1
|
Lu X, Yuan B, Liu Y, Liu LX, Zhu JJ. Bioinspired molecule-functionalized Cu with high CO adsorption for efficient CO electroreduction to acetate. Dalton Trans 2024; 53:10919-10927. [PMID: 38888145 DOI: 10.1039/d4dt01293c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Electrochemical reduction of carbon dioxide (CO2) or carbon monoxide (CO) to valuable multi-carbon (C2+) products like acetate is a promising approach for a sustainable energy economy. However, it is still challenging to achieve high activity and selectivity for acetate production, especially in neutral electrolytes. Herein, a bioinspired hemin/Cu hybrid catalyst was developed to enhance the surface *CO coverage for highly efficient electroreduction of CO to acetate fuels. The hemin/Cu electrocatalyst exhibits a remarkable faradaic efficiency of 45.2% for CO-to-acetate electroreduction and a high acetate partial current density of 152.3 mA cm-2. Furthermore, the developed hybrid catalyst can operate stably at 200 mA cm-2 for 14.6 hours, producing concentrated acetate aqueous solutions (0.235 M, 2.1 wt%). The results of in situ Raman spectroscopy and theoretical calculations proved that the Fe-N4 structure of hemin could enhance the CO adsorption and enrich the local concentration of CO, thereby improving C-C coupling for acetate production. In addition, compared to the unmodified Cu catalysts, the Cu catalysts functionalized with cobalt phthalocyanine with a Co-N4 structure also exhibit improved acetate performance, proving the universality of this bioinspired molecule-enhanced strategy. This work paves a new way to designing bioinspired electrolysis systems for producing specific C2+ products from CO2 or CO electroreduction.
Collapse
Affiliation(s)
- Xuanzhao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Baozhen Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Li-Xia Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Wu ZZ, Zhang XL, Yang PP, Niu ZZ, Gao FY, Zhang YC, Chi LP, Sun SP, DuanMu JW, Lu PG, Li YC, Gao MR. Gerhardtite as a Precursor to an Efficient CO-to-Acetate Electroreduction Catalyst. J Am Chem Soc 2023; 145:24338-24348. [PMID: 37880928 DOI: 10.1021/jacs.3c09255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Carbon-carbon coupling electrochemistry on a conventional copper (Cu) catalyst still undergoes low selectivity among many different multicarbon (C2+) chemicals, posing a grand challenge to achieve a single C2+ product. Here, we demonstrate a laser irradiation synthesis of a gerhardtite mineral, Cu2(OH)3NO3, as a catalyst precursor to make a Cu catalyst with abundant stacking faults under reducing conditions. Such structural perturbation modulates electronic microenvironments of Cu, leading to improved d-electron back-donation to the antibonding orbital of *CO intermediates and thus strengthening *CO adsorption. With increased *CO coverage on the defect-rich Cu, we report an acetate selectivity of 56 ± 2% (compared to 31 ± 1% for conventional Cu) and a partial current density of 222 ± 7 mA per square centimeter in CO electroreduction. When run at 400 mA per square centimeter for 40 h in a flow reactor, this catalyst produces 68.3 mmol of acetate throughout. This work highlights the value of a Cu-containing mineral phase in accessing suitable structures for improved selectivity to a single desired C2+ product.
Collapse
Affiliation(s)
- Zhi-Zheng Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Peng-Peng Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhuang-Zhuang Niu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei-Yue Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Cai Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li-Ping Chi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Ping Sun
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Wen DuanMu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Gan Lu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ye-Cheng Li
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Yang L, Lv X, Peng C, Kong S, Huang F, Tang Y, Zhang L, Zheng G. Promoting CO 2 Electroreduction to Acetate by an Amine-Terminal, Dendrimer-Functionalized Cu Catalyst. ACS CENTRAL SCIENCE 2023; 9:1905-1912. [PMID: 37901173 PMCID: PMC10604016 DOI: 10.1021/acscentsci.3c00826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 10/31/2023]
Abstract
Acetate derived from electrocatalytic CO2 reduction represents a potential low-carbon synthesis approach. However, the CO2-to-acetate activity and selectivity are largely inhibited by the low surface coverage of in situ generated *CO, as well as the inefficient ethenone intermediate formation due to the side reaction between CO2 and alkaline electrolytes. Tuning catalyst microenvironments by chemical modification of the catalyst surface is a potential strategy to enhance CO2 capture and increase local *CO concentrations, while it also increases the selectivity of side reduction products, such as methane or ethylene. To solve this challenge, herein, we developed a hydrophilic amine-tailed, dendrimer network with enhanced *CO intermediate coverage on Cu catalytic sites while at the same time retaining the in situ generated OH- as a high local pH environment that favors the ethenone intermediate toward acetate. The optimized amine-network coordinated Cu catalyst (G3-NH2/Cu) exhibits one of the highest CO2-to-acetate Faradaic efficiencies of 47.0% with a partial current density of 202 mA cm-2 at -0.97 V versus the reversible hydrogen electrode.
Collapse
Affiliation(s)
- Li Yang
- Laboratory
of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Ximeng Lv
- Laboratory
of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Chen Peng
- Laboratory
of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Shuyi Kong
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, Shanghai 200050, China
| | - Fuqiang Huang
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, Shanghai 200050, China
| | - Yi Tang
- Laboratory
of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Lijuan Zhang
- Laboratory
of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Gengfeng Zheng
- Laboratory
of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
Liu C, Yan W, Wen Y, Huang Z, Chen B, Li Y, Huang X. Metal-Organic Framework Derived Cu-Ag Interface for Selective Carbon Monoxide Electroreduction to Acetate. Chemistry 2023; 29:e202301456. [PMID: 37314829 DOI: 10.1002/chem.202301456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Electrochemical carbon monoxide reduction reaction (CORR) is a potential way to obtain high-value multi-carbon (C2+ ) products. However, achieving high selectivity to acetate is still a challenge. Herein, we develop a two-dimensional Ag-modified Cu metal-organic framework (Ag0.10 @CuMOF-74) that demonstrates Faradaic efficiency (FE) for C2+ products up to 90.4 % at 200 mA cm-2 and an acetate FE of 61.1 % with a partial current density of 122.2 mA cm-2 . Detailed investigations show that the introduction of Ag on CuMOF-74 favors the generation of abundant Cu-Ag interface sites. In situ attenuated total reflection surface enhanced infrared absorption spectroscopy confirms that these Cu-Ag interface sites improve the coverage of *CO and *CHO and the coupling between each other and stabilize key intermediates *OCCHO and *OCCH2 , thus significantly promoting to the acetate selectivity on Ag0.10 @CuMOF-74. This work provides a high-efficiency pathway for CORR to C2+ products.
Collapse
Affiliation(s)
- Chang Liu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361000, Fujian, P. R. China
| | - Wei Yan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361000, Fujian, P. R. China
| | - Yan Wen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361000, Fujian, P. R. China
| | - Zhongliang Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361000, Fujian, P. R. China
| | - Bo Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361000, Fujian, P. R. China
| | - Yunhua Li
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361000, Fujian, P. R. China
| | - Xiaoqing Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361000, Fujian, P. R. China
| |
Collapse
|
5
|
Jin J, Wicks J, Min Q, Li J, Hu Y, Ma J, Wang Y, Jiang Z, Xu Y, Lu R, Si G, Papangelakis P, Shakouri M, Xiao Q, Ou P, Wang X, Chen Z, Zhang W, Yu K, Song J, Jiang X, Qiu P, Lou Y, Wu D, Mao Y, Ozden A, Wang C, Xia BY, Hu X, Dravid VP, Yiu YM, Sham TK, Wang Z, Sinton D, Mai L, Sargent EH, Pang Y. Constrained C 2 adsorbate orientation enables CO-to-acetate electroreduction. Nature 2023; 617:724-729. [PMID: 37138081 DOI: 10.1038/s41586-023-05918-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2023] [Indexed: 05/05/2023]
Abstract
The carbon dioxide and carbon monoxide electroreduction reactions, when powered using low-carbon electricity, offer pathways to the decarbonization of chemical manufacture1,2. Copper (Cu) is relied on today for carbon-carbon coupling, in which it produces mixtures of more than ten C2+ chemicals3-6: a long-standing challenge lies in achieving selectivity to a single principal C2+ product7-9. Acetate is one such C2 compound on the path to the large but fossil-derived acetic acid market. Here we pursued dispersing a low concentration of Cu atoms in a host metal to favour the stabilization of ketenes10-chemical intermediates that are bound in monodentate fashion to the electrocatalyst. We synthesize Cu-in-Ag dilute (about 1 atomic per cent of Cu) alloy materials that we find to be highly selective for acetate electrosynthesis from CO at high *CO coverage, implemented at 10 atm pressure. Operando X-ray absorption spectroscopy indicates in situ-generated Cu clusters consisting of <4 atoms as active sites. We report a 12:1 ratio, an order of magnitude increase compared to the best previous reports, in the selectivity for acetate relative to all other products observed from the carbon monoxide electroreduction reaction. Combining catalyst design and reactor engineering, we achieve a CO-to-acetate Faradaic efficiency of 91% and report a Faradaic efficiency of 85% with an 820-h operating time. High selectivity benefits energy efficiency and downstream separation across all carbon-based electrochemical transformations, highlighting the importance of maximizing the Faradaic efficiency towards a single C2+ product11.
Collapse
Affiliation(s)
- Jian Jin
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Joshua Wicks
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Qiuhong Min
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfeng Hu
- Department of Chemical & Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Yi Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Ruihu Lu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Gangzheng Si
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Panagiotis Papangelakis
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Mohsen Shakouri
- Canadian Light Source, Inc., University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qunfeng Xiao
- Canadian Light Source, Inc., University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Pengfei Ou
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Xue Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Zhu Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Wei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Kesong Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Jiayang Song
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohang Jiang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Qiu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhao Lou
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Wu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Mao
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Hu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- The NUANCE Center, Northwestern University, Evanston, IL, USA
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- The NUANCE Center, Northwestern University, Evanston, IL, USA
| | - Yun-Mui Yiu
- Department of Chemistry, Western University, London, ON, Canada
| | - Tsun-Kong Sham
- Department of Chemistry, Western University, London, ON, Canada
| | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Intensification and performance assessment of ethanol production process by hydrogenation of methyl acetate. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zheng T, Zhang M, Wu L, Guo S, Liu X, Zhao J, Xue W, Li J, Liu C, Li X, Jiang Q, Bao J, Zeng J, Yu T, Xia C. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat Catal 2022. [DOI: 10.1038/s41929-022-00775-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat Catal 2022. [DOI: 10.1038/s41929-022-00757-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Zhang Q, He A, Xiao W, Du J, Liu Z, Tao C. Non-aqueous liquid phase synthesis of acetic acid via ionic liquid promoted homogeneous carbonylation of methanol over Ir(III) catalysts. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qiang Zhang
- School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Anbang He
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Wen Xiao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Jun Du
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Zuohua Liu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Changyuan Tao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
10
|
Jones RJ, Massanet-Nicolau J, Fernandez-Feito R, Dinsdale RM, Guwy AJ. Fermentative volatile fatty acid production and recovery from grass using a novel combination of solids separation, pervaporation, and electrodialysis technologies. BIORESOURCE TECHNOLOGY 2021; 342:125926. [PMID: 34536837 DOI: 10.1016/j.biortech.2021.125926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
A novel combination of solids screening, centrifugation, microfiltration, pervaporation, and electrodialysis were used for the targeted and exclusive recovery of volatile fatty acids (VFAs) from an 80L bioreactor. The bioreactor was continually-fed with grass waste, containing 40gL-1 total solids, over three, seven-day, hydraulic retention times. A VFA solution with a concentration up to 4,500 mgL-1 was recovered. VFA yields were also increased from 707 to 875 mg of VFA per gram of volatile solids by alleviating end-product inhibition. Both these accomplishments are significant step-changes in adding value to waste, and increased substrate utilisation rates will be attractive from a waste remediation perspective.
Collapse
Affiliation(s)
- R J Jones
- Sustainable Environment Research Centre, University of South Wales, Llantwit Road, Pontypridd, Rhondda Cynon Taff, CF37 1DL, UK.
| | - J Massanet-Nicolau
- Sustainable Environment Research Centre, University of South Wales, Llantwit Road, Pontypridd, Rhondda Cynon Taff, CF37 1DL, UK
| | - R Fernandez-Feito
- Sustainable Environment Research Centre, University of South Wales, Llantwit Road, Pontypridd, Rhondda Cynon Taff, CF37 1DL, UK
| | - R M Dinsdale
- Sustainable Environment Research Centre, University of South Wales, Llantwit Road, Pontypridd, Rhondda Cynon Taff, CF37 1DL, UK
| | - A J Guwy
- Sustainable Environment Research Centre, University of South Wales, Llantwit Road, Pontypridd, Rhondda Cynon Taff, CF37 1DL, UK
| |
Collapse
|
11
|
Juárez-García M, El-Halwagi MM, Ponce-Ortega JM. Systematic Approach for Synthesizing Carbon–Hydrogen–Oxygen Networks Involving Detailed Process Simulations. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maricruz Juárez-García
- Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Múgica, S/N, Ciudad Universitaria, Edificio V1, Morelia, Michoacán 58060, México
| | - Mahmoud M. El-Halwagi
- Chemical Engineering Department, Texas A&M University, 386 Spence St, Jack E. Brown Engineering Building, College Station, Texas 77843, United States
| | - José María Ponce-Ortega
- Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Múgica, S/N, Ciudad Universitaria, Edificio V1, Morelia, Michoacán 58060, México
| |
Collapse
|
12
|
Dimian AC, Kiss AA. Enhancing the Separation Efficiency in Acetic Acid Manufacturing by Methanol Carbonylation. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Anton A. Kiss
- The University of Manchester Department of Chemical Engineering and Analytical Science Sackville Street M13 9PL Manchester United Kingdom
- Delft University of Technology Department of Chemical Engineering Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
13
|
Affiliation(s)
- Chunyan Tu
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingguang G. Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
14
|
Hydrogenation of Aqueous Acetic Acid over Ru-Sn/TiO2 Catalyst in a Flow-Type Reactor, Governed by Reverse Reaction. Catalysts 2020. [DOI: 10.3390/catal10111270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ru-Sn/TiO2 is an effective catalyst for hydrogenation of aqueous acetic acid to ethanol. In this paper, a similar hydrogenation process was investigated in a flow-type rather than a batch-type reactor. The optimum temperature was 170 °C for the batch-type reactor because of gas production at higher temperatures; however, for the flow-type reactor, the ethanol yield increased with reaction temperature up to 280 °C and then decreased sharply above 300 °C, owing to an increase in the acetic acid recovery rate. The selectivity for ethanol formation was improved over the batch process, and an ethanol yield of 98 mol % was achieved for a 6.7 min reaction (cf. 12 h for batch) (liquid hourly space velocity: 1.23 h−1). Oxidation of ethanol to acetic acid (i.e., the reverse reaction) adversely affected the hydrogenation. On the basis of these results, hydrogenation mechanisms that include competing side reactions are discussed in relation to the reactor type. These results will help the development of more efficient catalytic procedures. This method was also effectively applied to hydrogenation of lactic acid to propane-1,2-diol.
Collapse
|