted and stabilized by catechol-boron coordination. Chem Sci 2025; 16:1364-1373. [PMID: 39703416 PMCID: PMC11653110 DOI: 10.1039/d4sc06910b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Coordination between 5,5',6,6'-tetrahydroxyindigo (4OH-ID) and boron tribromide unexpectedly affords a novel dynamic covalent polymer, namely P(ID-O-B), consisting of alternating indigo and indigo diradicaloid units. The catechol-boron dynamic bond plays a vital role in promoting the diradicaloid formation and stabilizing the formed diradicaloid segments. The diradicaloid segment in the polymer has a triplet ground state and a thermally populated doublet state, which has been confirmed by the EPR study. Although not conjugated, the polymer still exhibits an electrical conductivity over 10-6 S cm-1. The SQUID study shows that the polymer is Pauli paramagnetic, indicating that the metallic domain exists in this non-conjugated polymer. This diradicaloid-containing polymer is stable toward long-term storage (over 6 months) and thermal treatment over 200 °C, but can be easily depolymerized when treated with methanol.
Collapse
Affiliation(s)
- Youbing Mu
- Key Laboratory of Flexible Optoelectronic Materials and Technology, Ministry of Education, Jianghan University Wuhan 430056 P. R. China
| | - Chenxi Xiong
- Key Laboratory of Flexible Optoelectronic Materials and Technology, Ministry of Education, Jianghan University Wuhan 430056 P. R. China
| | - Minghui Cui
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Mingxu Sun
- Key Laboratory of Flexible Optoelectronic Materials and Technology, Ministry of Education, Jianghan University Wuhan 430056 P. R. China
| | - Xinyu Chen
- Key Laboratory of Flexible Optoelectronic Materials and Technology, Ministry of Education, Jianghan University Wuhan 430056 P. R. China
| | - Biao Xiao
- Key Laboratory of Flexible Optoelectronic Materials and Technology, Ministry of Education, Jianghan University Wuhan 430056 P. R. China
| | - Hongqian Sang
- Key Laboratory of Flexible Optoelectronic Materials and Technology, Ministry of Education, Jianghan University Wuhan 430056 P. R. China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center, School of Physics, Huazhong University of Science and Technology Wuhan 430056 P. R. China
| | - Hangxu Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University Guangzhou 510006 P. R. China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University Guangzhou 510006 P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Xiaobo Wan
- Key Laboratory of Flexible Optoelectronic Materials and Technology, Ministry of Education, Jianghan University Wuhan 430056 P. R. China
| |
Collapse
|
15
|
Wu W. Stable organic radicals - a material platform for developing molecular quantum technologies. Phys Chem Chem Phys 2025; 27:1214-1221. [PMID: 39714131 DOI: 10.1039/d4cp02405b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
An electron spin is a natural candidate for a quantum bit - the quantum information storage unit. Stable organic radicals, consisting of unpaired electron spins, can thus be explored for the development of quantum science and technologies, owing to their excellent chemical tunability and their great promise for scalability. The molecular network formed by the stable organic radicals can be used for the design of spin-based quantum computing circuits. Here the state-of-the-art development of stable organic radicals is reviewed from a variety of perspectives. The categories of stable organic radicals are discussed, emphasizing on the π-conjugated radical networks. The applications of the stable organic radicals to quantum communications, quantum computing and quantum sensing are reviewed. The quantum teleportation based on the donor-acceptor-radical molecular system is reviewed. For controllable quantum gate operations, the spin dynamics in a bi-radical molecule driven by a triplet is discussed. Quantum sensing of lithium ions using stable organic radicals is realized for the development of new energy materials. Quantum timing and quantum imaging are still unexplored by using stable organic radicals. In conclusion, stable organic radicals, especially the π-conjugated radical networks, can make a great new contribution to the development of quantum technologies.
Collapse
Affiliation(s)
- Wei Wu
- UCL Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
16
|
Wang J, Wei H, Guan J, Müllen K, Yin M. Perylene- and Perylene Diimide-based Framework Materials Constructed through Metal Coordination. Chemistry 2025; 31:e202403234. [PMID: 39513320 DOI: 10.1002/chem.202403234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
Metal-organic frameworks (MOFs) are a class of materials composed of coordinative interactions between metal ions and organic linkers, encompassing two-dimensional (2D), and three-dimensional (3D) architectures. Metal-organic cages (MOCs), a special case of these species, are discrete molecular "capsules" with zero-dimensional (0D) structures. Over the last two decades, MOFs and MOCs composed of organic perylene (P) and perylene diimide (PDI) linkers have gained much attention due to their versatile properties, which can be further enhanced after incorporation into frameworks. This minireview highlights recent progress in the construction and application of P/PDI-based coordination framework materials. The text offers an overview of the synthesis of P/PDI organic linkers, proceeds to their integration into coordination frameworks of different dimensionalities - 2D and 3D MOFs, and 0D MOCs, and then explores potential applications. These include sensing, photocatalysis, electrochemical devices and photothermal conversion and focus on the apparent structure-property relationships. Finally, the challenges and future prospects of P/PDI-derived coordination frameworks will be addressed.
Collapse
Affiliation(s)
- Junxiao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 (P. R., China
| | - Haoxuan Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 (P. R., China
| | - Jun Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 (P. R., China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 (P. R., China
| |
Collapse
|
17
|
Kuroda T, Yang P, Nakamura M, Hyakutake R, Fukumoto H, Oshiki T, Nishina Y, Masada K, Sasamori T, Mizuhata Y, Kubo K, Inoue R, Agou T. Control of the electronic and optical properties of aminoxyl radicals via boron complexation. Dalton Trans 2025; 54:951-956. [PMID: 39584742 DOI: 10.1039/d4dt02973a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Stable radicals have attracted increasing attention in recent years because of their unique electronic and optical characteristics. Aminoxyl radicals are one of the most widely studied stable radicals to date, but their applications in opto-functional materials have yet to be explored in detail. Our group previously reported the boron complexes of aminoxyl radicals exhibit near-infrared (NIR) absorption. In this work, an aminoxyl radical without boron-complexation was synthesized to elucidate the effects of boron coordination on the properties of the aminoxyl radicals. The results of electron spin resonance spectroscopy, ultraviolet-visible-NIR absorption measurements, and density functional theory calculations indicated that boron complexation facilitated spin delocalization over the radical π-frameworks. Furthermore, a π-extended aminoxyl radical-boron complex exhibited a significant wavelength-shift to longer wavelengths in the NIR-II absorption region, thereby reflecting its larger π-conjugated radical skeleton.
Collapse
Affiliation(s)
- Takuma Kuroda
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| | - Peiyuan Yang
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Marika Nakamura
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Risa Hyakutake
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Hiroki Fukumoto
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Toshiyuki Oshiki
- Department of Applied Chemistry, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Yuta Nishina
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Koichiro Masada
- Institute of Pure and Applied Chemistry, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takahiro Sasamori
- Institute of Pure and Applied Chemistry, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yosihiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazuya Kubo
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| | - Ryo Inoue
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| | - Tomohiro Agou
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| |
Collapse
|
18
|
Debnath S, Park J, Hugar V, Canjeevaram Balasubramanyam RK, Oh J, Kim W, Patil S. Stabilizing Diketopyrrolopyrrole Radical Cations Through Carbazoles: Substitution Pattern vs Spin Delocalization. J Phys Chem Lett 2025; 16:123-130. [PMID: 39704750 DOI: 10.1021/acs.jpclett.4c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The synthesis of organic radicals continues to garner significant interest due to their fascinating optical, electronic, and magnetic properties. Moreover, the growing demand for chemically stable organic radicals is driven by the rapid expansion of the market for electronic devices utilizing organic semiconductors. In this context, the development of multifaceted approaches for the design of stable organic radicals is of great importance. In this work, we introduce a strategy for generating stable radical cations of diketopyrrolopyrroles (DPP) by modulating the substitution pattern of the electron-donating carbazole substituent. Using electronic, spin resonance, and vibrational spectroscopies, supported by density functional theory, we carefully investigated the electronic structures and chemical stability of the DPP radical cations. Our findings demonstrate that the position of electron-rich heteroatoms and the presence of Clar's aromatic sextets in donor moieties play a pivotal role in enhancing the chemical stability of DPP radical cations.
Collapse
Affiliation(s)
- Sanchari Debnath
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Jungjin Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Vithobha Hugar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | | | - Juwon Oh
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Woojae Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Satish Patil
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
19
|
Ji L, Li J, Meng T, Li Z, Zhu H, Ouyang G, Liu M. Photo-Induced Radical Generation of Supramolecular Gel with Sign-Inverted and White-Light Circularly Polarized Luminescence. SMALL METHODS 2025; 9:e2400824. [PMID: 39491819 DOI: 10.1002/smtd.202400824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/09/2024] [Indexed: 11/05/2024]
Abstract
The realization of persistent luminescence and in particular circularly polarized luminescence (CPL) of organic radicals remains a challenge due to their sensitivity to oxygen at ambient conditions and elusive excited state chirality control. Here, it is reported that UV-irradiation on a supramolecular gel from a chiral triarylamine derivative, TPA-Ala, led to the formation of luminescent radicals with bright CPL. TPA-Ala can form an organogel in chloroform with blue emission and supramolecular chirality as demonstrated by both CD and CPL signals. Upon UV 365 nm irradiation, an emission color change from blue to cyan is observed due to the formation of photo-induced radicals. Interestingly, it is found that the supramolecular gel radicals showed stable luminescence with a lifetime ≈ 10 days in dark environments and inverted CPL, which represents a scarce example with persistent CPL from doublet-state due to oxygen isolation ability of the gel network. Furthermore, doping a guest dye, Rhodamine B (RhB), into the supramolecular gel (RhB/TPA-Ala = 30% in molar ratio) successfully obtained a transient white-light CPL through the superposition of photo-induced radical and guest dye emissions. This work provides a useful methodology for the fabrication of radical-based CPL materials via a supramolecular assembly approach.
Collapse
Affiliation(s)
- Lukang Ji
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Jinqi Li
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province, 050018, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Tianzi Meng
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Zujian Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Huajie Zhu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province, 050018, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
20
|
Jiang Q, Wang L, Wei H, Peng Y, Xu G, Li Z, Liu P, Hu Z, Niu W, Chen Y, Tang H, Zeng W, Li G. A Kinetically Stabilized Dianthraceno[2,3-a:3',2'-h]-s-Indacene: Stable Kekulé Diradical Polycyclic Hydrocarbon with Triplet Ground State. Angew Chem Int Ed Engl 2024:e202422994. [PMID: 39665318 DOI: 10.1002/anie.202422994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
High-spin polycyclic hydrocarbons (PHs) hold significant potential in organic spintronics and organic magnets. However, their synthesis is very challenging due to their extremely high reactivity. Herein, we report the successful synthesis and isolation of a kinetically blocked derivative (1) of dianthraceno[2,3-a : 3',2'-h]-s-indacene, which represents a rare persistent triplet diradical of a Kekulé PH. Its triplet ground state was unambiguously confirmed by electron paramagnetic resonance and superconducting quantum interference device measurements. Its structure was also unequivocally confirmed through X-ray crystallographic analysis, and its electronic properties were systematically investigated by both experiments and theoretical calculations. The key design principle is to extend the π-conjugation for achieving the decrease of the bonding interaction and the increase of the exchange interaction between unpaired electrons, which are essential for accessing the stable triplet ground state. Due to kinetic blocking, 1 shows a reasonable stability with a half-life time of 64 h under ambient conditions. It has a narrow HOMO-LUMO energy gap and displays amphoteric redox behavior. Notably, its dication and dianion exhibit a closed-shell ground state and near-infrared absorption, and the structures were identified by X-ray crystallographic analysis. This study will shed new light on the design and synthesis of novel stable PHs with high-spin multiplicity.
Collapse
Affiliation(s)
- Qing Jiang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China
| | - Lei Wang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Haipeng Wei
- PharmaBlock Zhejiang, Hangzhou Bay Shangyu Economic and Technological Development Area, 11 Weiqi Road, Shaoxing, Zhejiang, 312369, China
| | - Yuchen Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China
| | - Guangyan Xu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Pengfei Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zhenni Hu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China
| | - Weiwei Niu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Yifan Chen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China
| | - Hui Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425100, China
| | - Wangdong Zeng
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Guangwu Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, 16th Floor, Yantian Science & Technology Building, Haishan Street, Yantian District, Shenzhen, 518083, China
| |
Collapse
|
21
|
Wahab A, Gershoni-Poranne R. Accelerated diradical character assessment in large datasets of polybenzenoid hydrocarbons using xTB fractional occupation. Phys Chem Chem Phys 2024. [PMID: 39651645 DOI: 10.1039/d4cp04059g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Polybenzenoid hydrocarbons (PBHs) have garnered significant attention in the field of organic electronics due to their unique electronic properties. To facilitate the design and discovery of new functional organic materials based on these compounds, it is necessary to assess their diradical character. However, this usually requires expensive multireference calculations. In this study, we demonstrate rapid identification and quantification of open-shell character in PBHs using the fractional occupation number weighted electron density metric (NFOD) calculated with the semiempirical GFN2-xTB (xTB) method. We apply this approach to the entire chemical space of PBHs containing up to 10 rings, a total of over 19k molecules, and find that approximately 7% of the molecules are identified as having diradical character. Our findings reveal a strong correlation between xTB-calculated NFOD and the more computationally expensive Yamaguchi y and DFT-calculated NFOD, validating the use of this efficient method for large-scale screening. Additionally, we identify a linear relationship between size and NFOD value and implement a size-dependent threshold for open-shell character, which significantly improves the accuracy of diradical identification across the chemical space of PBHs. This size-aware approach reduces false positive identifications from 6.97% to 0.38% compared to using a single threshold value. Overall, this work demonstrates that xTB-calculated NFOD provides a rapid and cost-effective alternative for large-scale screening of open-shell character in PBHs.
Collapse
Affiliation(s)
- Alexandra Wahab
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Renana Gershoni-Poranne
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
22
|
Ariai J, Gellrich U. An Acceptor-Substituted N-Heterocyclic ortho-Quinodimethane: Pushing the Boundaries of Polarization in Donor-Acceptor-Substituted Polyenes. J Am Chem Soc 2024; 146:32859-32869. [PMID: 39540923 DOI: 10.1021/jacs.4c13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We report the synthesis, isolation, and characterization of a stable donor-acceptor substituted ortho-quinodimethane (oQDM). This system with an imidazolidine scaffold as the donor can also be referred to as acceptor-substituted ortho-N-heterocyclic quinodimethane (oNHQ). We have examined the extent of polarization of the conjugated π-system using single-crystal X-ray diffraction, NMR and UV/vis spectroscopy, cyclic voltammetry, and DFT computations. The bond lengths in the phenyl linker do not exhibit the alternation typical of oQDMs. In addition, the 13C and 15N NMR shifts suggest significant charge separation, an interpretation supported by the diatropic ring current determined by NICSZZ(r) computations, which is characteristic of aromatic compounds. DFT calculations show that polarization is an electronic effect that is amplified by steric influences. More strikingly, the oxidation and reduction potentials of the push-pull substituted oQDM are virtually identical to those of authenticated anionic and cationic derivatives. The results therefore indicate that an aromatic zwitterionic structure represents the electronic structure more accurately than a neutral quinoidal Lewis structure, which indicates that the acceptor-substituted oNHQ is a rare example of an organic zwitterion in which the centers of charge are in conjugation. The ambiphilic reactivity of the acceptor-substituted oNHQ, which is evidenced by the dehydrogenation of ammonia borane and the addition of phenylacetylene via heterolytic C-H bond cleavage, further supports its notation as an organic zwitterion and is reminiscent of frustrated Lewis pairs (FLPs). Thus, the acceptor-substituted oNHQ can be considered to be an intramolecular carbogenic FLP in terms of its reactivity.
Collapse
Affiliation(s)
- Jama Ariai
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Urs Gellrich
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
- Fachgebiet Organische Chemie, Universität Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
23
|
Feng L, Tuo Y, Wu Z, Zhang W, Li C, Yang B, Liu L, Gong J, Jiang G, Hu W, Tang BZ, Wu L, Wang J. Highly Stable Near-Infrared II Luminescent Diradicaloids for Cancer Phototheranostics. J Am Chem Soc 2024; 146:32582-32594. [PMID: 39534977 DOI: 10.1021/jacs.4c11549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Near-infrared II (NIR-II) phototheranostic agents have become prominent agents for the early diagnosis and precise treatment of cancer. Organic open-shell diradicaloids with distinct structure and narrow band gap are promising candidates for phototherapeutic agents due to their strong spin-coupling effect and NIR light-harvesting capacity. However, achieving stable and efficient NIR-II luminescent diradicaloids is crucial yet rather challenging considering their high chemical reactivity and self-absorption. Herein, two highly stable NIR-II luminescent diradicaloids, 2PhNVDPP and PhNVDPP, were successfully fabricated by employing an acceptor planarization/π-conjugation extension and donor rotation strategy. After encapsulation into water-dispersible nanoparticles (NPs), 2PhNVDPP NPs exhibit NIR-II luminescence, high PCE of 53%, and improved photo/heat stability. In vivo experiments with 2PhNVDPP NPs demonstrated the clear visualization of blood vessels and tumors, as well as the successful NIR-II imaging-guided photothermal ablation of tumors. This study not only develops a pioneering stable diradicaloid phototherapeutic agent with NIR-II luminescence but also provides a unique perspective for the effectiveness of multimodal anticancer therapy.
Collapse
Affiliation(s)
- Lina Feng
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Yanyan Tuo
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Zipeng Wu
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Weijing Zhang
- Xi'an Modern Chemistry Research Institute, Xi'an 710069, P. R. China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Bo Yang
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Jianye Gong
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Wei Hu
- College of Life Sciences, College of Biomedical Sciences, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P. R. China
| | - Limin Wu
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot 010021, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
24
|
Ham G, Kim Y, Jang WD, Kim S. An Isolable Triarylphosphine Radical Cation Electronically Stabilized by Through-Space Radical Delocalization. J Am Chem Soc 2024; 146:31405-31411. [PMID: 39508349 DOI: 10.1021/jacs.4c13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Synthesis and characterization of a thermally stable triarylphosphine radical cation, [P(8-Br-C10H6)3][BArF24] ([1][BArF24], BArF24 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate), enabled by stabilization through peri-bromo-substituted naphthalenes, are described. Unlike previously reported phosphine radical cations that rely on sterically bulky substituents for stabilization, our approach leverages electronic stabilization via "through-space" radical delocalization. Single-crystal X-ray diffraction of [1][BArF24] reveals a tricapped tetrahedral geometry, resulting from the spatial proximity of the three bromine atoms to the phosphorus center, differentiated from the trigonal planar geometry observed in the previously reported triarylphosphine radical cations with sterically bulky substituents. EPR spectroscopy shows an isotropic signal with hyperfine couplings to both the phosphorus and the three bromine atoms, indicating spin delocalization over these four atoms and consequent formation of a four-center, seven-electron (4c-7e) bond. DFT computational studies further support the through-space radical delocalization mechanism, revealing that the HOMO of 1 exhibits antibonding character between the phosphorus center and the three adjacent Br atoms, distinct from common triarylphosphines.
Collapse
Affiliation(s)
- Gyeongho Ham
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Younghun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sangmin Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
25
|
Chen D, Xu Y, Wang Y, Li X, Yin D, Yan L. Diradicaloid-Loaded Polypeptide Nanoparticles for Two-Photon NIR Phototheranostics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59907-59920. [PMID: 39441126 DOI: 10.1021/acsami.4c13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stable organic radicals, with unique electronic transitions from the ground state (D0) to the doublet excited state (D1), show promise as high-fluorescence quantum yield dyes. While organic small-molecule photosensitizers (PSs) have advanced for tumor photodynamic therapy (PDT), opportunities exist to enhance their performance and functionality. Herein, we synthesized Thiele's fluorocarbon derivative diradicaloid TFC-I with nearly 100% PLQY and integrated it into amphiphilic polypeptide nanoparticles, P-TI, using a precursor-doping approach. P-TI demonstrated notable features including high photostability, aggregation-induced emission, bright near-infrared fluorescence, substantial quantum yield (37% PLQY), robust near-infrared two-photon absorption (∼400 GM cross section), and superior ROS generation compared to commercial PSs. In vitro and in vivo experiments confirmed that P-TI performed well in mitochondria-targeted PDT, two-photon fluorescence imaging, and biosafety. This work highlights the use of organic stable radicals with precursor-doping for efficient PDT and deep tumor tissue imaging.
Collapse
Affiliation(s)
- Dejia Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Yixuan Xu
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Yating Wang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Xin Li
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| |
Collapse
|
26
|
Yang S, Sun S, Xie Z, Dong Y, Zhou P, Zhang J, Xiong Z, He CS, Mu Y, Lai B. Comprehensive Insight into the Common Organic Radicals in Advanced Oxidation Processes for Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19571-19583. [PMID: 39442087 DOI: 10.1021/acs.est.4c06676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Radical-based advanced oxidation processes (AOPs) are among the most effective technologies employed to destroy organic pollutants. Compared to common inorganic radicals, such as •OH, O2•-, and SO4•-, organic radicals are widespread, and more selective, but are easily overlooked. Furthermore, a systematic understanding of the generation and contributions of organic radicals remains lacking. In this review, we systematically summarize the properties, possible generation pathways, detection methods, and contributions of organic radicals in AOPs. Notably, exploring organic radicals in AOPs is challenging due to (1) limited detection methods for generated organic radicals; (2) controversial organic radical-mediated reaction mechanisms; and (3) rapid transformation of organic radicals as reaction intermediates. In addition to their characteristics and reactivity, we examine potential scenarios of organic radical generation in AOPs, including during the peroxide activation process, in water matrices or with coexisting organic pollutants, and due to the addition of quenching agents. Subsequently, we summarize various methods for organic radical detection as reported previously, such as electron paramagnetic resonance spectroscopy (EPR), 31P nuclear magnetic resonance spectroscopy (31P NMR), liquid/gas chromatography-mass spectroscopy (GC/LC-MS), and fluorescence probes. Finally, we review the contributions of organic radicals to decontamination processes and provide recommendations for future research.
Collapse
Affiliation(s)
- Shurun Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Si Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhihui Xie
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yudan Dong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jing Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
27
|
Zhang H, Chen L, Liu X, Sun F, Zhang M, Quintero SM, Zhan Q, Jiang S, Li J, Wang D, Casado J, Hong W, Zheng Y. Gated off-site radical injection: Bidirectional conductance modulation in single-molecule junctions. SCIENCE ADVANCES 2024; 10:eadp7307. [PMID: 39485854 PMCID: PMC11529717 DOI: 10.1126/sciadv.adp7307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Uncovering the effects of radical injection into responsive organic molecules is a long-sought goal, and the single-molecule junctions provide a unique way to investigate molecular conductance evolution during the radical injection. We can modulate the main channel conductance by using electronic injection from off-site neutral radicals acting as gating terminals. Two families of cyclopentadienone derivatives were synthesized, featuring the inter-pyridyl main conductance channel and the inter-radical paths that are linear (FCF) or cross conjugated (PCP). Using a scanning tunneling microscope break junction technique, we find that the injection of mono- and diradicals in the PCP system unexpectedly decreases the conductance regarding the closed-shell analog, while that of FCF systems increases. Through-bond and through-space conductance mechanisms are found in the FCF and PCP series, respectively, and jointly modulate the overall charge transmission. This off-site injection concept offers a promising approach for developing molecular devices by manipulating electrical conductance in single-molecule junctions.
Collapse
Affiliation(s)
- Hanjun Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, P. R. China
| | - Xiaodong Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Fanxi Sun
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Maolin Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Sergio Moles Quintero
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Qian Zhan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Shenqing Jiang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Jiayu Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| | - Juan Casado
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
| |
Collapse
|
28
|
Wei Q, Huang J, Meng Q, Zhang Z, Gu S, Li Y. Open-shell Poly(3,4-dioxythiophene) Radical for Highly Efficient Photothermal Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406800. [PMID: 39234816 PMCID: PMC11538641 DOI: 10.1002/advs.202406800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Open-shell organic radical semiconductor materials have received increasing attention in recent years due to their distinctive properties compared to the traditional materials with closed-shell singlet ground state. However, their poor chemical and photothermal stability in ambient conditions remains a significant challenge, primarily owing to their high reactivity with oxygen. Herein, a novel open-shell poly(3,4-dioxythiophene) radical PTTO2 is designed and readily synthesized for the first time using low-cost raw material via a straightforward BBr3-demethylation of the copolymer PTTOMe2 precursor. The open-shell character of PTTO2 is carefully studied and confirmed via the signal-silent 1H nuclear magnetic resonance spectrum, highly enhanced electron spin resonance signal compared with PTTOMe2, as well as the ultra-wide ultraviolet-visible-near nfraredUV-vis-NIR absorption and other technologies. Interestingly, the powder of PTTO2 exhibits an extraordinary absorption range spanning from 300 to 2500 nm and can reach 274 °C under the irradiation of 1.2 W cm-2, substantially higher than the 108 °C achieved by PTTOMe2. The low-cost PTTO2 stands as one of the best photothermal conversion materials among the pure organic photothermal materials and provides a new scaffold for the design of stable non-doped open-shell polymers.
Collapse
Affiliation(s)
- Qi Wei
- State Key Laboratory of Luminescent Materials and DevicesInstitute of Polymer Optoelectronic Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Jiaxing Huang
- State Key Laboratory of Luminescent Materials and DevicesInstitute of Polymer Optoelectronic Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Qiao Meng
- Faculty of Materials ScienceMSU‐BIT UniversityShenzhen518172P. R. China
| | - Zesheng Zhang
- State Key Laboratory of Luminescent Materials and DevicesInstitute of Polymer Optoelectronic Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Sichen Gu
- Faculty of Materials ScienceMSU‐BIT UniversityShenzhen518172P. R. China
| | - Yuan Li
- State Key Laboratory of Luminescent Materials and DevicesInstitute of Polymer Optoelectronic Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| |
Collapse
|
29
|
Casares R, Rodríguez-González S, Martínez-Pinel Á, Márquez IR, González MT, Díaz C, Martín F, Cuerva JM, Leary E, Millán A. Single-Molecule Conductance of Neutral Closed-Shell and Open-Shell Diradical Indenofluorenes. J Am Chem Soc 2024; 146:29977-29986. [PMID: 39423204 PMCID: PMC11528439 DOI: 10.1021/jacs.4c13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Organic diradicals are highly promising candidates as future components in molecular electronic and spintronic devices because of their low spin-orbit coupling. To advance toward final circuit realizations, a thorough knowledge of the behavior of diradicals within a single-molecule junction framework is imperative. In this work, we have measured for the first time the single-molecule conductance of a neutral open-shell diradical compound, a [2,1-b] isomer of indenofluorene (IF). Our results reveal that the conductance of the [2,1-b] isomer is about 1 order of magnitude higher than that of the corresponding closed-shell regioisomer [1,2-b] IF. This is significant, as it fundamentally demonstrates the possibility of forming stable single-molecule junctions using neutral diradical compounds which are also highly conducting. This opens up a new approach to the development of externally addressable spintronic devices operable at room temperature.
Collapse
Affiliation(s)
- Raquel Casares
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a Biomedicina y Medioambiente (UEQ), C. U. Fuentenueva, Universidad de Granada, Granada 18071, Spain
| | | | - Álvaro Martínez-Pinel
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a Biomedicina y Medioambiente (UEQ), C. U. Fuentenueva, Universidad de Granada, Granada 18071, Spain
| | - Irene R. Márquez
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a Biomedicina y Medioambiente (UEQ), C. U. Fuentenueva, Universidad de Granada, Granada 18071, Spain
- Centro
de Instrumentación Científica, Universidad de Granada, Granada 18071, Spain
| | | | - Cristina Díaz
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Fernando Martín
- Fundación
IMDEA Nanociencia, Madrid 28049, Spain
- Departamento
de Química, Módulo 13, Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Juan M. Cuerva
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a Biomedicina y Medioambiente (UEQ), C. U. Fuentenueva, Universidad de Granada, Granada 18071, Spain
| | - Edmund Leary
- Fundación
IMDEA Nanociencia, Madrid 28049, Spain
| | - Alba Millán
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a Biomedicina y Medioambiente (UEQ), C. U. Fuentenueva, Universidad de Granada, Granada 18071, Spain
| |
Collapse
|
30
|
Lyons AJ, Naimovičius L, Zhang SK, Pun AB. Optimizing Upconversion Quantum Yield via Structural Tuning of Dipyrrolonaphthyridinedione Annihilators. Angew Chem Int Ed Engl 2024; 63:e202411003. [PMID: 39031499 DOI: 10.1002/anie.202411003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) is a photophysical process in which two low-energy photons are converted into one higher-energy photon. This type of upconversion requires two species: a sensitizer that absorbs low-energy light and transfers its energy to an annihilator, which emits higher-energy light after TTA. In spite of the multitude of applications of TTA-UC, few families of annihilators have been explored. In this work, we show dipyrrolonaphthyridinediones (DPNDs) can act as annihilators in TTA-UC. We found that structural changes to DPND dramatically increase its upconversion quantum yield (UCQY). Our optimized DPND annihilator demonstrates a high maximum internal UCQY of 9.4 %, outperforming the UCQY of commonly used near-infrared-to-visible annihilator rubrene by almost double.
Collapse
Affiliation(s)
- Alexandra J Lyons
- Department of Chemistry and Biochemistry, University of California San Diego, 92093, La Jolla, CA, USA
| | - Lukas Naimovičius
- Department of Chemistry and Biochemistry, University of California San Diego, 92093, La Jolla, CA, USA
| | - Simon K Zhang
- Department of Chemistry and Biochemistry, University of California San Diego, 92093, La Jolla, CA, USA
| | - Andrew B Pun
- Department of Chemistry and Biochemistry, University of California San Diego, 92093, La Jolla, CA, USA
| |
Collapse
|
31
|
Laha D, Bankar OS, Santra S, Navale BS, Ghosh D, Bhat RG. Photosensitizer-Free Photoinduced Ground-State Triplet Carbene-Assisted Persistent Aryloxy Radical Generation via Hydrogen Atom Transfer. Org Lett 2024; 26:8674-8679. [PMID: 39373279 DOI: 10.1021/acs.orglett.4c02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The traditional intermolecular O-H insertion strategy is typically associated with the reactivity exhibited by the singlet spin state, or it can alter the spin state from triplet to singlet by hydrogen bonding. Herein, we report diazoarylidene succinimide that generates a persistent ground-state triplet carbene under visible light (Blue LED, 456 nm) without a photosensitizer. This triplet carbene undergoes an intramolecular O-H insertion via hydrogen atom transfer, forming a persistent aryloxy radical without altering its spin state and leading to biologically relevant 2H-chromenes.
Collapse
Affiliation(s)
- Debasish Laha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Onkar S Bankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 2A & 2B Raja S C Mullick Road, Kolkata 700032, India
| | - Balu S Navale
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
- Department of Chemistry, Institute of Science, Nagpur, Maharashtra 440001, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 2A & 2B Raja S C Mullick Road, Kolkata 700032, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| |
Collapse
|
32
|
Betkhoshvili S, Poater J, Moreira IDPR, Bofill JM. Leap from Diradicals to Tetraradicals by Topological Control of π-Conjugation. J Org Chem 2024; 89:14006-14020. [PMID: 39301849 PMCID: PMC11460765 DOI: 10.1021/acs.joc.4c01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
In this work, we explore the series of diradical(oid)s based on 2,2'-(5,11-dihydroindolo[3,2-b]carbazole-3,9-diyl)dimalononitrile (further referred to as PH). Hydrogen atoms in the central benzenoid (CB) ring of PH are substituted by the series of substituents with various lengths of π-conjugated chain and electron-donating or electron-withdrawing properties to study how they modulate the diradical character of the parent compound. The diradical character of molecules increases up to 88-89% by two groups doubly bonded to both sides of the CB ring of PH in para relative positions. This breaks the direct π-conjugation between unpaired electrons that gives rise to two radical centers and restricts the minimal polyradical identity of the compound to diradical. We show that diradicals and tetraradicals can be designed, and their polyradical character can be modulated by controlling the topology of π-conjugation as long as there is sufficient aromatic stabilization. Henceforth, the bridge between diradicals and tetraradicals is established, leading to the tetraradical(oid) molecule, which has been predicted to have narrow low-spin to high-spin energy gaps in our recent Letter.
Collapse
Affiliation(s)
- Sergi Betkhoshvili
- Departament
de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona Martí i Franquès 1−11, Barcelona 08028, Spain
| | - Jordi Poater
- Departament
de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona Martí i Franquès 1−11, Barcelona 08028, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Ibério de P. R. Moreira
- Departament
de Ciència de Materials i Química Física &
IQTCUB, Universitat de Barcelona, Martí i Franquès 1−11, Barcelona 08028, Spain
| | - Josep Maria Bofill
- Departament
de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona Martí i Franquès 1−11, Barcelona 08028, Spain
| |
Collapse
|
33
|
Chen Z, Su Y, Long Q, Zhang Z, Su J, Guo L. Stable Radicals in Dihydrophenazine Derivatives-Doped Epoxy Resin for High Photothermal Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403623. [PMID: 39031541 DOI: 10.1002/smll.202403623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/05/2024] [Indexed: 07/22/2024]
Abstract
Organic radicals exhibit great potential in photothermal applications, however, their innate high reactivity with oxygen renders the preparation of stable organic radicals highly challenging. In this work, a series of co-doped radical polymers ares prepared by doping dihydrophenazine derivatives (DPPs) into the epoxy resin matrix. DPPs can form radical species through the electron transfer process, which are further stabilized by the complex 3D network structure of epoxy resin. Experimental results show that the photothermal conversion efficiency is as high as 79.9%, and the temperature can quickly rise to ≈130 °C within 60 s. Due to the excellent visible light transmittance and mechanical properties of co-doped systems, this study further demonstrates their practical applications in energy-saving solar windows and thermoelectric power generation.
Collapse
Affiliation(s)
- Ziyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yonghao Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qianxin Long
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lifang Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
34
|
Sentyurin VV, Levitskiy OA, Yankova TS, Grishin YK, Lyssenko KA, Goloveshkin AS, Alabugin IV, Magdesieva TV. Double Spin with a Twist: Synthesis and Characterization of a Neutral Mixed-Valence Organic Stable Diradical. J Am Chem Soc 2024; 146:26261-26274. [PMID: 39259835 DOI: 10.1021/jacs.4c08167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A convenient design strategy opens access to neutral open-shell mixed-valence species via the redox transformation of charged stable precursors, i.e., the spiro-fused borate anions. We have implemented this strategy for the synthesis of the first neutral mixed-valence diradical: two neutral mixed-valence radical fragments were assembled via a twisted biphenyl bridge. The diradical is a crystalline solid obtained in almost quantitative yield by using a facile synthetic procedure. It is stable at room temperature in the triplet ground state with a very small singlet/triplet gap. This metal-free diradical can reversibly form five redox states. The diradical exhibits an intense IVCT band in the NIR region and can be assigned as a Class 2 Robin-Day MV (mixed valence) system with weakly interacting redox centers. Computations suggest that this diradical finds itself in a unique tug-of-war between two electron delocalization patterns, Kekulé and non-Kekulé, which gives rise to two geometric isomers that are close in energy but drastically different in spin distribution and polarity. Such bistable spin-systems should be intrinsically switchable and promising for the design of functional spin devices. The scope and limitations of the new redox-strategy for the neutral MV radicals were also tested on other types of spiro-fused borates, revealing structural factors responsible for the evolution from transient to persistent and then to stable radicals.
Collapse
Affiliation(s)
- Vyacheslav V Sentyurin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Oleg A Levitskiy
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Tatiana S Yankova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Yuri K Grishin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Konstantin A Lyssenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Alexander S Goloveshkin
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow 119934, Russia
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Tatiana V Magdesieva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| |
Collapse
|
35
|
Niu KK, Bi YS, Liu H, Xing LB. Perylene-Diimide-Based Supramolecular Radical Anion as a Platform for Highly Effective Photoreduction of Inert Sulfoxide to Sulfide. Org Lett 2024; 26:7987-7992. [PMID: 39255467 DOI: 10.1021/acs.orglett.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Due to the limitations of common photoredox catalysts, unlocking their applications in photoreduction reactions remains an ongoing challenge. We herein present a supramolecular radical anion, PDI(CB[7])2, that formed by the assembly of perylene diimide derivative (PDI) and cucurbit[7]uril (CB[7]) via a host-guest interaction for an effective photoreduction reaction. Studies revealed that it could effectively accomplish a consecutive excitation process by two-photon excitation, enabling a potent photoreductant PDI(CB[7])2• - * that can even reduce the inert feedstocks, such as sulfoxides to sulfides. Mechanistic investigations indicate that, besides exceptional photophysical properties, supramolecular PDI(CB[7])2 also significantly enhances the lifetime and robustness of the in situ generated higher energy photoreductant PDI(CB[7])2• - * upon second quantum photon excitation, leading to the observed highly active photoreducing behavior.
Collapse
Affiliation(s)
- Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Yu-Song Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| |
Collapse
|
36
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
37
|
Bhandari A, Park GM, Lee HB, Hong S, Kim SH, Byon HR, Lee Y. A stable radical within a N-Co-N core. Chem Commun (Camb) 2024; 60:9970-9973. [PMID: 39171762 DOI: 10.1039/d4cc02146k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A N-Co-N core is embedded within [Co(CNC)2]2+ (1) supported by two bis(4-methyl-2-(3-methyl-imidazolium)phenyl)amine (CNC) ligands. This species reveals a stable S = 1/2 state and its spin density is significantly delocalized within the N-Co-N core via parallel π-bonding interaction. Interestingly, it displays unusual stability towards O2 and water, proving that the core is well protected. Upon reduction, compound 1 was converted to its reduced diamagnetic species [Co(CNC)2]+ (2) having two amide donors and a low-spin Co(III) ion, which can be oxidized by air to regenerate 1.
Collapse
Affiliation(s)
- Anirban Bhandari
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Gyeong Min Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Heui Beom Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sugyeong Hong
- Western Seoul Centre, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Sun Hee Kim
- Western Seoul Centre, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Hye Ryung Byon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
38
|
Zhou A, Sun Z, Sun L. Stable organic radical qubits and their applications in quantum information science. Innovation (N Y) 2024; 5:100662. [PMID: 39091459 PMCID: PMC11292369 DOI: 10.1016/j.xinn.2024.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024] Open
Abstract
The past century has witnessed the flourishing of organic radical chemistry. Stable organic radicals are highly valuable for quantum technologies thanks to their inherent room temperature quantum coherence, atomic-level designability, and fine tunability. In this comprehensive review, we highlight the potential of stable organic radicals as high-temperature qubits and explore their applications in quantum information science, which remain largely underexplored. Firstly, we summarize known spin dynamic properties of stable organic radicals and examine factors that influence their electron spin relaxation and decoherence times. This examination reveals their design principles and optimal operating conditions. We further discuss their integration in solid-state materials and surface structures, and present their state-of-the-art applications in quantum computing, quantum memory, and quantum sensing. Finally, we analyze the primary challenges associated with stable organic radical qubits and provide tentative insights to future research directions.
Collapse
Affiliation(s)
- Aimei Zhou
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhecheng Sun
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lei Sun
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, Hangzhou 310030, China
| |
Collapse
|
39
|
Lee JJC, Chua MH, Wang S, Qu Z, Zhu Q, Xu J. Cyclotriphosphazene: A Versatile Building Block for Diverse Functional Materials. Chem Asian J 2024; 19:e202400357. [PMID: 38837322 DOI: 10.1002/asia.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Cyclotriphosphazene (CP) is a cyclic inorganic compound with the chemical formula N3P3. This unique molecule consists of a six-membered ring composed of alternating nitrogen and phosphorus atoms, each bonded to two chlorine atoms. CP exhibits remarkable versatility and significance in the realm of materials chemistry due to its easy functionalization via facile nucleophilic substitution reactions in mild conditions as well as intriguing properties of resultant final CP-based molecules or polymers. CP has been served as an important building block for numerous functional materials. This review provides a general and broad overview of the synthesis of CP-based small molecules through nucleophilic substitution of hexachlorocyclotriphosphazene (HCCP), and their applications, including flame retardants, liquid crystals (LC), chemosensors, electronics, biomedical materials, and lubricants, have been summarized and discussed. It would be expected that this review would offer a timely summary of various CP-based materials and hence give an insight into further exploration of CP-based molecules in the future.
Collapse
Affiliation(s)
- Johnathan Joo Cheng Lee
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore, 138634
| | - Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, Singapore, 627833
| | - Suxi Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore, 138634
| | - Zhengyao Qu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Qiang Zhu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore, 138634
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Jianwei Xu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore, 138634
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, Singapore, 627833
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore, 117543
| |
Collapse
|
40
|
Buettner C, Stavagna C, Tilby MJ, Górski B, Douglas JJ, Yasukawa N, Leonori D. Synthesis and Suzuki-Miyaura Cross-Coupling of Alkyl Amine-Boranes. A Boryl Radical-Enabled Strategy. J Am Chem Soc 2024; 146:24042-24052. [PMID: 39137918 PMCID: PMC11363021 DOI: 10.1021/jacs.4c07767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Alkyl organoborons are powerful materials for the construction of C(sp3)-C(sp2) bonds, predominantly via Suzuki-Miyaura cross-coupling. These species are generally assembled using 2-electron processes that harness the ability of boron reagents to act as both electrophiles and nucleophiles. Herein, we demonstrate an alternative borylation strategy based on the reactivity of amine-ligated boryl radicals. This process features the use of a carboxylic acid containing amine-ligated borane that acts as boryl radical precursor for photoredox oxidation and decarboxylation. The resulting amine-ligated boryl radical undergoes facile addition to styrenes and imines through radical-polar crossover manifolds. This delivers a new class of sp3-organoborons that are stable solids and do not undergo protodeboronation. These novel materials include unprotected α-amino derivatives that are generally unstable. Crucially, these aliphatic organoboron species can be directly engaged in Suzuki-Miyaura cross-couplings with structurally complex aryl halides. Preliminary studies suggest that they enable slow-release of the corresponding and often difficult to handle alkyl boronic acids.
Collapse
Affiliation(s)
- Cornelia
S. Buettner
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Chiara Stavagna
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Michael J. Tilby
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Bartosz Górski
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - James J. Douglas
- Early
Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Naoki Yasukawa
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Daniele Leonori
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| |
Collapse
|
41
|
Dai D, Zhan Q, Shi T, Wang D, Zheng Y. Spin characteristics in conjugated stable diradicals. Chem Commun (Camb) 2024; 60:8997-9006. [PMID: 39081131 DOI: 10.1039/d4cc03067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Spin properties are intrinsic characters of electrons. Radical molecules contain unpaired electron(s), and their unique chemical and physical properties make them an ideal platform for investigating spin properties in molecular systems. Among them, the burgeoning interest in stable conjugated diradicals is attributed to their distinctive characteristics, notably the dynamic resonance structures between open-shell and closed-shell forms, the malleability of their spin states, and the profound influence of intermolecular spin-spin interactions. A deep understanding of the spin characteristics of unpaired electrons in stable conjugated diradicals provides guidance for the design, synthesis, and characterization of radical-based materials. In this review, we discuss the unique spin delocalization, spin states, and spin-spin coupling characteristics of conjugated diradicals and emphasize how to precisely control these spin characteristics to understand their role in the molecules and as functional radical materials.
Collapse
Affiliation(s)
- Dacheng Dai
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Qian Zhan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Tianfang Shi
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
42
|
Steffenfauseweh H, Rottschäfer D, Vishnevskiy YV, Neumann B, Stammler HG, de Bruin B, Ghadwal RS. Non-Kekulé meta-Quinodimethane Singlet Diradicals Based on Classical N-Heterocyclic Carbenes. Chemistry 2024:e202403029. [PMID: 39140842 DOI: 10.1002/chem.202403029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Diradicals based on a meta-quinodimethane (m-QDM) scaffold generally have a triplet ground state and are rather scarce. Herein, m-QDM-based non-Kekulé diradicals [3,3'-(NHC)2BP] (3-NHC) (NHC = SIPr = C{N(Dipp)CH2}2; IPr = C{N(Dipp)CH}2, Me-IPr = C{N(Dipp)CMe}2; Dipp = 2,6-iPr2C6H3; BP = 1,1'-C6H4C6H4) featuring N-heterocyclic carbene (NHC) pendants are reported as crystalline solids. The EPR spectra of 3-NHC show both allowed (Δms = 1) and forbidden (Δms = 2; 'half-field') transitions characteristic for triplet diradicals. Variable temperature EPR studies however reveal a singlet ground state for 3-SIPr. Consistent with the EPR spectra, calculations predict a remarkably small singlet-triplet energy gap (ΔEST ≤ 0.26 kcal/mol) for the 3-NHC compounds. The calculated singlet diradical character for the ground states of the 3-NHC compounds amounts to ~99 %.
Collapse
Affiliation(s)
- Henric Steffenfauseweh
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Dennis Rottschäfer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Bas de Bruin
- University of Amsterdam (UvA), Faculty of Science, Van 't Hoff Institute for Molecular Sciences (HIMS), Homogeneous and Supramolecular Catalysis Group, Science Park904, 1098 XH, Amsterdam, The Netherlands
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| |
Collapse
|
43
|
Liu Y, Yuan L, Fan Z, Yang J, Wang Y, Dou C. Boron-doped double [6]carbohelicenes: a combination of helicene and boron-doped π-systems. Chem Sci 2024; 15:12819-12826. [PMID: 39148780 PMCID: PMC11322965 DOI: 10.1039/d4sc03124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
Helicenes, featuring unique helical structures, have a long history as three-dimensional polycyclic aromatic hydrocarbons (PAHs). Incorporation of heteroatoms into helicenes may alter their electronic structures and achieve unexpected physical properties. Here, we disclose fusion of boron-doped π-systems onto helicenes as an efficient strategy to design boron-doped carbohelicenes. Two boron-doped double [6]carbohelicenes were synthesized, which possess the C58B2 and C86B2 polycyclic π-skeletons containing two [6]helicene subunits, respectively. The C86B2 molecule thus represents the largest-size helicene-based boron-doped PAH. A thorough investigation reveals that the helicene moieties and boron atoms endow the polycyclic π-systems with delocalized electronic structures, and well-tunable ground-state and excited-state photophysical properties. It is notable that the C58B2 molecule displays excited-state stimulated emission behavior and amplified spontaneous emission (ASE) properties in not only the blend films with various doped concentrations but also the pure film. To our knowledge, it is the first example of ASE-active [n]helicene (n ≥ 6), and moreover, such robust ASE performance has rarely been observed in PAHs, demonstrating the promising utility of boron-doped carbohelicenes for laser materials.
Collapse
Affiliation(s)
- Yujia Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Zengming Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Jingyuan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
44
|
Yu CP, Chowdhury R, Fu Y, Ghosh P, Zeng W, Mustafa TBE, Grüne J, Walker LE, Congrave DG, Chua XW, Murto P, Rao A, Sirringhaus H, Plasser F, Grey CP, Friend RH, Bronstein H. Near-infrared luminescent open-shell π-conjugated systems with a bright lowest-energy zwitterionic singlet excited state. SCIENCE ADVANCES 2024; 10:eado3476. [PMID: 39047089 PMCID: PMC11268402 DOI: 10.1126/sciadv.ado3476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Open-shell systems with extensive π-conjugation have fascinating properties due to their narrow bandgaps and spin interactions. In this work, we report neutral open-shell di- and polyradical conjugated materials exhibiting intriguing optical and magnetic properties. Our key design advance is the planarized geometry allowing for greater interaction between adjacent spins. This results in absorption and emission in the near infrared at 803 and 1050 nanometers, respectively, and we demonstrate a unique electronic structure where a bright zwitterionic excited state is the lowest-accessible electronic transition. Electron paramagnetic resonance spectroscopy and superconducting quantum interference device measurements reveal that our materials are open-shell singlets with different degrees of spin interactions, dynamics, and antiferromagnetic properties, which likely contributed to the formation of their emissive zwitterionic singlet excited state and near-infrared emission. In addition, our materials show reversible and stable electrochromic switching with more than 500 cycles, indicating their potential for optoelectronic and electrochemical energy storage applications.
Collapse
Affiliation(s)
- Craig P. Yu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HF, UK
| | - Rituparno Chowdhury
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HF, UK
| | - Yao Fu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Pratyush Ghosh
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HF, UK
| | - Weixuan Zeng
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tarig B. E. Mustafa
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HF, UK
| | - Jeannine Grüne
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HF, UK
| | - Lucy E. Walker
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Daniel G. Congrave
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Xian Wei Chua
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HF, UK
| | - Petri Murto
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HF, UK
| | - Akshay Rao
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HF, UK
| | - Henning Sirringhaus
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HF, UK
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Clare P. Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Richard H. Friend
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HF, UK
| | - Hugo Bronstein
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HF, UK
| |
Collapse
|
45
|
Zhu L, Feng Z, Kinjo R. Crystalline Radical Anion of a Diboratriazole and Its Conversion to a Neutral Radical Driven by a Carbene. J Am Chem Soc 2024. [PMID: 39033410 DOI: 10.1021/jacs.4c05777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
One-electron reduction of diboratriazole 1 with potassium graphite (KC8) generates the radical anion 1•-•K+, which undergoes a salt (KCl) elimination reaction upon addition of an N-heterocyclic carbene (NHC) to afford the neutral diboratriazole radical 3. An X-ray diffraction analysis, electron paramagnetic resonance spectroscopy, and computational studies revealed that an unpaired electron in radical species 1•-•K+ and 3 is delocalized over the π-system of the B2N3 and carbene rings. Reversible oxidation of 3 gives rise to a diboratriazole cation 4 featuring a 6π aromatic character. Moreover, treating 1•-•K+ with a half equivalent of a bis(NHC) produces a biradical species 5, in which there is little interaction between two radical moieties separated by the bis(NHC) linker, suggesting the dis-biradical property. 5 undergoes stepwise and reversible two-electron oxidation, establishing three formal oxidation states.
Collapse
Affiliation(s)
- Lizhao Zhu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhongtao Feng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Rei Kinjo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
46
|
Chang X, Arnold ME, Blinder R, Zolg J, Wischnat J, van Slageren J, Jelezko F, Kuehne AJC, von Delius M. A Stable Chichibabin Diradicaloid with Near-Infrared Emission. Angew Chem Int Ed Engl 2024; 63:e202404853. [PMID: 38695271 DOI: 10.1002/anie.202404853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 06/21/2024]
Abstract
Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM-TTM diradicaloid, which exhibits high diradical character, a striking sky-blue color and near-infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in "just the right positions", allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In-depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials.
Collapse
Affiliation(s)
- Xingmao Chang
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Mona E Arnold
- Institute of Macromolecular and Organic Chemistry and Center for Integrated Quantum Science and Technology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Rémi Blinder
- Institute of Quantum Optics and Center for Integrated Quantum Science and Technology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Julia Zolg
- Institute of Macromolecular and Organic Chemistry and Center for Integrated Quantum Science and Technology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jonathan Wischnat
- Institut für Physikalische Chemie and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Fedor Jelezko
- Institute of Quantum Optics and Center for Integrated Quantum Science and Technology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Alexander J C Kuehne
- Institute of Macromolecular and Organic Chemistry and Center for Integrated Quantum Science and Technology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
47
|
Yang C, Chen Z, Yu C, Cao J, Ke G, Zhu W, Liang W, Huang J, Cai W, Saha C, Sabuj MA, Rai N, Li X, Yang J, Li Y, Huang F, Guo X. Regulation of quantum spin conversions in a single molecular radical. NATURE NANOTECHNOLOGY 2024; 19:978-985. [PMID: 38448520 DOI: 10.1038/s41565-024-01632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Free radicals, generally formed through the cleavage of covalent electron-pair bonds, play an important role in diverse fields ranging from synthetic chemistry to spintronics and nonlinear optics. However, the characterization and regulation of the radical state at a single-molecule level face formidable challenges. Here we present the detection and sophisticated tuning of the open-shell character of individual diradicals with a donor-acceptor structure via a sensitive single-molecule electrical approach. The radical is sandwiched between nanogapped graphene electrodes via covalent amide bonds to construct stable graphene-molecule-graphene single-molecule junctions. We measure the electrical conductance as a function of temperature and track the evolution of the closed-shell and open-shell electronic structures in real time, the open-shell triplet state being stabilized with increasing temperature. Furthermore, we tune the spin states by external stimuli, such as electrical and magnetic fields, and extract thermodynamic and kinetic parameters of the transition between closed-shell and open-shell states. Our findings provide insights into the evolution of single-molecule radicals under external stimuli, which may proof instrumental for the development of functional quantum spin-based molecular devices.
Collapse
Affiliation(s)
- Caiyao Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Centre, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, P. R. China
| | - Zhongxin Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, P. R. China
| | - Cuiju Yu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, P. R. China
| | - Jiawen Cao
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Centre, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Guojun Ke
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, P. R. China
| | - Weiya Zhu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, P. R. China
| | - Weixuan Liang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, P. R. China
| | - Jiaxing Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, P. R. China
| | - Wanqing Cai
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, P. R. China
| | - Chinmoy Saha
- Dave C. Swalm School of Chemical Engineering and Centre for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS, USA
| | - Md Abdus Sabuj
- Dave C. Swalm School of Chemical Engineering and Centre for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS, USA
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering and Centre for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS, USA
| | - Xingxing Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, P. R. China.
| | - Jinlong Yang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, P. R. China
| | - Yuan Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, P. R. China.
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, P. R. China.
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Centre, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China.
- Centre of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
48
|
Shu Y, Luo Y, Wei H, Peng L, Liang J, Zhai B, Ding L, Fang Y. Fabrication of Large-Area Multi-Stimulus Responsive Thin Films via Interfacially Confined Irreversible Katritzky Reaction. Angew Chem Int Ed Engl 2024; 63:e202402453. [PMID: 38622832 DOI: 10.1002/anie.202402453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Fabrication of large-area thin films through irreversible reactions remains a formidable task. This study reports a breakthrough strategy for in situ synthesis of large-area, free-standing, robust and multi-stimulus responsive thin films through a catalyst-free and irreversible Katritzky reaction at a liquid-liquid interface. The as resulted films are featured with adjustable thickness of 1-3 μm and an area up to 50 cm2. The thin films exhibit fast photo-mechanical motions (a response time of ca 0.1 s), vapor-mechanical motions, as well as photo-chromic and solvato-chromic behaviors. It was revealed that the reason behind the observable motions is proton transfer from the imine groups to the carbonyl structures within the film induced by photo- and/or dimethyl sulfoxide-stimulus. In addition, the films can harvest anionic radicals and the radicals as captured can be efficiently degraded under UV light illumination. This study provides a new strategy for fabricating smart thin films via interfacially confined irreversible Katritzky reaction.
Collapse
Affiliation(s)
- Yuanhong Shu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hexi Wei
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Lingya Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Jingjing Liang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Binbin Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
49
|
Zhang Z, Xiong Z, Zhang J, Chu B, Liu X, Tu W, Wang L, Sun JZ, Zhang C, Zhang H, Zhang X, Tang BZ. Near-Infrared Emission Beyond 900 nm from Stable Radicals in Nonconjugated Poly(diphenylmethane). Angew Chem Int Ed Engl 2024; 63:e202403827. [PMID: 38589299 DOI: 10.1002/anie.202403827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/10/2024]
Abstract
Organic radicals with narrow energy gaps are highly sought-after for the production of near-infrared (NIR) fluorophores. However, the current repertoire of developed organic radicals is notably limited, facing challenges related to stability and low fluorescence efficiency. This study addresses these limitations by achieving stable radicals in nonconjugated poly(diphenylmethane) (PDPM). Notably, PDPM exhibits a well-balanced structural flexibility and rigidity, resulting in a robust intra-/inter-chain through-space conjugation (TSC). The stable radicals within PDPM, coupled with strong TSC, yield a remarkable full-spectrum emission spanning from blue to NIR beyond 900 nm. This extensive tunability is achieved through careful adjustments of concentration and excitation wavelength. The findings highlight the efficacy of polymerization in stabilizing radicals and introduce a novel approach for developing nonconjugated NIR emitters based on triphenylmethane subunits.
Collapse
Affiliation(s)
- Ziteng Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zuping Xiong
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Bo Chu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
| | - Xiong Liu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Weihao Tu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Wang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jing Zhi Sun
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Chengjian Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Haoke Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Xinghong Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Ben Zhong Tang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
50
|
Xue S, Dong Y, Lv X, Qiu F, Wang Y, Furuta H, Teranishi T, Wu F. Stabilization of the Neutral [25]Hexaphyrin(1.0.1.0.1.0) Radical by Hetero-Bimetal-Coordination. Chemistry 2024; 30:e202400812. [PMID: 38533748 DOI: 10.1002/chem.202400812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
Stabilization of hexaphyrin(1.0.1.0.1.0) (named "rosarin") in its 25π radical state is achieved using a hetero-bimetal-coordination strategy. The antiaromatic BF2 complex B-1 was first synthesized, and then rhodium ion was inserted into B-1 to produce the BF2/Rh(CO)2 mixed complex Rh-B-1 as a highly air-stable radical. The structures of B-1 and Rh-B-1 were determined by single-crystal X-ray diffractions, and the antiaromatic or radical character was identified by various spectroscopy evidence and theoretical calculations. Rh-B-1 exhibits excellent redox properties, enabling amphoteric aromatic-antiaromatic conversion to their 24/26π states. Compared to the 24/26π conjugation systems on the same skeleton, Rh-B-1 has the narrowest electrochemical and optical band gaps, with the longest absorption band at 1010 nm. The ring-current analysis reveals intense paratropic currents for B-1 and co-existing diatropic-paratropic currents for Rh-B-1. This hetero-bimetal-coordination system provides a novel platform for organic radical stabilization on porphyrinoids, showing the prospect of modulating ligand oxidation states through rational coordination design.
Collapse
Affiliation(s)
- Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Yuting Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yue Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Hiroyuki Furuta
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Toshiharu Teranishi
- Graduate School of Science and Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Fan Wu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|