1
|
Ji J, Wang Y, Li C, Xu F, Jiang M. Safe detoxification on acid-washed activated carbon combined with chitosan for aflatoxins from contaminated peanut oil. Mycotoxin Res 2024; 40:667-679. [PMID: 39256275 DOI: 10.1007/s12550-024-00559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Aflatoxins are one of the most toxic mycotoxins and can cause serious harm to humans and animals. Adsorption is a practical decontamination technique favored by the industry because of its advantages of low cost, speed and simplicity, and environmental friendliness. In this work, the adsorption features of activated carbon and chitosan were fabricated in a composite through chemical co-precipitation to improve its properties for adsorption. Furthermore, the capacity of the synthesized chitosan and acid-washed activated carbon composite (CS-AAC) to attenuate the aflatoxins in contaminated peanut oil and the adsorption capacity at different initial aflatoxins content, contact duration, and temperature were evaluated. The results showed a higher adsorption capacity (removal efficiency to 93.45% of AFB1, 94.05% of AFB2, 89.16% of AFG1, 83.26% of AFG2). The Freundlich isothermal and D-R model and the pseudo-second-order rate expression both implied a good correlation with the test data and explained the adsorption mechanism well. The adsorption mechanism was found to be accomplished primarily via ion exchange and chelation. According to thermodynamic results (△G < 0, △H > 0, △S > 0), the adsorption process was endothermic and spontaneous. Compared to acid-washed activated carbon, CS-AAC enhanced the retention of VE and sterols (especially VE by 23%), and the safety of CS-AAC adsorbent was explored by cellular experiments. In conclusion, CS-AAC is a promising adsorbent material for the removal of aflatoxins from edible oils.
Collapse
Affiliation(s)
- Junmin Ji
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China.
| | - Yan Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Changjiang Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Fengyao Xu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Miaomiao Jiang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| |
Collapse
|
2
|
Doan L, Nguyen TTT, Tran K, Huynh KG. Surface Modifications of Superparamagnetic Iron Oxide Nanoparticles with Chitosan, Polyethylene Glycol, Polyvinyl Alcohol, and Polyvinylpyrrolidone as Methylene Blue Adsorbent Beads. Polymers (Basel) 2024; 16:1839. [PMID: 39000694 PMCID: PMC11244044 DOI: 10.3390/polym16131839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Due to the negative impacts the dye may have on aquatic habitats and human health, it is often found in industrial effluent and poses a threat to public health. Hence, to solve this problem, this study developed magnetic adsorbents that can remove synthetic dyes like methylene blue. The adsorbent, in the form of beads, consists of a polymer blend of chitosan, polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, and superparamagnetic iron oxide nanoparticles (average size of 19.03 ± 4.25 nm). The adsorption and desorption of MB from beads were carried out at pH values of 7 and 3.85, respectively. At a concentration of 9 mg/L, the loading capacity and the loading amount of MB after 5 days peaked at 29.75 ± 1.53% and 297.48 ± 15.34 mg/g, respectively. Meanwhile, the entrapment efficiency of MB reached 29.42 ± 2.19% at a concentration of 8 mg/L. The cumulative desorption capacity of the adsorbent after 13 days was at its maximum at 7.72 ± 0.5%. The adsorption and desorption kinetics were evaluated.
Collapse
Affiliation(s)
- Linh Doan
- Department of Chemical Engineering, International University-Vietnam National University, Ho Chi Minh City 70000, Vietnam
- Nanomaterials Engineering Research & Development (NERD) Laboratory, International University-Vietnam National University, Ho Chi Minh City 70000, Vietnam
- School of Chemical and Environmental Engineering, International University-Vietnam National University, Ho Chi Minh City 70000, Vietnam
| | - Tam T T Nguyen
- Department of Chemical Engineering, International University-Vietnam National University, Ho Chi Minh City 70000, Vietnam
- Nanomaterials Engineering Research & Development (NERD) Laboratory, International University-Vietnam National University, Ho Chi Minh City 70000, Vietnam
- School of Chemical and Environmental Engineering, International University-Vietnam National University, Ho Chi Minh City 70000, Vietnam
| | - Khoa Tran
- Nanomaterials Engineering Research & Development (NERD) Laboratory, International University-Vietnam National University, Ho Chi Minh City 70000, Vietnam
- School of Chemical and Environmental Engineering, International University-Vietnam National University, Ho Chi Minh City 70000, Vietnam
| | - Khanh G Huynh
- Nanomaterials Engineering Research & Development (NERD) Laboratory, International University-Vietnam National University, Ho Chi Minh City 70000, Vietnam
- School of Biomedical Engineering, International University-Vietnam National University, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
3
|
Mortada WI, Ghaith MM, Khedr NE, Ellethy MI, Mohsen AW, Shafik AL. Mesoporous magnetic biochar derived from common reed (Phragmites australis) for rapid and efficient removal of methylene blue from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42330-42341. [PMID: 38866933 PMCID: PMC11219389 DOI: 10.1007/s11356-024-33860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
A novel mesoporous magnetic biochar (MBC) was prepared, using a randomly growing plant, i.e., common reed, as an exporter of carbon, and applied for removal of methylene blue (MB) from aqueous solutions. The prepared sorbent was characterized by nitrogen adsorption/desorption isotherm, saturation magnetization, pH of point of zero charges (pHPZC), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The obtained MBC has a specific surface area of 94.2 m2 g-1 and a pore radius of 4.1 nm, a pore volume of 0.252 cm3 g-1, a saturation magnetization of 0.786 emu g-1, and a pHPZC of 6.2. Batch adsorption experiments were used to study the impact of the physicochemical factors involved in the adsorption process. The findings revealed that MB removal by MBC was achieved optimally at pH 8.0, sorbent dosage of 1.0 g L-1, and contact time of 30 min. At these conditions, the maximum adsorption was 353.4 mg g-1. Furthermore, the adsorption isotherm indicated that the Langmuir pattern matched well with the experimental data, compared to the Freindlich model. The ∆G was - 6.7, - 7.1, and - 7.5 kJ mol-1, at 298, 308, and 318 K, respectively, indicating a spontaneous process. The values of ∆H and ∆S were 5.71 kJ mol-1 and 41.6 J mol-1 K-1, respectively, suggesting endothermic and the interaction between MB and MBC is van der Waals type. The absorbent was regenerated and reused for four cycles after elution with 0.1 mol L-1 of HCl. This study concluded that the magnetic biochar generated from common reed has tremendous promise in the practical use of removing MB from wastewater.
Collapse
Affiliation(s)
| | - Mahmoud Mohsen Ghaith
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Nada Elsayed Khedr
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mostafa Ibrahim Ellethy
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Alaa Waleed Mohsen
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amira Labib Shafik
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Mishra A, Pandey J, Ojha H, Sharma M, Kaur L, Pandey A, Sharma P, Murab S, Singhal R, Pathak M. A green and economic approach to synthesize magnetic Lagenaria siceraria biochar (γ-Fe 2O 3-LSB) for methylene blue removal from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34038-34055. [PMID: 38696013 DOI: 10.1007/s11356-024-33477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
In the printing and textile industries, methylene blue (a cationic azo dye) is commonly used. MB is a well-known carcinogen, and another major issue is its high content in industrial discharge. There are numerous removal methodologies that have been employed to remove it from industrial discharge; however, these current modalities have one or more limitations. In this research, a novel magnetized biochar (γ-Fe2O3-LSB) was synthesized using Lagenaria siceraria peels which were further magnetized via the co-precipitation method. The synthesized γ-Fe2O3-LSB was characterized using FTIR, X-ray diffraction, Raman, SEM-EDX, BET, and vibrating sample magnetometry (VSM) for the analysis of magnetic properties. γ-Fe2O3-LSB showed a reversible type IV isotherm, which is a primary characteristic of mesoporous materials. γ-Fe2O3-LSB had a specific surface area (SBET = 135.30 m2/g) which is greater than that of LSB (SBET = 11.54 m2/g). γ-Fe2O3-LSB exhibits a saturation magnetization value (Ms) of 3.72 emu/g which shows its superparamagnetic nature. The batch adsorption process was performed to analyze the adsorptive removal of MB dye using γ-Fe2O3-LSB. The adsorption efficiency of γ-Fe2O3-LSB for MB was analyzed by varying parameters like the initial concentration of adsorbate (MB), γ-Fe2O3-LSB dose, pH effect, contact time, and temperature. Adsorption isotherm, kinetic, and thermodynamics were also studied after optimizing the protocol. The non-linear Langmuir model fitted the best to explain the adsorption isotherm mechanism and resulting adsorption capacity ( q e =54.55 mg/g). The thermodynamics study showed the spontaneous and endothermic nature, and pseudo-second-order rate kinetics was followed during the adsorption process. Regeneration study showed that γ-Fe2O3-LSB can be used up to four cycles. In laboratory setup, the cost of γ-Fe2O3-LSB synthesis comes out to be 162.75 INR/kg which is low as compared to commercially available adsorbents. The results obtained suggest that magnetic Lagenaria siceraria biochar, which is economical and efficient, can be used as a potential biochar material for industrial applications in the treatment of wastewater.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| | - Jyoti Pandey
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| | - Himanshu Ojha
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Malti Sharma
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India
| | - Lajpreet Kaur
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Akhilesh Pandey
- Solid State Physics Laboratory, DRDO, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Pankaj Sharma
- BioX Center, School of Biosciences & Bioengineering, IIT Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Sumit Murab
- BioX Center, School of Biosciences & Bioengineering, IIT Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Rahul Singhal
- Department of Chemistry, Shivaji College, University of Delhi, Delhi, 110027, India
| | - Mallika Pathak
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
5
|
Tan YY, Abdul Raman AA, Zainal Abidin MII, Buthiyappan A. A review on sustainable management of biomass: physicochemical modification and its application for the removal of recalcitrant pollutants-challenges, opportunities, and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36492-36531. [PMID: 38748350 DOI: 10.1007/s11356-024-33375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/13/2024] [Indexed: 06/20/2024]
Abstract
Adsorption is one of the most efficient methods for remediating industrial recalcitrant wastewater due to its simple design and low investment cost. However, the conventional adsorbents used in adsorption have several limitations, including high cost, low removal rates, secondary waste generation, and low regeneration ability. Hence, the focus of the research has shifted to developing alternative low-cost green adsorbents from renewable resources such as biomass. In this regard, the recent progress in the modification of biomass-derived adsorbents, which are rich in cellulosic content, through a variety of techniques, including chemical, physical, and thermal processes, has been critically reviewed in this paper. In addition, the practical applications of raw and modified biomass-based adsorbents for the treatment of industrial wastewater are discussed extensively. In a nutshell, the adsorption mechanism, particularly for real wastewater, and the effects of various modifications on biomass-based adsorbents have yet to be thoroughly studied, despite the extensive research efforts devoted to their innovation. Therefore, this review provides insight into future research needed in wastewater treatment utilizing biomass-based adsorbents, as well as the possibility of commercializing biomass-based adsorbents into viable products.
Collapse
Affiliation(s)
- Yan Ying Tan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abdul Aziz Abdul Raman
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohd Izzudin Izzat Zainal Abidin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Archina Buthiyappan
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Abdel Azim E, Samy M, Hanafy M, Mahanna H. Novel mint-stalks derived biochar for the adsorption of methylene blue dye: Effect of operating parameters, adsorption mechanism, kinetics, isotherms, and thermodynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120738. [PMID: 38574710 DOI: 10.1016/j.jenvman.2024.120738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
The pyrolysis of mint stalks and lemon peels was performed to synthesize mint-stalks (MBC) and lemon-peels (LBC) derived biochars for adsorbing methylene blue (MB). The preparation, characterization, and application of MBC in adsorption have not been reported in the literature. MBC showed higher surface area and carbon content than that of LBC. The removal ratios of MB were 87.5% and 60% within 90 min for MBC and LBC, respectively at pH 7, temperature of 30oC, adsorbent dose of 0.5 g/L, and MB concentration of 5 mg/L. The optimal MBC dose was 1 g/L achieving a removal efficiency of 93.6% at pH 7, temperature of 30oC, contact time of 90 min, and initial dye concentration of 5.0 mg/L. The adsorption efficiency decreased from 98.6% to 31.33% by raising the dye concentration from 3.0 mg/L to 30 mg/L. Further, the increase of adsorbent dose to 10 g/L could achieve 94.2%, 90.3%, 87.6%, and 84.1% removal efficiencies of MB in the case of initial concentrations of 200 mg/L, 300 mg/L, 400 mg/L, and 500 mg/L, respectively. MBC showed high stability in adsorbing MB under five cycles, and the performed analyses after adsorption reaffirmed the stability of MBC. The adsorption mechanism indicated that the adsorption of MB molecules on the biochar's surface was mainly because of the electrostatic interaction, hydrogen bonding, and π-π stacking. Pseudo-second-order and Langmuir models could efficiently describe the adsorption of MB on the prepared biochar. The adsorption process is endothermic and spontaneous based on the adsorption thermodynamics. The proposed adsorption system is promising and can be implemented on a bigger scale. Moreover, the prepared biochar can be implemented in other applications such as photocatalysis, periodate, and persulfate activation-based advanced oxidation processes.
Collapse
Affiliation(s)
- Eman Abdel Azim
- Environmental Engineering, Management and Technology, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| | - Mahmoud Samy
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| | - Mahmoud Hanafy
- Engineering Mathematics and Physics Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| | - Hani Mahanna
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
7
|
Chai Z, Liu B, Lv P, Bai Y, Wang J, Su W, Song X, Yu G, Xu G. Microwave synthesis of amino-functionalized MCM-41 from coal gasification fine slag for efficient bidirectional adsorption of anionic and cationic dyes. CHEMOSPHERE 2024; 351:141229. [PMID: 38272133 DOI: 10.1016/j.chemosphere.2024.141229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/19/2023] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Coal based solid waste has been recognized as a sustainable raw material for the preparation of high added value materials for wastewater treatment. In this paper, a preparation route was designed for the rapid, efficient, and low-cost preparation of MCM-41 zeolite using coal gasification fine slag as raw material. Functionalization modification of MCM-41 was carried out by grafting amino groups on its surface to improve its application performance. Moreover, the prepared functionalized material is used for bidirectional adsorption of anionic and cationic dyes. The experimental results indicate that MCM-41 zeolite with highly ordered pore structure was rapidly prepared using the advantages of fast heating and strong permeability of microwave synthesis method, with a specific surface area of up to 862.03 m2/g. Amine functionalized MCM-41 exhibits strong adsorption capacity for both cationic and anionic dyes, with maximum adsorption capacities for methylene blue and Congo red being 292.40 mg/g and 354.61 mg/g, respectively. The study of adsorption kinetics and adsorption mechanism indicate that the adsorption process is mainly controlled through chemical adsorption, including electrostatic attraction, hydrogen bonding, and π-π interactions. The results of this study will provide useful references for the use of coal based solid waste to prepare functional materials for the treatment of organic wastewater.
Collapse
Affiliation(s)
- Zhen Chai
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Peng Lv
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Yonghui Bai
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Jiaofei Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Weiguang Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xudong Song
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Guangsuo Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China; Institute of Clean Coal Technology, East China University of Science and Technology, Shanghai, 200237, China
| | - Guangyu Xu
- Shandong Yankuangguotuo Science & Engineering Co., Ltd., Zoucheng, 273500, China
| |
Collapse
|
8
|
Gayathiri M, Pulingam T, Lee KT, Mohd Din AT, Kosugi A, Sudesh K. Sustainable oil palm trunk fibre based activated carbon for the adsorption of methylene blue. Sci Rep 2023; 13:22137. [PMID: 38092816 PMCID: PMC10719241 DOI: 10.1038/s41598-023-49079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Activated carbon (AC) is becoming the limelight due to its widespread application as an adsorbent for wastewater treatment, gases, and catalysis. However, its high consumption and price have drawn more attention to the sustainable use of natural resources as precursor for AC production. This study focuses on synthesising AC from two types of oil palm trunk (OPT) fibres, a significant agricultural waste products produced by Malaysia's thriving palm oil industries. The BET surface area of about 2057.9 m2 g-1 was achieved by chemical activation with phosphoric acid (H3PO4). The efficiency of the synthesised AC was critically analysed based on the adsorption experiments with methylene blue (MB) by varying several parameters (dosage of adsorbent, pH, initial dye concentration, and temperature of the solution) to elucidate the adsorption mechanism(s). A maximum adsorption capacity of 320.4 mg g-1 at 50 °C was achieved, and the Temkin (r2 = 0.98, 0.95, 0.95) and Langmuir (r2 = 0.94, 0.93, 0.95) isotherm models fitted the adsorption process better than the Freundlich (r2 = 0.95, 0.90, 0.86) model. Besides, the pseudo-second-order model (r2 > 0.90) best described the adsorption process, favouring chemisorption over physisorption. Thermodynamics showed MB adsorption on AC was spontaneous except at the highest dye concentration. It was exothermic at lower dye concentrations (50 and 100 mg L-1) and endothermic at higher ones (300, 500, and 700 mg L-1). In a nutshell, this study reveals that OPT fibre is a promising precursor for synthesising highly porous AC for the adsorption of MB dye.
Collapse
Affiliation(s)
- Muniandy Gayathiri
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - K T Lee
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300, Nibong Tebal, Penang, Malaysia
| | | | - Akihiko Kosugi
- Japan International Research Center for Agricultural Sciences (JIRCAS), Biological Resources and Post-Harvest Division, 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
- University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
9
|
Mishra A, Ojha H, Pandey J, Tiwari AK, Pathak M. Adsorption characteristics of magnetized biochar derived from Citrus limetta peels. Heliyon 2023; 9:e20665. [PMID: 37818008 PMCID: PMC10560845 DOI: 10.1016/j.heliyon.2023.e20665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Agro-industrial waste is an alarming issue that needs to be addressed. Waste valorization is an effective technique to deal with such effectively. Synthesis of biochar from fruit waste is one of the emerging approaches for adsorption, energy storage, air purification, catalysis, and biogas production trending these days. Magnetized Citrus limetta biochar (MCLB) was synthesized from Citrus limetta peels and was magnetized using iron oxide. Magnetization of biochar increases its functionalities as well as makes its separation easy. The removal of Methylene Blue (MB) dye from an aqueous solution is achieved through the use of MCLB. Methylene Blue is a prominent and widely used cationic-azo dye in the textile and printing industries. The accumulation of MB in wastewater is the major problem as MB is reported as a carcinogenic agent. The removal of MB dye with MCLB was analyzed by adsorption studies, wherein the effect of factors influencing adsorption such as initial concentration of MB dye, MCLB dosage, the effect of pH, contact time, and adsorption isotherms were studied. Characterization of MCLB was carried out using various techniques, such as FTIR, VSM, XRD, SEM, RAMAN, and Zeta potential. The adsorption isotherm mechanism was well explained with the non-linear Langmuir isotherm model resulting in a good adsorption capacity (q e = 41.57 mg/g) of MCLB when MB (co = 60 mg/L, pH ~ 6.8, T = 273K). The thermodynamics analysis revealed that MB's spontaneous and endothermic adsorption onto the MCLB surface followed pseudo-second-order kinetics. The results obtained from this study suggest that the magnetized biochar derived from Citrus limetta peels has a wide range of potential applications in the treatment of dyeing wastewater.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| | - Himanshu Ojha
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Jyoti Pandey
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| | - Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| | - Mallika Pathak
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India
| |
Collapse
|
10
|
Farhadi H, Keramati N. Investigation of kinetics, isotherms, thermodynamics and photocatalytic regeneration of exfoliated graphitic carbon nitride/zeolite as dye adsorbent. Sci Rep 2023; 13:14098. [PMID: 37644162 PMCID: PMC10465547 DOI: 10.1038/s41598-023-41262-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
A novel exfoliated graphitic carbon nitride and clinoptilolite nanocomposites (Ex.g-C3N4/CP and g-C3N4/CP with a various ratios of g-C3N4 to CP) were prepared by facile method. This study evaluates the adsorption of methylene blue (MB) on the surface of synthesized adsorbents. The as-prepared composites were characterized by XRD, FT-IR, FESEM, BET and DRS. Batch experiments were carried out under various conditions, such as the amount of adsorbent and solution pH. The optimum batch experimental conditions were found under the response surface methodology. The Ex.g-C3N4/CP presented maximum removal of MB as compared to others. The removal efficiency of the as-prepared nanocomposite was significantly elevated owing to the synergistic effects. The adsorption capacities of MB (10 ppm) on Ex.g-C3N4/CP was 54.3 mg/g. The adsorption process by both composites (g-C3N4/CP and Ex.g-C3N4/CP) showed well-fitting with the Elovich kinetic model, and Langmuir isotherm. The thermodynamic study suggested that the adsorption of MB was a spontaneous and endothermic process. The reusability of g-C3N4/CP1:2 and Ex. g-C3N4/CP in removing of MB (10 ppm, pH = 9) was studied by photocatalytic regeneration under visible irradiation for three consecutive cycles. The results obtained from the experimental analyses showed that the removal of MB was easy treatment, eco-friendly, and high yield.
Collapse
Affiliation(s)
- Hajar Farhadi
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Narjes Keramati
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
| |
Collapse
|
11
|
Joshi V, Jindal MK, Sar SK. Approaching a discussion on the detachment of chlorpyrifos in contaminated water using different leaves and peels as bio adsorbents. Sci Rep 2023; 13:11186. [PMID: 37433845 DOI: 10.1038/s41598-023-38471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023] Open
Abstract
The emerging contaminant chlorpyrifos, an insecticide, is generally used in agricultural fields to control termites, ants, and mosquitoes for the proper growth of feed and food crops. Chlorpyrifos reaches water sources for multiple reasons, and people who use water from nearby sources is exposed to chlorpyrifos. Due to its overuse in modern agriculture, the level of chlorpyrifos in water has drastically grown. The present study aims to address the problem arising from the utilization of chlorpyrifos-contaminated water. Natural bioadsorbents Bael, Cauliflower, Guava leaves Watermelon, and lemon peel were employed to remove chlorpyrifos from contaminated water under specific conditions of various factors, such as initial adsorbate concentration, dose of bioadsorbent, contact time, pH, and temperature. Maximum removal efficiency of 77% was obtained with lemon peel. The maximum adsorption capacity (qe) was 6.37 mg g-1. The kinetic experiments revealed that the pseudo second order model (R2 = 0.997) provided a better explanation of the mechanism of sorption. The isotherm showed that chlorpyrifos adsorbed in lemon peel in a monolayer and was best suited by the Langmuir model (R2 = 0.993). The adsorption process was exothermic and spontaneous, according to thermodynamic data.
Collapse
Affiliation(s)
- Varsha Joshi
- Department of Chemistry, Government V.Y.T. PG Autonomous College, Durg, Chhattisgarh, India
| | - Manoj Kumar Jindal
- Department of Applied Chemistry, Bhilai Institute of Technology, Durg, 490001, India.
- Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, India.
| | - Santosh Kumar Sar
- Department of Applied Chemistry, Bhilai Institute of Technology, Durg, 490001, India
| |
Collapse
|
12
|
Einafshar N, Amiri Farmad H, Moshirian Farahi SM, Einafshar E. Nanocomposite with high adsorption activity developed using stabilized silver modified alumina and TiO 2-NPs incorporated into β-cyclodextrin-graphene oxide. Heliyon 2023; 9:e18162. [PMID: 37496914 PMCID: PMC10366481 DOI: 10.1016/j.heliyon.2023.e18162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Multifunctional nanocomposites Ag/Al2O3/TiO2@β-cyclodextrin-graphene oxide (AATG) incorporating graphene oxide sheets, TiO2, and Ag/Al2O3 nanoparticles were prepared in two steps. We benefited from the inherent properties of β-cyclodextrin to create a stable aqueous graphene solution capable of self-assembling in situ grown TiO2 nanoparticles on graphene nanosheets. Ag/Al2O3 catalysts with a high surface-to-volume ratio were prepared by a combustion technique in solution with urea as a new fuel. The synthesized nanoparticles were also characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analysis, and BJH pore analysis. FE-SEM was used to evaluate the morphology of β-cyclodextrin-graphene oxide, Ag/Al2O3 and AATG nanoplatforms. This research examined the use of AATG as a novel nanocomposite for removing methylene blue from water and compared its effectiveness with that of TiO2@β-cyclodextrin-graphene oxide (TG) as an intermediate material to assess the impact of the final composite and its components on absorption. The effect of pH, temperature, time, and dye concentration on the reaction rate was investigated. The results showed that at pH above 4, the adsorption rate of MB by AATG gradually increased to about 98%. The results also show that methylene blue is more effectively removed at higher temperatures, implying that the adsorption is temperature dependent and the elimination process is endothermic. The adsorption kinetics, isothermal studies, and thermodynamic analysis were also evaluated. The adsorption data showed excellent agreement with pseudo-second order models (R2 > 0.99) and the Langmuir isotherm. The AATG nanocomposites showed excellent adsorption activity, making them potential candidates for water treatment.
Collapse
Affiliation(s)
- Nafiseh Einafshar
- Faculty of Civil Engineering, Quchan University of Technology, Quchan, Iran
| | - Hamed Amiri Farmad
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Elham Einafshar
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Irshad A, Atif M, Ghani A, Ali B, Ahmad SA, Alex M. Experimental evaluation of cobalt adsorption capacity of walnut shell by organic acid activation. Sci Rep 2023; 13:7356. [PMID: 37147342 PMCID: PMC10163231 DOI: 10.1038/s41598-023-33902-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Cobalt, from industrial waste and nuclear laundry, possess health risk to human beings, animals and plants. Number of methods, other than adsorption, have been reported in literature for Co removal from waste water. In this research walnut shell powder after modification has been utilized for Co adsorption. First step of modification involved chemical treatment by four different organic acids for 72 h. Samples were collected at 24, 48 and 72 h. Second step involved thermal treatment of 72 h samples. Unmodified and modified particles have been analyzed by chemical methods and instruments i.e. UV spectrometer, FTIR, cyclic voltammetry (CV) and microscopic imaging. Thermally treated samples have shown augmented Co adsorption. CV analysis showed thermally treated samples with better capacitance. Particles modified by oxalic acid presented better Co adsorption. Oxalic acid treated particles activated for 72 h with thermal treatment provided maximum adsorption capacity 1327 ± 20.6 mg/g against Co(II) at pH 7, stirring 200 rpm, initial concentration 20 ml, adsorbent dosage (5 mg) and contact time 240 min at room temperature.
Collapse
Affiliation(s)
- Adnan Irshad
- Chemistry Department, University of Education Lahore (Vehari Campus), Vehari, Punjab, Pakistan
| | - Muhammad Atif
- Chemistry Department, University of Education Lahore (Vehari Campus), Vehari, Punjab, Pakistan
| | - Ambreen Ghani
- Chemistry Department, University of Education Lahore (Vehari Campus), Vehari, Punjab, Pakistan
| | - Basharat Ali
- Chemistry Department, University of Education Lahore (Vehari Campus), Vehari, Punjab, Pakistan
| | - Sheikh Asrar Ahmad
- Chemistry Department, University of Education Lahore (Vehari Campus), Vehari, Punjab, Pakistan
| | | |
Collapse
|
14
|
Subaihi A, Shahat A. Synthesis and characterization of super high surface area silica-based nanoparticles for adsorption and removal of toxic pharmaceuticals from aqueous solution. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
15
|
Rubangakene NO, Elkady M, Elwardany A, Fujii M, Sekiguchi H, Shokry H. Effective decontamination of methylene blue from aqueous solutions using novel nano-magnetic biochar from green pea peels. ENVIRONMENTAL RESEARCH 2023; 220:115272. [PMID: 36634893 DOI: 10.1016/j.envres.2023.115272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The conversion of agricultural waste into high-value carbon products has been an attractive area in waste management strategy. This study highlighted the synthesis and effectiveness of green pea peels (GPP), green pea biochar (GPBC), and nano-ferromagnetic green pea biochar (NFGPBC) by the ferrous/ferric co-precipitation synthesis method for eliminating cationic dyes molecules from solutions. The morphological, physicochemical, and structural properties of GPP, GPBC, and NFGPBC were approved by Scanning Electron Microscopy (SEM), Transmission Emission Microscopy (TEM), Energy Dispersive X-ray (EDX), Bruneau Emmett Teller (BET), Fourier Transform Infrared spectroscopy (FTIR), and X-ray Diffraction (XRD) techniques. Vibrating Sample Magnetometry (VSM) analysis confirmed the NFGPBC magnetization performance. The capacity of each adsorbent for methylene blue removal was evaluated at various parameters of material dosage (50-250 mg/150 mL), pH (2-12), initial concentration (50-250 mg/L), contact time (0-90 min) and temperature (20-60 °C). The three developed adsorbent materials GPP, GPBC, and NFGPBC, possessed reasonable BET surface areas of 0.6836, 372.54, and 147.88 m2g-1, and the corresponding monolayer adsorption capacities of 163.93, 217.40, and 175.44 mg/g, respectively. The superior performances of GPBC and NFGPBC were due to their increased surface area compared with the parent green pea peels (GPP). The results from adsorption kinetics studies of all prepared materials were pseudo-second-order and Elovich kinetics models. The thermodynamic parameters exhibited MB sorption's favorability, spontaneity, and endothermic nature. The NFGPBC material experienced Vander Waal forces, electrostatic interaction, hydrogen bonding, and hydrophobic interactions as predominant modes of the solid-liquid interaction. The regeneration, recycling, and reusability of the synthesized GPP, GPBC, and NFGPBC performed at five adsorption cycles revealed that NFGPBC demonstrated excellent cyclical performances attaining a minimum 8.9% loss in capacity due to paramagnetic properties. Thus, NFGPBC is a green, efficient, and eco-friendly material recommended for large-scale production and application in wastewater.
Collapse
Affiliation(s)
- Norbert Onen Rubangakene
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST, New Borg El- Arab City, 21934, Alexandria, Egypt.
| | - Marwa Elkady
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology (E-JUST, New Borg El- Arab City, 21934, Alexandria, Egypt; Fabrication Technologies Researches Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA- City), Egypt
| | - Ahmed Elwardany
- Energy Resources Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab, 21934, Egypt; Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro- Ku, Tokyo, 152-8552, Japan
| | - H Sekiguchi
- Chemical Science and Engineering Department, Tokyo Institute of Technology, S-4, 2-12-1 Ookayama, Meguro- Ku, Tokyo, 152-8552, Japan
| | - Hassan Shokry
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST, New Borg El- Arab City, 21934, Alexandria, Egypt; Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA- City), Egypt.
| |
Collapse
|
16
|
Orange peels magnetic activate carbon (MG-OPAC) composite formation for toxic chromium absorption from wastewater. Sci Rep 2023; 13:3402. [PMID: 36854794 PMCID: PMC9975187 DOI: 10.1038/s41598-023-30161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
This work prepared a composite of orange peels magnetic activated carbon (MG-OPAC). The prepared composite was categorized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), Energy-dispersive X-ray spectroscopy (EDX), Scanning Electron Microscopy (SEM) and vibrating-sample magnetometer (VSM) analyses. The MG-OPAC composite showed the surface area (155.09 m2/g), the total volume of pores (0.1768 cm3/g), and the mean diameter of pores (4.5604 nm). The saturation magnetization (Ms = 17.283 emu/g), remanence (Mr = 0.28999 emu/g) and coercivity (Hc = 13.714 G) were reported for the prepared MG-OPAC. Likewise, at room temperature, the MG-OPAC was in a super-paramagnetic state, which could be collected within 5 S (< 5 S) with an outside magnetic field. Influence of time of contact, absorbent dose, starting concentration of Cr6+ ions, and pH were tested to adjust the absorption process. The absorption behavior of MG-OPAC for hexavalent chromium was investigated by Langmuir (LIM), Freundlich (FIM) and Temkin (TIM) isotherm models (IMs). Applicability of LIM specifies that Cr6+ ions absorption procedure may be monolayer absorption. The maximum monolayer capacity (Qm) premeditated by LIM was 277.8 mg/g. Similarly, the absorption process was tested with different kinetic models like intraparticle diffusion (IPDM), pseudo-first-order (PFOM), Elovich (EM), pseudo-second-order (PSOM), and Film diffusion (FDM). The PSOM was best fitted to the experimental results of Cr6+ ions absorption with R2 ranging between 0.992 and 1.
Collapse
|
17
|
Hassanzadeh-Afruzi F, Esmailzadeh F, Heidari G, Maleki A, Nazarzadeh Zare E. Arabic Gum-Grafted-Hydrolyzed Polyacrylonitrile@ZnFe 2O 4 as a Magnetic Adsorbent for Remediation of Levofloxacin Antibiotic from Aqueous Solutions. ACS OMEGA 2023; 8:6337-6348. [PMID: 36844579 PMCID: PMC9947993 DOI: 10.1021/acsomega.2c06555] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
The Arabic gum-grafted-hydrolyzed polyacrylonitrile/ZnFe2O4 (AG-g-HPAN@ZnFe2O4) as organic/inorganic adsorbent was obtained in three steps using grafted PAN onto Arabic gum in the presence of ZnFe2O4 magnetic nanoparticles and then hydrolysis by alkaline solution. Fourier transform infrared (FT-IR), energy-dispersive X-ray analysis (EDX), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and the Brunauer-Emmett-Teller (BET) analysis analyses were used to characterize the chemical, morphological, thermal, magnetic, and textural properties of the hydrogel nanocomposite. The obtained result demonstrated that the AG-g-HPAN@ZnFe2O4 adsorbent showed acceptable thermal stability with 58% char yields and superparamagnetic property with magnetic saturation (Ms) of 24 emu g-1. The XRD pattern showed that the semicrystalline structure with the presence of ZnFe2O4 has distinct peaks which displayed that the addition of zinc ferrite nanospheres to amorphous AG-g-HPAN increased its crystallinity. The AG-g-HPAN@ZnFe2O4 surface morphology exhibits uniform dispersion of zinc ferrite nanospheres throughout the smooth surface of the hydrogel matrix, and its BET surface area was measured at 6.86 m2/g, which was higher than that of AG-g-HPAN as a result of zinc ferrite nanosphere incorporation. The adsorption effectiveness of AG-g-HPAN@ZnFe2O4 for eliminating a quinolone antibiotic (levofloxacin) from aqueous solutions was investigated. The effectiveness of adsorption was assessed under several experimental conditions, including solution pH (2-10), adsorbent dose (0.0015-0.02 g) contact duration (10-60 min), and initial concentration (50-500 mg/L). The maximum adsorption capacity (Q max) of the produced adsorbent for levofloxacin was found to be 1428.57 mg/g (at 298 k), and the experimental adsorption data were well explained by the Freundlich isotherm model. The pseudo-second-order model satisfactorily described the adsorption kinetic data. The levofloxacin was mostly adsorbed onto the AG-g-HPAN@ZnFe2O4 adsorbent via electrostatic contact and hydrogen bonding. Adsorption-desorption studies demonstrated that the adsorbent could be efficiently recovered and reused after four consecutive runs with no significant loss in adsorption performance.
Collapse
Affiliation(s)
- Fereshte Hassanzadeh-Afruzi
- Catalysts
and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Farhad Esmailzadeh
- Catalysts
and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Golnaz Heidari
- Catalysts
and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts
and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | |
Collapse
|
18
|
Lim CC, Ng QH, Hoo PY, Enche Ab Rahim SK, Jamalludin MR, Nasib AM, Wicaksono ST, Pramata AD, Zullaikah S. Facial synthesis of colloidal stable magnetic nanoparticles coated with high hydrophilic negative charged poly(4‐styrenesulfonic acid co‐maleic acid) sodium for water remediation. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chuan Chuan Lim
- Faculty of Chemical Engineering & Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
| | - Qi Hwa Ng
- Faculty of Chemical Engineering & Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR) Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
| | - Peng Yong Hoo
- Faculty of Chemical Engineering & Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR) Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
| | - Siti Kartini Enche Ab Rahim
- Faculty of Chemical Engineering & Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR) Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
| | - Mohd Riduan Jamalludin
- Centre of Excellence for Frontier Materials Research, (CFMR) Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
- Faculty of Mechanical Engineering & Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
| | - Amira Mohd Nasib
- Faculty of Chemical Engineering & Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR) Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
| | - Sigit Tri Wicaksono
- Department of Materials and Metallurgical Engineering Institut Teknologi Sepuluh Nopember Surabaya Indonesia
| | - Azzah Dyah Pramata
- Department of Materials and Metallurgical Engineering Institut Teknologi Sepuluh Nopember Surabaya Indonesia
| | - Siti Zullaikah
- Department of Chemical Engineering Institut Teknologi Sepuluh Nopember Surabaya Indonesia
| |
Collapse
|
19
|
Activated carbon adsorbent derived from waste biomass, “Croton caudatus” for efficient removal of 2-chlorophenol from aqueous solution: Kinetics, isotherm, thermodynamics and DFT simulation. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Yang J, Tang Y, Pan H, Ma W, Luo W, Chen B, Bu Y. Precipitating halides by silver carbonate: A facile pretreatment method to enable total organic halogen analysis in water. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Tai S, Li Y, Yang L, Zhao Y, Wang S, Xia J, Li H. Magnetic-Transition-Metal Oxides Modified Pollen-Derived Porous Carbon for Enhanced Absorption Performance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16740. [PMID: 36554621 PMCID: PMC9778859 DOI: 10.3390/ijerph192416740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In our work, the transition-metal-oxide precursor (TMO@BC, M = Fe, Co, Ni) has been loaded on the pollen carbon by the hydrothermal method and annealed at different temperatures to generate a composite material of metal oxide and pollen carbon in this study, which can effectively prevent agglomeration caused by a small size and magnetism. The XRD patterns of the samples showed that the as-synthesized metal oxides were γ-Fe2O3, CoO, and NiO. In the 20 mg/L methyl orange adsorption experiment, the adsorption amount of CoO@C at 500 ℃ reached 19.32 mg/g and the removal rate was 96.61%. Therefore, CoO@C was selected for the adsorption correlation-model-fitting analysis, which was in line with the secondary reaction. The pseudo-second-order kinetic model (R2: 0.9683-0.9964), the intraparticle diffusion model, and the Freundlich adsorption isotherm model indicated that the adsorption process was the result of both physical and chemical adsorptions, and the judgment was based on the electrostatic action. The adsorption and removal efficiency of ciprofloxacin (CIP) by changing the pH of the reaction was about 80%, so the electrostatic attraction worked, but not the main factor. Recovered by an external magnetic field, the three-time recycling efficiency was still maintained at more than 80%. This novel biomass-derived magnetic porous carbon material embedded with transition-metal-oxide nanoparticles is highly promising for many applications, especially in the field of environmental remediation.
Collapse
Affiliation(s)
- Shuyun Tai
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ying Li
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ling Yang
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yue Zhao
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Sufei Wang
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jianxin Xia
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Hua Li
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
22
|
Haq F, Farid A, Ullah N, Kiran M, Khan RU, Aziz T, Mehmood S, Haroon M, Mubashir M, Bokhari A, Chuah LF, Show PL. A study on the uptake of methylene blue by biodegradable and eco-friendly carboxylated starch grafted polyvinyl pyrrolidone. ENVIRONMENTAL RESEARCH 2022; 215:114241. [PMID: 36100100 DOI: 10.1016/j.envres.2022.114241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
This study is based on the removal of methylene blue (MB) from aqueous solution by cost effective and biodegradable adsorbent carboxymethyl starch grafted polyvinyl pyrolidone (Car-St-g-PVP). The Car-St-g-PVP was synthesized by grafting vinyl pyrolidone onto carboxymethyl starch by free radical polymerization reaction. The structure and different properties of Car-St-g-PVP were determined by 1H NMR, FT-IR, XRD, TGA and SEM. A series of batch experiments were conducted for the removal of MB, The adsorption affecting factors such as temperature, contact time, initial concentration of MB dye, dose of Car-St-g-PVP and pH were studied in detail. The other parameters like the thermodynamic study, kinetics and isothermal models were fitted to the experimental data. The results showed that pseudo 2nd order kinetics and Langmuir's adsorption isotherms were best fitted to experimental data with regression coefficient R2 viz. 0.99 and 0.97. The kinetic study showed that the adsorption mechanism favored chemisorption. The Gibbs free energy (ΔG°) for the adsorption process was found to be -7.31 kJ/mol, -8.23 kJ/mol, -9.00 kJ/mol and -10.10 kJ/mol at 25 °C, 35 °C, 45 °C and 55 °C respectively. The negative values of ΔG° suggested the spontaneous nature of the adsorption process. Similarly, the positive values of entropy (ΔS°) and enthalpy (ΔH°) 91.27 J/k.mol and 19.90 kJ/mol showed the increasing randomness and endothermic nature of the adsorption process. The value of separation factor (RL) was found to be less than one (RL < 1), which supported the feasibility of the adsorption process. The maximum MB removal percentage (% R) was found to be 98.6%. So, these findings show that Car-St-g-PVP can be meritoriously used for the treatment of MB from wastewater.
Collapse
Affiliation(s)
- Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29220, Pakistan
| | - Naveed Ullah
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Mehwish Kiran
- Faculty of Agriculture, Gomal University, D.I.Khan, 29050, Pakistan
| | - Rizwan Ullah Khan
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Tariq Aziz
- School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Sahid Mehmood
- State Key Laboratory, Zhejiang University, Hangzhou, 310027, China
| | - Muhammad Haroon
- Department of Chemistry, University of Turbat, Balochistan, 92600, Pakistan
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Punjab, 54000, Lahore, Pakistan; Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic.
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
23
|
Li R, Chen J, Zhang H, Rehman F, Siddique J, Shahab A, Mo Z, Luo L. Facile synthesis of magnetic-activated nanocomposites for effective removal of cationic and anionic dyes in an aqueous environment: an Equilibrium Isotherm, kinetics and thermodynamic studies. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Babar M, Munir HMS, Nawaz A, Ramzan N, Azhar U, Sagir M, Tahir MS, Ikhlaq A, Mohammad Azmin SNH, Mubashir M, Khoo KS, Chew KW. Comparative study of ozonation and ozonation catalyzed by Fe-loaded biochar as catalyst to remove methylene blue from aqueous solution. CHEMOSPHERE 2022; 307:135738. [PMID: 35850223 DOI: 10.1016/j.chemosphere.2022.135738] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Ozone-based processes gained much attention in recent years. However, due to low oxidative stability and utilization rate, single ozonation process (SOP) is insufficient for complete mineralization of pollutants. As a result, the single ozonation process is performed in the presence of a catalyst, a process known as catalytic ozonation process (COP). A promising catalyst (Fe/BC) was prepared by impregnating iron on biochar surface to remove methylene blue from aqueous solution via heterogeneous catalytic ozonation process (HCOP). The prepared Fe/BC features were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller method (BET) before and after HCOP. Furthermore, the effect of various operating parameters such as ozone dose, catalyst dose, initial dye concentration, initial pH on the efficiency of SOP and HCOP were compared. In comparison to single ozonation process, the experimental study found that heterogeneous catalytic ozonation process has the highest efficiency. At pH 7.0, approximately 76% of methylene blue is removed during single ozonation process in 60 min. Heterogeneous catalytic ozonation process showed 95% methylene blue elimination from aqueous solution. The efficiency of heterogeneous catalytic ozonation process was decreased by 52% in the presence of hydroxyl radical (●OH) scavenger, indicating that hydroxyl is the major oxidant during heterogeneous catalytic ozonation process for the removal of methylene blue from aqueous solution. Fe/BC catalyst appears to have a lot of industrial promise, as well as the ability to remove methylene blue from aqueous solution via heterogeneous catalytic ozonation process.
Collapse
Affiliation(s)
- Muhammad Babar
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan
| | - Hafiz Muhammad Shahzad Munir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan; Chemical Engineering Department, University of Engineering and Technology, Lahore, 54890, Pakistan.
| | - Aamna Nawaz
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan
| | - Naveed Ramzan
- Chemical Engineering Department, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Umair Azhar
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan.
| | - Muhammad Sagir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Suleman Tahir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan
| | - Amir Ikhlaq
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, 54890, Pakistan
| | | | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Kit Wayne Chew
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia.
| |
Collapse
|
25
|
Gupta MK, Tandon PK, Pandey V, Afroz M, Malviya T. Montmorillonite based copper oxide nanoparticles for the efficient remediation of phosphate and anti-bacterial activity against gram-negative bacteria. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
| | | | - Vijay Pandey
- Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Mubashra Afroz
- Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Tulika Malviya
- Department of Chemistry, University of Allahabad, Prayagraj, India
| |
Collapse
|
26
|
Facile synthesis of magnetic photo-responsive nanoparticles based on 1,3-diazabicyclo[3.1.0]hex-3-en: An enhanced adsorption of toxic dyes from aqueous solution under sunlight. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Wu Y, Li H, An Y, Sun Q, Liu B, Zheng H, Ding W. Construction of magnetic alginate-based biosorbent and its adsorption performances for anionic organic contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Zafar FF, Marrakchi F, Barati B, Yuan C, Cao B, Wang S. Highly efficient adsorption of Bisphenol A using NaHCO 3/CO 2 activated carbon composite derived from shrimp shell@cellulose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68724-68734. [PMID: 35554807 DOI: 10.1007/s11356-022-20564-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, the efficiency of activated carbon (AC) synthesized from the shrimp shell plus cellulose (SS@C) was optimized toward Bisphenol A (BPA) adsorption. Low-cost, renewable, and non-toxic shrimp shells mixed with cellulose were carbonized, followed by activation via CO2 and NaHCO3 to produce SS@C-AC. The results revealed that SS@C-AC samples were a porous composite with mesoporous structures comprising a relatively high specific surface area (935.20 m2/g) with a mean pore size of around 3.8 nm and mesoporous volume of 1.83E-02 cm3/g. The influences of initial concentrations, pH values, and adsorption on BPA were investigated systematically. Isotherm model and kinetics study of the adsorption of BPA on SS@C-AC exhibited that the obtained data were in agreement with the Langmuir adsorption isotherm model while there is no difference between PFO and PSO kinetic results for BPA concentrations in the range 25-100 mg/L. The impregnation ratio of 1.5 NaHCO3 and an activation time of 90 min at 800°C were the optimum conditions under which BPA removal of 81.78% was obtained.
Collapse
Affiliation(s)
- Fatemeh Fazeli Zafar
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Fatma Marrakchi
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bahram Barati
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chuan Yuan
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bin Cao
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, China
| | - Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
29
|
Koyuncu F, Avşar Teymur Y, Güzel F. Application of an industrial agricultural waste-based activated carbon in the treatment of water contaminated with Reactive Blue 19 dye: optimization, kinetic, equilibrium and recyclability analyses. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Filiz Koyuncu
- Department of Chemistry, Institute of Natural and Applied Sciences, Dicle University, Diyarbakir, Turkey
| | - Yekbun Avşar Teymur
- Department of Chemistry, Institute of Natural and Applied Sciences, Dicle University, Diyarbakir, Turkey
| | - Fuat Güzel
- Department of dof Education, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
30
|
Ding F, Shen T, Zhao Q, Jin X, Mao S, Gao M. Series of bis-morpholinium-based organo-Vts for the removal of anionic dyes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Fekri MH, Mohamareh SI, Hosseini M, Mehr MR. Green synthesis of activated carbon/Fe3O4 nanocomposite from flaxseed and its application as adsorbent and antibacterial agent. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
32
|
Mensah K, Samy M, Ezz H, Elkady M, Shokry H. Utilization of iron waste from steel industries in persulfate activation for effective degradation of dye solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115108. [PMID: 35468438 DOI: 10.1016/j.jenvman.2022.115108] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
The performance of three solid iron wastes (SIW-1, SIW-2 and SIW-3) was evaluated as an activator of persulfate (PS) for the degradation of methylene blue (MB). SIW-3 showed the highest performance among the three catalysts. The morphology, chemical composition and chemical structure of the three SIW were investigated using various analyses. Complete degradation of methylene blue (MB) in neutral pH was achieved after 60 min at PS concentration of 4 mM, initial MB concentration of 10 mg/L and catalyst dose of 1.0 g/100 mL using light. The degradation efficiency of MB decreased from 100% to 34.6% by increasing the initial MB concentration from 10 mg/L to 100 mg/L. The degradation of MB followed the second-order model. Scavenging experiments showed the major role of hydroxyl and sulfate radicals in the MB degradation. The performance of iron waste in the retained form was investigated and the degradation efficiencies were 96%, 91.2%, 91%, 89% and 86% in five succeeding cycles at pH 7, catalyst dose of 1 g/100 mL, initial MB concentration of 10 mg/L and PS concentration of 4 mM. Moreover, the reusability of suspended iron waste was investigated. The degradation efficiencies of methylene blue, methyl red, Congo red and acid blue-25 were 100%, 97%, 96% and 97.3%, respectively after 60 min. The degradation pathways of MB were proposed after the identification of intermediates using liquid chromatography-mass spectroscopy analysis. This study revealed that the iron waste can be efficiently employed for PS activation in the suspended and immobilized modes which reduces the total cost of the Fenton process paving the way for the large-scale application of this technique.
Collapse
Affiliation(s)
- Kenneth Mensah
- Environmental Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
| | - Mahmoud Samy
- Environmental Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt; Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| | - Hani Ezz
- Environmental Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt; Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig, 44519, Egypt
| | - Marwa Elkady
- Chemical and Petrochemical Engineering Dept., Egypt-Japan University of Science and Technology (E-JUST), New Borg El Arab City, Alexandria, 21934, Egypt; Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Hassan Shokry
- Environmental Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt; Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
33
|
Sharma A, Kumar N, Sillanpää M, Makgwane PR, Kumar S, Kumari K. Carbon nano-structures and functionalized associates: Adsorptive detoxification of organic and inorganic water pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Hamidi F, Dehghani MH, Kasraee M, Salari M, Shiri L, Mahvi AH. Acid red 18 removal from aqueous solution by nanocrystalline granular ferric hydroxide (GFH); optimization by response surface methodology & genetic-algorithm. Sci Rep 2022; 12:4761. [PMID: 35306520 PMCID: PMC8934340 DOI: 10.1038/s41598-022-08769-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/10/2022] [Indexed: 12/07/2022] Open
Abstract
The need for fresh water is more than before by population growth, and industrial development have affected the quality of water supplies, one of the important reason for water contamination is synthetic dyes and their extensive use in industries. Adsorption has been considered as a common methods for dye removal from waters. In this study, Acid Red18 removal in batch mode by using Granular Ferric Hydroxide (GFH) was investigated. The GFH characterized by XRD, FESEM and FTIR analysis. Experiments were designed using RSM-CCD method. The maximum removal efficiency was obtained 78.59% at pH = 5, GFH dosage = 2 g/l, AR18 concentration = 77.5 mg/l and 85 min of contact time. Optimization with RSM and Genetic Algorithm carried out and is similar together. The non-linear adsorption Isotherm and kinetic fitted with Freundlich (R2 = 0.978) and pseudo-second-order (R2 = 0.989) models, respectively. Thermodynamic studies showed that the AR18 adsorption is endothermic process and GFH nature was found spontaneous.
Collapse
|
35
|
Spiridon I, Apostol I, Anghel NC, Zaltariov MF. Equilibrium, kinetic and thermodynamic studies of new materials based on xanthan gum and cobalt ferrite for dye adsorption. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Iuliana Spiridon
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica–Vodă Alley 41A Iași Romania
| | - Irina Apostol
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica–Vodă Alley 41A Iași Romania
| | - Narcis Cătălin Anghel
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica–Vodă Alley 41A Iași Romania
| | | |
Collapse
|
36
|
Mossavi E, Hosseini Sabzevari M, Ghaedi M, Ahmadi Azqhandi M. Adsorption of the azo dyes from wastewater media by a renewable nanocomposite based on the graphene sheets and hydroxyapatite/ZnO nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Khan TA, Nouman M, Dua D, Khan SA, Alharthi SS. Adsorptive scavenging of cationic dyes from aquatic phase by H3PO4 activated Indian jujube (Ziziphus mauritiana) seeds based activated carbon: Isotherm, kinetics, and thermodynamic study. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Hamad HN, Idrus S. Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers (Basel) 2022; 14:783. [PMID: 35215695 PMCID: PMC8876036 DOI: 10.3390/polym14040783] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Over the last few years, various industries have released wastewater containing high concentrations of dyes straight into the ecological system, which has become a major environmental problem (i.e., soil, groundwater, surface water pollution, etc.). The rapid growth of textile industries has created an alarming situation in which further deterioration to the environment has been caused due to substances being left in treated wastewater, including dyes. The application of activated carbon has recently been demonstrated to be a highly efficient technology in terms of removing methylene blue (MB) from wastewater. Agricultural waste, as well as animal-based and wood products, are excellent sources of bio-waste for MB remediation since they are extremely efficient, have high sorption capacities, and are renewable sources. Despite the fact that commercial activated carbon is a favored adsorbent for dye elimination, its extensive application is restricted because of its comparatively high cost, which has prompted researchers to investigate alternative sources of adsorbents that are non-conventional and more economical. The goal of this review article was to critically evaluate the accessible information on the characteristics of bio-waste-derived adsorbents for MB's removal, as well as related parameters influencing the performance of this process. The review also highlighted the processing methods developed in previous studies. Regeneration processes, economic challenges, and the valorization of post-sorption materials were also discussed. This review is beneficial in terms of understanding recent advances in the status of biowaste-derived adsorbents, highlighting the accelerating need for the development of low-cost adsorbents and functioning as a precursor for large-scale system optimization.
Collapse
Affiliation(s)
| | - Syazwani Idrus
- Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
39
|
Özüdoğru I, Yigit Avdan Z, Balbay S. A novel carbon-based material recycled from end-of-life tires (ELTs) for separation of organic dyes to understand kinetic and isotherm behavior. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2029489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ilknur Özüdoğru
- Department of Environmental Engineering, Eskisehir Technical University, Eskisehir, Turkey
| | - Zehra Yigit Avdan
- Department of Environmental Engineering, Eskisehir Technical University, Eskisehir, Turkey
| | - Senay Balbay
- Department of Waste Management, Vocational School, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
40
|
Abukhadra MR, El Kashief FA, Othman SI, Alqhtani HA, Allam AA. Synthesis and characterization of Fe 0@chitosan/cellulose biocompatible composites from natural resources as advanced carriers for ibuprofen drug: reaction kinetics and equilibrium. NEW J CHEM 2022. [DOI: 10.1039/d2nj02114e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fe0@chitosan/cellulose was synthesized as a carrier for Ibuprofen drug. It has achieved a loading capacity of 553 mg g−1 and a slow release profile for 260 h, which is controlled by complex diffusion and erosion mechanisms.
Collapse
Affiliation(s)
- Mostafa R. Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef city, Egypt
| | - Fatma A. El Kashief
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Sarah I. Othman
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Haifa A. Alqhtani
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A. Allam
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
41
|
A novel mesoporous Fe-silica aerogel composite with phenomenal adsorption capacity for malachite green. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
Farhadian S, Hashemi-Shahraki F, Amirifar S, Asadpour S, Shareghi B, Heidari E, Shakerian B, Rafatifard M, Firooz AR. Malachite Green, the hazardous materials that can bind to Apo-transferrin and change the iron transfer. Int J Biol Macromol 2022; 194:790-799. [PMID: 34838577 DOI: 10.1016/j.ijbiomac.2021.11.126] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/08/2023]
Abstract
Different groups of synthetic dyes might lead to environmental pollution. The binding affinity among hazardous materials with biomolecules necessitates a detailed understanding of their binding properties. Malachite Green might induce a change in the iron transfer by Apo-transferrin. Spectroscopic studies showed malachite green oxalate (MGO) could form the apo-transferrin-MGO complex and change the Accessible Surface Area (ASA) of the key amino acids for iron transfer. According to the ASA results the accessible surface area of Tyrosine, Aspartate, and Histidine of apo-transferrin significantly were changed, which can be considered as a convincing reason for changing the iron transfer. Moreover, based on the fluorescence data MGO could quench the fluorescence intensity of apo-transferrin in a static quenching mechanism. The experimental and Molecular Dynamic simulation results represented that the binding process led to micro environmental changes, around tryptophan residues and altered the tertiary structure of apo-transferrin. The Circular Dichroism (CD) spectra result represented a decrease in the amount of the α-Helix, as well as, increase in the β-sheet volumes of the apo-transferrin structure. Moreover, FTIR spectroscopy results showed a hypochromic shift in the peaks of amide I and II. Molecular docking and MD simulation confirmed all the computational findings.
Collapse
Affiliation(s)
- Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sogand Amirifar
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Saeid Asadpour
- Department of Chemistry, Faculty of Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran.
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Ehsan Heidari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Behnam Shakerian
- Cardiovascular Diseases Research Department, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rafatifard
- Exercise Science/Physiology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Reza Firooz
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| |
Collapse
|
43
|
Zhao Y, Wang Y, Wang F, Meng J, Zhang H, Liang J. In-situ preparation of palygorskite-montmorillonite materials from palygorskite mineral via hydrothermal process for high-efficient adsorption of aflatoxin B1. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Taghavi S, Taghavi M, Ghaemy M, Farsadrooh M, Javadian H. Green and selective synthesis of sulfonated poly(pyrimidine-amides) in ionic liquid and their nanocomposites based on carboxylated MWCNTs: Investigation on photophysical, solubility, thermal, and removal of ions behaviors. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Sahu DK, Banjare MK, Banjare RK, Goswami J, Rai J, Rai MK, Bhatt C, Nirmal M, Wani K, Patel S, Singh TV. Colorimetric technique for the detection of carbofuran and its application in various environmental samples. J INDIAN CHEM SOC 2021; 98:100261. [DOI: https:/doi.org/10.1016/j.jics.2021.100261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
46
|
Colorimetric technique for the detection of carbofuran and its application in various environmental samples. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Ammari Allahyari S, Saberi R, Sadjadi S, Mehraban O. Intensive adsorption of strontium ions by using the synthesized [Zn(bim)
2
(bdc)]
n
: Metal–organic framework in batch and fixed‐bed column experiments. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sareh Ammari Allahyari
- Nuclear Fuel Cycle School Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran
| | - Reza Saberi
- Reactor and Nuclear Safety Research School Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran
| | - Sodeh Sadjadi
- Radiation Application Research School Nuclear Science and Technology Research Institute Tehran Iran
| | - Omid Mehraban
- School of Chemistry, College of Science University of Tehran Tehran Iran
| |
Collapse
|
48
|
Hejazi Khah M, Jamshidi P, Shemirani F. Applicability of an eco-friendly deep eutectic solvent loaded onto magnetic graphene oxide to preconcentrate trace amount of indigotin blue dye. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Basaleh AA, Al-Malack MH, Saleh TA. Polyamide-baghouse dust nanocomposite for removal of methylene blue and metals: Characterization, kinetic, thermodynamic and regeneration. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.08.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Altıntıg E, Balta S, Balta M, Aydemır Z. Methylene blue removal with ZnO coated montmorillonite: thermodynamic, kinetic, isotherm and artificial intelligence studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:867-880. [PMID: 34618615 DOI: 10.1080/15226514.2021.1984386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, montmorillonite clay was coated with zinc oxide (ZnO) nanoparticles. The study's primary aim is to investigate the adsorption properties of zinc oxide coated montmorillonite adsorbent against methylene blue (MB), and determine ZnO's effectiveness in adsorption. First, the surface properties of the ZnO-coated montmorillonite (ZnO/MMT) adsorbent were determined by FTIR Spectroscopy, XRD, and SEM/EDS. In the adsorption studies, the effects of different parameters such as contact time (5-150 min), adsorbent dosage (0.05-0.5 g), initial concentration (50-200 mg/L), temperature (298-318 K), and initial pH (4-12) were investigated. In addition, a fuzzy model was developed by using adsorption parameters so that the removal rates could be calculated more quickly. Adsorption kinetics and equilibrium results were explained by the pseudo-second-order model and the Langmuir isotherm model, respectively. The highest adsorption capacity was calculated as 384.62 mg/g at 318 K. The enthalpy value was calculated as 2.16 kJ/mol. The entropy value was calculated as 0.04 kJ/mol K. The negative entropy value in the thermodynamic parameters calculated at all temperatures shows that the adsorption was spontaneous. According to the data we obtained, ZnO/MMT nanoparticles can be successfully applied for MB removal from aqueous solutions.
Collapse
Affiliation(s)
- Esra Altıntıg
- Pamukova Vocational School, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Samet Balta
- Art and Science Faculty, Chemistry Department, Sakarya University, Sakarya, Turkey
| | - Musa Balta
- Computer Engineering Department, Sakarya University, Sakarya, Turkey
| | - Zeynep Aydemır
- Art and Science Faculty, Chemistry Department, Sakarya University, Sakarya, Turkey
| |
Collapse
|