1
|
Li YQ, Zhao H, Han E, Jiang Z, Bai Q, Guan YM, Zhang Z, Wu T, Wang P. Dynamic selection in metallo-organic cube Cd II 8L 4 conformations induced by perfluorooctanoate encapsulation. Chem Sci 2024; 16:364-370. [PMID: 39620083 PMCID: PMC11604167 DOI: 10.1039/d4sc07105k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Metallo-organic cages possess flexibility comparable to that of biological receptors and can alter their conformations to better accommodate guest species due to the dynamic reversibility of the coordination bond. Induced fit is widely accepted involving conformation change of the host, while few definitive examples are related to conformation selection. Herein, we report the generation of metallo-organic cube CdII 8L4 with two coexisting conformations, which have been fully confirmed by NMR, ESI-MS and single-crystal X-ray diffraction analysis. The specific guest perfluorooctanoate PFOA selectively binds to the active conformer C 2h-1 to form the PFOA⊂C 2h-1 complex. Furthermore, conformer D 2-2 isomerizes to conformer C 2h-1 in the presence of PFOA, for maximizing the guest binding affinity. This study provides an effective working paradigm for conformation selection, facilitating the understanding of the fundamental mechanism of molecular recognition.
Collapse
Affiliation(s)
- Yu-Qing Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Ermeng Han
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Zhiyuan Jiang
- Department of Chemistry, The University of Hong Kong Hong Kong SAR 999077
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Yu-Ming Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Pingshan Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
2
|
Gemen J, Stövesand B, Glorius F, Ravoo BJ. Surface Tension Manipulation with Visible Light through Sensitized Disequilibration of Photoswitchable Amphiphiles. Angew Chem Int Ed Engl 2024; 63:e202413209. [PMID: 39145431 DOI: 10.1002/anie.202413209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Azoarene isomerization lies at the heart of numerous applications, from catalysis or energy storage to photopharmacology. While efficient switching between their E and Z isomers predominantly relies on UV light, a recent study by Klajn and co-workers introduced visible light sensitization of E azoarenes and their subsequent isomerization as a tool coined disequilibration by sensitization under confinement (DESC) to obtain high yields of the Z isomer. This host-guest approach is, however, still constrained to minimally substituted azoarenes with limited applicability in advanced molecular systems. Herein, we expand DESC for the assembly of surfactants at the air-water interface. Leveraging our expertise with photoswitchable amphiphiles, we induce substantial alterations of the water surface tension through reversible arylazopyrazole isomerization. After studying the binding of charged surfactants to the host, we find that the surface activity differences upon visible light switching for both isomers are comparable to those obtained by UV light excitation. The method is demonstrated on a large concentration range and can be activated using green or red light, depending on the sensitizer chosen. The straightforward implementation of photoswitch sensitization in a complex molecular network showcases how DESC enables the improvement of existing systems and the development of novel applications driven by visible light.
Collapse
Affiliation(s)
- Julius Gemen
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Bastian Stövesand
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Frank Glorius
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
3
|
Niyas MA, Shoyama K, Würthner F. Ternary π-π Stacking Complexes by Allosteric Regulation in Multilayer Nanographenes. J Am Chem Soc 2024; 146:29728-29734. [PMID: 39423344 DOI: 10.1021/jacs.4c11119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Construction of π-π stacking supramolecular complexes with more than two different components is challenging due to the weak and directionless nature of dispersion interactions. Here, we report ternary complexes of a ditopic nanographene tetraimide (1), α-substituted phthalocyanine (Pc), and polyaromatic hydrocarbons (PAHs) in solution and the crystalline state via allosteric regulation. Binding of one Pc gives rise to significant distortion and conformational changes in 1 that in turn lead to the inhibition of the second binding of Pc. The conformational changes associated with first binding allowed an allosteric binding of a third component (PAHs) to form ternary complexes in solution. 1H NMR titration revealed moderately high thermodynamic stability for the ternary complexes in CDCl3. Competition between allosterically regulated ternary complexes ([Pc·1·PAH]) and 1:2 stoichiometric binary complexes of 1 with PAHs ([PAH·1·PAH]) was elucidated. Further, the selective formation of ternary complexes in solution led to the generation of ternary cocrystals from a 1:1:1 mixture of three components in solution. Our work shows that large π-conjugated nanographenes designed with allosteric recognition sites allow the construction of multilayer ternary complexes in solution and the solid state even with dispersive π-π interactions.
Collapse
Affiliation(s)
- M A Niyas
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
4
|
Chakraborty D, Kaur N, Sahoo J, Hickey N, De M, Mukherjee PS. Host-Guest Interactions Induced Enhancement in Oxidase-Like Activity of a Benzothiadiazole Dye Inside an Aqueous Pd 8L 4 Barrel. J Am Chem Soc 2024; 146:24901-24910. [PMID: 39197147 DOI: 10.1021/jacs.4c05899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The effect of host-guest interactions on the chemistry of encapsulated molecules is a fascinating field of research that has gained momentum in recent years. Much of the work in this field has been focused on the effect of such interactions on catalysis and photoluminescence of encapsulated dyes. However, the effect of such interactions on related photoinduced processes, such as photoregulated oxidase-mimicking activity, has not been explored much. Herein, we report a unique example of enhancement of oxidase-like activity of a benzothiadiazole dye (G1) in water through encapsulation within a M8L4 molecular barrel (1). Favorable host-guest interactions helped the encapsulated guest G1 to have better photoinduced electron transfer to molecular oxygen leading to increased production of superoxide radical anions and oxidase-like activity. Furthermore, encapsulation inside 1 also caused a change in the redox potentials of the guest (G1) which after photoinduced electron transfer produced a better oxidizing agent than free G1. These phenomena combined to enhance the oxidase-like activity of dye G1 upon encapsulation inside cage 1. The present report demonstrates a unique effect of host-guest chemistry on photoregulated processes.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Navjot Kaur
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Lu Z, Luciani L, Li S, Nesterov VN, Zuccaccia C, Macchioni A, Fripp JL, Zhang W, Omary MA, Galassi R. A Broadened Class of Donor-Acceptor Stacked Macrometallacyclic Adducts of Different Coinage Metals. Chemistry 2024; 30:e202401576. [PMID: 38735852 DOI: 10.1002/chem.202401576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
A yet-outstanding supramolecular chemistry challenge is isolation of novel varieties of stacked complexes with finely-tuned donor-acceptor bonding and optoelectronic properties, as herein reported for binary adducts comprising two different cyclic trinuclear complexes (CTC@CTC'). Most previous attempts focused only on 1-2 factors among metal/ligand/substituent combinations, resulting in heterobimetallic complexes. Instead, here we show that, when all 3 factors are carefully considered, a broadened variety of CTC@CTC' stacked pairs with intuitively-enhanced intertrimer coordinate-covalent bonding strength and ligand-ligand/metal-ligand dispersion are attained (dM-M' 2.868(2) Å; ΔE>50 kcal/mol, an order of magnitude higher than aurophilic/metallophilic interactions). Significantly, CTC@CTC' pairs remain intact/strongly-bound even in solution (Keq 4.67×105 L/mol via NMR/UV-vis titrations), and the gas phase (mass spectrometry revealing molecular peaks for the entire CTC@CTC' units in sublimed samples), rather than simple co-crystal formation. Photo-/electro-luminescence studies unravel metal-centered phosphorescence useful for novel all metal-organic light-emitting diodes (MOLEDs) optoelectronic device concepts. This work manifests systematic design of supramolecular bonding and multi-faceted spectral properties of pure metal-organic macrometallacyclic donor/acceptor (inorganic/inorganic) stacks with remarkably-rich optoelectronic properties akin to well-established organic/organic and organic/inorganic analogues.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Chemistry, University of North Texas, Denton, Texas, 76203, USA
| | - Lorenzo Luciani
- School of Science and Technology, Chemistry Division, University of Camerino, ChIP Via Madonna delle Carceri, 10, I-62032, Camerino, Italy
| | - Shan Li
- Department of Chemistry, University of North Texas, Denton, Texas, 76203, USA
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas, Denton, Texas, 76203, USA
| | - Cristiano Zuccaccia
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, I-06123, Perugia, Italy
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, I-06123, Perugia, Italy
| | - Jacob L Fripp
- Department of Chemistry, University of North Texas, Denton, Texas, 76203, USA
| | - Weijie Zhang
- Department of Chemistry, University of North Texas, Denton, Texas, 76203, USA
| | - Mohammad A Omary
- Department of Chemistry, University of North Texas, Denton, Texas, 76203, USA
| | - Rossana Galassi
- School of Science and Technology, Chemistry Division, University of Camerino, ChIP Via Madonna delle Carceri, 10, I-62032, Camerino, Italy
| |
Collapse
|
6
|
Dalapati M, Das A, Maity P, Singha R, Ghosh S, Samanta D. N-Heteroatom Engineered Nonporous Amorphous Self-Assembled Coordination Cages for Capture and Storage of Iodine. Inorg Chem 2024; 63:15973-15983. [PMID: 39140114 DOI: 10.1021/acs.inorgchem.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Radioactive iodine isotopes from nuclear-related activities, present substantial risks to human health and the environment. Developing effective materials for the capture and storage of these hazardous molecules is paramount. Traditionally, nonporous solids were historically considered ineffective for adsorbing target species. In this study, we investigate the potential of four nonporous, amorphous, self-assembled coordination cages (C1, C2, C3, and C4) featuring varying numbers of nitrogen atoms within the core (pyridyl/triazine unit) and specific cavity sizes for iodine adsorption. These coordination cages demonstrate remarkable adsorption abilities for iodine in both vapor and solution phases, facilitated by enhanced electron-pair interactions. The cages exhibit high uptake capacities of up to 3.16 g g-1 at 75 °C, the highest among metal-organic cages and up to 434.29 mg g-1 in solution, highlighting the efficiency of these materials across different phases. Even at ambient temperature, they show significant iodine capture efficiency, with a maximum value of 1.5 g g-1. Furthermore, these robust materials can be recycled, enduring at least five reusable cycles without apparent fatigue. Overall, our findings present a "N-heteroatom engineering" approach for the development of recyclable amorphous containers for the capture and storage of iodine, contributing to the mitigation of nuclear-related risks.
Collapse
Affiliation(s)
- Monotosh Dalapati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Asesh Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Pankaj Maity
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Raghunath Singha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Dipak Samanta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
7
|
Huang YH, Lu YL, Cao ZM, Zhang XD, Liu CH, Xu HS, Su CY. Multipocket Cage Enables the Binding of High-Order Bulky and Drug Guests Uncovered by MS Methodology. J Am Chem Soc 2024; 146:21677-21688. [PMID: 39042557 DOI: 10.1021/jacs.4c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Achieving high guest loading and multiguest-binding capacity holds crucial significance for advancement in separation, catalysis, and drug delivery with synthetic receptors; however, it remains a challenging bottleneck in characterization of high-stoichiometry guest-binding events. Herein, we describe a large-sized coordination cage (MOC-70-Zn8Pd6) possessing 12 peripheral pockets capable of accommodating multiple guests and a high-resolution electrospray ionization mass spectrometry (HR-ESI-MS)-based method to understand the solution host-guest chemistry. A diverse range of bulky guests, varying from drug molecules to rigid fullerenes as well as flexible host molecules of crown ethers and calixarenes, could be loaded into open pockets with high capacities. Notably, these hollow cage pockets provide multisites to capture different guests, showing heteroguest coloading behavior to capture binary, ternary, or even quaternary guests. Moreover, a pair of commercially applied drugs for the combination therapy of chronic lymphocytic leukemia (CLL) has been tested, highlighting its potential in multidrug delivery for combined treatment.
Collapse
Affiliation(s)
- Yin-Hui Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Lin Lu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhong-Min Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Dong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen-Hui Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hai-Sen Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Dey S, Aggarwal M, Chakraborty D, Mukherjee PS. Uncovering tetrazoles as building blocks for constructing discrete and polymeric assemblies. Chem Commun (Camb) 2024; 60:5573-5585. [PMID: 38738480 DOI: 10.1039/d4cc01616e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Metal-organic self-assembly with flexible moieties is a budding field of research due to the possibility of the formation of unique architectures. Tetrazole, characterised by four nitrogen atoms in a five-member ring, exhibits immense potential as a component. Tetrazole offers four coordination sites for binding to the metal centre with nine distinct binding modes, leading to various assemblies. This review highlights different polymeric and discrete tetrazole-based assemblies and their functions. The meticulous manipulation of stoichiometry, ligands, and metal ions required for constructing discrete assemblies has also been discussed. The different applications of these architectures in separation, catalysis and detection have also been accentuated. The latter section of the review consolidates tetrazole-based cage composites, highlighting their applications in cell imaging and photocatalytic applications.
Collapse
Affiliation(s)
- Soumya Dey
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Medha Aggarwal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
9
|
Wang R, Li WB, Deng JY, Han H, Chen FY, Li DY, Jing LB, Song Z, Fu R, Guo DS, Cai K. Adaptive and Ultrahigh-Affinity Recognition in Water by Sulfated Conjugated Corral[5]arene. Angew Chem Int Ed Engl 2023:e202317402. [PMID: 38078790 DOI: 10.1002/anie.202317402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 12/29/2023]
Abstract
The pursuit of synthetic receptors with high binding affinities has long been a central focus in supramolecular chemistry, driven by their significant practical relevance in various fields. Despite the numerous synthetic receptors that have been developed, most exhibit binding affinities in the micromolar range or lower. Only a few exceptional receptors achieve binding affinities exceeding 109 M-1 , and their substrate scopes remain rather limited. In this context, we introduce SC[5]A, a conjugated corral-shaped macrocycle functionalized with ten sulfate groups. Owing to its deep one-dimensional confined hydrophobic cavity and multiple sulfate groups, SC[5]A displays an extraordinarily high binding strength of up to 1011 M-1 towards several size-matched, rod-shaped organic dications in water. Besides, its conformation exhibits good adaptability, allowing it to encapsulate a wide range of other guests with diverse molecular sizes, shapes, and functionalities, exhibiting relatively strong affinities (Ka =106 -108 M-1 ). Additionally, we've explored the preliminary application of SC[5]A in alleviating blood coagulation induced by hexadimethrine bromide in vitro and in vivo. Therefore, the combination of ultrahigh binding affinities (towards complementary guests) and adaptive recognition capability (towards a wide range of functional guests) of SC[5]A positions it as exceptionally valuable for numerous practical applications.
Collapse
Affiliation(s)
- Ruiguo Wang
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Wen-Bo Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Jia-Ying Deng
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Han Han
- College of Chemistry, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong SAR, China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Dai-Yuan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Li-Bo Jing
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Zihang Song
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Rong Fu
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Kang Cai
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| |
Collapse
|
10
|
Hema K, Grommet AB, Białek MJ, Wang J, Schneider L, Drechsler C, Yanshyna O, Diskin-Posner Y, Clever GH, Klajn R. Guest Encapsulation Alters the Thermodynamic Landscape of a Coordination Host. J Am Chem Soc 2023; 145. [PMID: 37917939 PMCID: PMC10655118 DOI: 10.1021/jacs.3c08666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
The architecture of self-assembled host molecules can profoundly affect the properties of the encapsulated guests. For example, a rigid cage with small windows can efficiently protect its contents from the environment; in contrast, tube-shaped, flexible hosts with large openings and an easily accessible cavity are ideally suited for catalysis. Here, we report a "Janus" nature of a Pd6L4 coordination host previously reported to exist exclusively as a tube isomer (T). We show that upon encapsulating various tetrahedrally shaped guests, T can reconfigure into a cage-shaped host (C) in quantitative yield. Extracting the guest affords empty C, which is metastable and spontaneously relaxes to T, and the T⇄C interconversion can be repeated for multiple cycles. Reversible toggling between two vastly different isomers paves the way toward controlling functional properties of coordination hosts "on demand".
Collapse
Affiliation(s)
- Kuntrapakam Hema
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Angela B. Grommet
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Michał J. Białek
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383 Wrocław, Poland
| | - Jinhua Wang
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Laura Schneider
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Christoph Drechsler
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Oksana Yanshyna
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Guido H. Clever
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Rafal Klajn
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
- Institute
of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
11
|
Ren YY, Deng BY, Liao ZH, Zhou ZR, Tung CH, Wu LZ, Wang F. A Smart Single-Fluorophore Polymer: Self-Assembly Shapechromic Multicolor Fluorescence and Erasable Ink. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307971. [PMID: 37743568 DOI: 10.1002/adma.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Indexed: 09/26/2023]
Abstract
A novel smart fluorescent polymer polyethyleneimine-grafted pyrene (PGP) is developed by incorporating four stimuli-triggers at molecular level. The triggers are amphiphilicity, supramolecular host-guest sites, pyrene fluorescence indicator, and reversible chelation sites. PGP exhibits smart deformation and shape-dependent fluorescence in response to external stimuli. It can deform into three typical shapes with a characteristic fluorescence color, namely, spherical core-shell micelles of cyan-green fluorescence, standard rectangular nanosheets of yellow fluorescence, and irregular branches of deep-blue fluorescence. A quasi-reversible deformation between the first two shapes can be dynamically manipulated. Moreover, driven by reversible coordination and the resulting intramolecular photoinduced electron transfer, PGP can be used as an aqueous fluorescence ink with erasable and recoverable properties. The fluorescent patterns printed by PGP ink on paper can be rapidly erased and recovered by simple spraying a sequence of Cu2+ and ethylene diamine tetraacetic acid aqueous solutions. This erase/recover transformation can be repeated multiple times on the same paper. The multiple stimulus responsiveness of PGP makes it have potential applications in nanorobots, sensing, information encryption, and anticounterfeiting.
Collapse
Affiliation(s)
- Ying-Yi Ren
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bo-Yi Deng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zi-Hao Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zi-Rong Zhou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
12
|
Gemen J, Church JR, Ruoko TP, Durandin N, Białek MJ, Weißenfels M, Feller M, Kazes M, Odaybat M, Borin VA, Kalepu R, Diskin-Posner Y, Oron D, Fuchter MJ, Priimagi A, Schapiro I, Klajn R. Disequilibrating azobenzenes by visible-light sensitization under confinement. Science 2023; 381:1357-1363. [PMID: 37733864 DOI: 10.1126/science.adh9059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Photoisomerization of azobenzenes from their stable E isomer to the metastable Z state is the basis of numerous applications of these molecules. However, this reaction typically requires ultraviolet light, which limits applicability. In this study, we introduce disequilibration by sensitization under confinement (DESC), a supramolecular approach to induce the E-to-Z isomerization by using light of a desired color, including red. DESC relies on a combination of a macrocyclic host and a photosensitizer, which act together to selectively bind and sensitize E-azobenzenes for isomerization. The Z isomer lacks strong affinity for and is expelled from the host, which can then convert additional E-azobenzenes to the Z state. In this way, the host-photosensitizer complex converts photon energy into chemical energy in the form of out-of-equilibrium photostationary states, including ones that cannot be accessed through direct photoexcitation.
Collapse
Affiliation(s)
- Julius Gemen
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jonathan R Church
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tero-Petri Ruoko
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33101 Tampere, Finland
| | - Nikita Durandin
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33101 Tampere, Finland
| | - Michał J Białek
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383 Wrocław, Poland
| | - Maren Weißenfels
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Moran Feller
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miri Kazes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Magdalena Odaybat
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London W12 7SL, UK
| | - Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Rishir Kalepu
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan Oron
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matthew J Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London W12 7SL, UK
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33101 Tampere, Finland
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Rafal Klajn
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
13
|
Liu HK, Ronson TK, Wu K, Luo D, Nitschke JR. Anionic Templates Drive Conversion between a Zn II9L 6 Tricapped Trigonal Prism and Zn II6L 4 Pseudo-Octahedra. J Am Chem Soc 2023. [PMID: 37440669 PMCID: PMC10375523 DOI: 10.1021/jacs.3c03981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
This work introduces the use of 8-aminoquinoline subcomponents to generate complex three-dimensional structures. Together with a tris(formylpyridine), 8-aminoquinoline condensed around ZnII templates to produce a tris(tridentate) ligand. This ligand is incorporated into either a tricapped trigonal prismatic ZnII9L6 structure or a pair of pseudo-octahedral ZnII6L4 diastereomers, with S4 and D2 symmetries. Introduction of a methyl group onto the aminoquinoline modulated the coordination sphere of ZnII, which favored the ZnII9L6 structure and disfavored the ZnII6L4 assembly. The tricapped trigonal prismatic ZnII9L6 architecture converted into a single ZnII6L4 cage diastereomer following the addition of a dianionic 4,4'-dinitrostilbene-2,2'-disulfonate guest. Four of these guests clustered tightly at the four windows of the ZnII6L4 cage, held in place through electrostatic interactions and hydrogen bonding, stabilize a single diastereomeric configuration with S4 symmetry.
Collapse
Affiliation(s)
- Hua-Kui Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Dong Luo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
14
|
Xia ZJ, Zhong YM, Hu SJ, Cai LX, Sun QF. Dynamic Interconversion and Induced-Fit Guest Binding with Two Macrocycle-Based Coordination Cages. Inorg Chem 2023; 62:8293-8299. [PMID: 37184566 DOI: 10.1021/acs.inorgchem.3c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We report the syntheses and host-guest chemistry of two interconvertible coordination cages, Pd2L2 and Pd1L1, from a dynamic macrocycle ligand (L) and a cis-blocking (tmen)Pd(NO3)2 (tmen = tetramethylethylenediamine) unit (Pd). The water-soluble macrocyclic L, which can bind various polycyclic aromatic hydrocarbon (PAH) guests in its cis-conformation, was constructed via four pyridinium bonds between two 2,4,6-tri(4-pyridyl)-1,3,5-triazine [TPT] panels and two p-xylene bridges. We selectively formed each cage either by changing the reaction concentration/solvent/temperature or through induced-fit guest encapsulation, while direct assembly of L and Pd resulted in a mixture of Pd2L2 and Pd1L1 in equilibrium. X-ray structures of the free ligand and the host-guest complexes confirmed the induce-fit adaptive changes in the ligand's conformation and the cage's cavity. This work demonstrates a useful strategy for designing multistimuli-responsive supramolecular hosts by coordination self-assembly with macrocyclic ligands featuring rich conformational freedom.
Collapse
Affiliation(s)
- Zi-Jun Xia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ying-Mei Zhong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
15
|
Wang Y, Wu H, Jones LO, Mosquera MA, Stern CL, Schatz GC, Stoddart JF. Color-Tunable Upconversion-Emission Switch Based on Cocrystal-to-Cocrystal Transformation. J Am Chem Soc 2023; 145:1855-1865. [PMID: 36642916 DOI: 10.1021/jacs.2c11425] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cocrystal engineering, involving the assembly of two or more components into a highly ordered solid-state superstructure, has emerged as a popular strategy for tuning the photophysical properties of crystalline materials. The reversible co-assembly and disassembly of multicomponent cocrystals and their reciprocal transformation in the solid state remain challenging objectives. Herein, we report a color-tunable upconversion-emission switch based on the interconversion between two cocrystals. One red- and one yellow-emissive cocrystal, composed of an electron-deficient naphthalenediimide-based triangular macrocycle and different electron donors, have been obtained. The red- and yellow-emissive cocrystals undergo reversible transformations on exchanging the electron donors. Benefiting from intermolecular charge transfer interactions, the two cocrystals display superior two-photon excited upconversion emission. Accompanying the interconversion of the two cocrystals, their luminescent color changes between red and yellow, forming a dual-color upconversion-emission switch. This research provides a rare yet critical example involving precise control of cocrystal-to-cocrystal transformation and affords a reference for fabricating color-tunable nonlinear optical materials in the solid state.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Martín A Mosquera
- Department of Chemistry and Biochemistry, Montana State University, 103 Chemistry and Biochemistry Building, Bozeman, Montana 59717, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
16
|
Thaggard GC, Haimerl J, Park KC, Lim J, Fischer RA, Maldeni Kankanamalage BKP, Yarbrough BJ, Wilson GR, Shustova NB. Metal-Photoswitch Friendship: From Photochromic Complexes to Functional Materials. J Am Chem Soc 2022; 144:23249-23263. [PMID: 36512744 DOI: 10.1021/jacs.2c09879] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cooperative metal-photoswitch interfaces comprise an application-driven field which is based on strategic coupling of metal cations and organic photochromic molecules to advance the behavior of both components, resulting in dynamic molecular and material properties controlled through external stimuli. In this Perspective, we highlight the ways in which metal-photoswitch interplay can be utilized as a tool to modulate a system's physicochemical properties and performance in a variety of structural motifs, including discrete molecular complexes or cages, as well as periodic structures such as metal-organic frameworks. This Perspective starts with photochromic molecular complexes as the smallest subunit in which metal-photoswitch interactions can occur, and progresses toward functional materials. In particular, we explore the role of the metal-photoswitch relationship for gaining fundamental knowledge of switchable electronic and magnetic properties, as well as in the design of stimuli-responsive sensors, optically gated memory devices, catalysts, and photodynamic therapeutic agents. The abundance of stimuli-responsive systems in the natural world only foreshadows the creative directions that will uncover the full potential of metal-photoswitch interactions in the coming years.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States.,Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Roland A Fischer
- Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
17
|
Wang J, Avram L, Diskin-Posner Y, Białek MJ, Stawski W, Feller M, Klajn R. Altering the Properties of Spiropyran Switches Using Coordination Cages with Different Symmetries. J Am Chem Soc 2022; 144:21244-21254. [DOI: 10.1021/jacs.2c08901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jinhua Wang
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michał J. Białek
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50383 Wrocław, Poland
| | - Wojciech Stawski
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moran Feller
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|