1
|
Kang DH, Kim NK, Lee W, Kang HW. Geometric feature extraction in nanofiber membrane image based on convolution neural network for surface roughness prediction. Heliyon 2024; 10:e35358. [PMID: 39170369 PMCID: PMC11336630 DOI: 10.1016/j.heliyon.2024.e35358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
As a technique in artificial intelligence, a convolution neural network model has been utilized to extract average surface roughness from the geometric characteristics of a membrane image featuring micro- and nanostructures. For surface roughness measurement, e.g. atomic force microscopy and optical profiler, the previous methods have been performed to analyze a porous membrane surface on an interest of region with a few micrometers of the restricted area according to the depth resolution. However, an image from the scanning electron microscope, combined with the feature extraction process, provides clarity on surface roughness for multiple areas with various depth resolutions. Through image preprocessing, the geometric pattern is elucidated by amplifying the disparity in pixel intensity values between the bright and dark regions of the image. The geometric pattern of the binary image and magnitude spectrum confirmed the classification of the surface roughness of images in a categorical scatter plot. A group of cropped images from an original image is used to predict the logarithmic average surface roughness values. The model predicted 4.80 % MAPE for the test dataset. The method of extracting geometric patterns through a feature map-based CNN, combined with a statistical approach, suggests an indirect surface measurement. The process is achieved through a bundle of predicted output data, which helps reduce the randomness error of the structural characteristics. A novel feature extraction approach of CNN with statistical analysis is a valuable method for revealing hidden physical characteristics in surface geometries from irregular pixel patterns in an array of images.
Collapse
Affiliation(s)
- Dong Hee Kang
- Department of Mechanical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-Gu, Gwangju, 61186, Republic of Korea
- Department of Industrial and Systems Engineering, Texas A&M University, College station, TX, 77843, United States
| | - Na Kyong Kim
- Green Energy System Research Center, Korea Automotive Technology Institute, 55 Jingoksandanjungang-ro, Gwangsan-Gu, Gwangju, 62465, Republic of Korea
| | - Wonoh Lee
- Department of Mechanical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Hyun Wook Kang
- Department of Mechanical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| |
Collapse
|
2
|
Chen C, Liu X, Tian X, Feng J, Liu Y, Song M, Zhu W, Zhang Y. The efficient uptake of uranium by amine-functionalized β-cyclodextrin supported fly ash composite from polluted water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172342. [PMID: 38608905 DOI: 10.1016/j.scitotenv.2024.172342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
A novel polyethyleneimine/polydopamine-functionalized β-cyclodextrin supported fly ash adsorbent (PEI/PDA/β-CD/FA) had been synthesized to uptake uranium from polluted water. At pH = 5.0 and T = 298 K, the uranium uptake efficiency and capacity of PEI/PDA/β-CD/FA reached to 98.7 % and 622.8 mg/g, respectively, which were much higher than those of FA (71.4 % and 206.7 mg/g).The excellent uranium uptake properties of PEI/PDA/β-CD/FA could be explained by three points: (1) using β-CD as a supporting material could effectively avoid the aggregation of FA and improve the hydrophily of FA; (2) the unique cavity structure of β-CD could form chelates with uranyl ions; (3) the formation of PEI/PDA co-deposition coating on FA further enhanced the affinity of FA to UO22+. With the presence of interfering ions, the uptake efficiency of PEI/PDA/β-CD/FA for uranium was still up to 94.5 % after five cycles, indicating the high selectively and recoverability of PEI/PDA/β-CD/FA. In terms of the results of characterizations, uranium was captured by PEI/PDA/β-CD/FA via electrostatic attraction, hydrogen bond, coordination and complexation. To sum up, PEI/PDA/β-CD/FA was expected to be used for actual sewage treatment owing to its excellent uranium uptake efficiency/capacity, selectivity, cycle stability and feasibility of actual application.
Collapse
Affiliation(s)
- Congcong Chen
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xuan Liu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoyu Tian
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiaqi Feng
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yujia Liu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Mingjun Song
- The 210(th) Institute of the Sixth Academy of CASIC, Xian 710065, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
3
|
Liu C, Crini G, Wilson LD, Balasubramanian P, Li F. Removal of contaminants present in water and wastewater by cyclodextrin-based adsorbents: A bibliometric review from 1993 to 2022. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123815. [PMID: 38508365 DOI: 10.1016/j.envpol.2024.123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide from enzymatic starch breakdown, plays a crucial role in pharmaceuticals, food, agriculture, textiles, biotechnology, chemicals, and environmental applications, including water and wastewater treatment. In this study, a statistical analysis was performed using VOSviewer and Citespace to scrutinize 2038 articles published from 1993 to 2022. The investigation unveiled a notable upsurge in pertinent articles and citation counts, with China and USA contributing the highest publication volumes. The prevailing research focus predominantly revolves around the application of CD-based materials used as adsorbents to remove conventional contaminants such as dyes and metals. The CD chemistry allows the construction of materials with various architectures, including cross-linked, grafted, hybrid or supported systems. The main adsorbents are cross-linked CD polymers, including nanosponges, fibres and hybrid composites. Additionally, research efforts are actually concentrated on the synthesis of CD-based membranes, CD@graphene oxide, and CD@TiO2. These materials are proposed as adsorbents to remove emerging pollutants. By employing bibliometric analysis, this study delivers a comprehensive retrospective review and synthesis of research concerning CD-based adsorbents for the removal of contaminants from wastewater, thereby offering valuable insights for future large-scale application of CD-based adsorption materials.
Collapse
Affiliation(s)
- Chong Liu
- Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | - Grégorio Crini
- Chrono-environment, University of Franche-Comté, 25000 Besançon, France
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Room 165 Thorvaldson Bldg., Saskatoon, SK S7N 5C9, Canada
| | | | - Fayong Li
- College of Water Resources and Architectural Engineering, Tarim University, Xinjiang 843300, China.
| |
Collapse
|
4
|
Li Y, Pan T, Feng J, Yu B, Xiong W, Yuan G. Facile preparation of UiO-66-Lys/PAN nanofiber membrane by electrospinning for the removal of Co(II) from simulated radioactive wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169725. [PMID: 38190903 DOI: 10.1016/j.scitotenv.2023.169725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/10/2024]
Abstract
In this study, metal-organic framework (MOF) nanofiber membranes (NFMs) UiO-66-Lys/PAN were prepared by electrospinning using polyacrylonitrile (PAN) as the matrix, UiO-66-NH2 as the filler, and lysine (Lys) as the functional monomer. The membranes were subsequently employed to extract cobalt ions from simulated radioactive wastewater. The findings showed that the best performance of the membrane was obtained with a 3 % MOF content (3%UiO-66-Lys/PAN). Specifically, the pure water flux (PWF) of the 3 % UiO-66-Lys/PAN membrane reached 872 L m-2 h-1 with a cobalt ion retention of 45.4 %. In addition, adsorption experiments indicated that the NFMs had a theoretical maximum adsorption capacity of 41.4 mg/g for cobalt ions. The Langmuir isotherm model and the pseudo-second-order kinetic model were observed in the adsorption process, suggesting that the membrane material showed uniform adsorption of cobalt ions on a monolayer level, with an endothermic absorption process. XPS analysis confirmed that 3%UiO-66-Lys/PAN facilitated the adsorption of cobalt ions through a coordination effect, with the N and O atoms serving as coordinating atoms. Moreover, the material displayed excellent radiation stability even when exposed to doses ranging from 20 to 200 kGy. This study validated the stability of the MOF NFMs under real irradiation with radioactive nuclides (60Co) and demonstrated efficient cobalt ion separation. This study has important practical implications for the treatment and disposal of small volumes of 60Co-containing radioactive wastewater for engineering applications.
Collapse
Affiliation(s)
- Yanqiu Li
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China; Sichuan Dazhou Iron & Steel Group Co., Ltd., Dazhou 635002, PR China
| | - Ting Pan
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Jian Feng
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Bo Yu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Wei Xiong
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Guoyuan Yuan
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| |
Collapse
|
5
|
Diagboya PN, Junck J, Akpotu SO, Düring RA. Isolation of aqueous pesticides on surface-functionalized SBA-15: glyphosate kinetics and detailed empirical insights for atrazine. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:323-333. [PMID: 38126732 DOI: 10.1039/d3em00425b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Atrazine and glyphosate are two of the most used pesticides around the world causing serious water contamination. In this study, amine-functionalized Santa Barbara Amorphous-15 silica (SBA-15-NH2) was synthesized and employed for the aqueous adsorption of atrazine and glyphosate. The adsorbent was mesoporous post-functionalization with lower surface area, pore volume, size, and stability when compared to the SBA-15. The pesticides adsorption rates were high with over 85% of potential adsorption having occurred within the initial 180 min. The equilibria for atrazine and glyphosate adsorption were 60 and 360 min, respectively, and the rate data fit the fractal pseudo-second-order and pseudo-second-order models, respectively. Atrazine adsorption was higher at lower solution pH with reduced adsorption as the pH value increased. There was enhanced atrazine adsorption as temperature increased from 22 to 32 °C, but further temperature rise resulted in lower adsorption compared to that recorded at 22 °C. The processes comprise electrostatic interaction, trapping of atrazine within mesopores, and multi-layer adsorption of atrazine on surface-adsorbed atrazine. The equilibrium data fitted the Langmuir adsorption isotherm model better than the Freundlich. The SBA-15-NH2 adsorption capacity for atrazine and glyphosate was better than many adsorbents reported in literature, the adsorbent is reusable, and exhibited sustained efficiencies for atrazine that was ≥82% even after 3-cycles, an indication of chemical stability and renewability.
Collapse
Affiliation(s)
- Paul N Diagboya
- Institute of Soil Science and Soil Conservation, Justus Liebig University, Giessen, Germany.
| | - Johannes Junck
- Institute of Soil Science and Soil Conservation, Justus Liebig University, Giessen, Germany.
| | - Samson O Akpotu
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Rolf-Alexander Düring
- Institute of Soil Science and Soil Conservation, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
6
|
Saad H, Nour El-Dien FA, El-Gamel NEA, Abo Dena AS. Removal of bromophenol blue from polluted water using a novel azo-functionalized magnetic nano-adsorbent. RSC Adv 2024; 14:1316-1329. [PMID: 38174277 PMCID: PMC10763660 DOI: 10.1039/d3ra04222g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Water pollution from organic dyes poses a serious danger to the environment. In the present work, we report a novel adsorbent (ADFS) based on azo-dye-functionalized superparamagnetic iron oxide nanoparticles (SPIONs) for the removal of the anionic dye bromophenol blue (BPB) from contaminated water. The fabricated SPIONs, azo dye, and ADFS adsorbent were characterized with FTIR and UV-vis absorption spectroscopy, 1HNMR spectroscopy, mass spectrometry, SEM imaging, dynamic light scattering (DLS), zeta potential measurements, vibrating sample magnetometry, thermogravimetric analysis, differential thermal analysis, and X-ray diffraction analysis. DLS measurements showed a particle size of 46.1 and 176.5 nm for the SPIONs and the ADFS, respectively. The adsorbent exhibited an adsorption capacity of 7.43 mg g-1 and followed the pseudo-second-order kinetics model (r2 = 0.9981). The ADFS could efficiently remove BPB from water after stirring for 120 minutes at room temperature and pH 2. The adsorption process was proved to occur via physisorption, as revealed by the Freundlich isotherm (n = 1.82 and KF = 11.5). Thermodynamic studies implied that the adsorption is spontaneous (-8.03 ≤ ΔG ≤ -0.58 kJ mol-1) and enthalpy-driven might take place via van der Waals interactions and/or hydrogen bonding (ΔH = -82.19 kJ mol-1 and ΔS = -0.24 kJ mol-1 K-1).
Collapse
Affiliation(s)
- Hadeel Saad
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
- General Organization for Export and Import Control Ramses Street Cairo Egypt
| | - F A Nour El-Dien
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Nadia E A El-Gamel
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed S Abo Dena
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR) Giza Egypt
- Faculty of Oral and Dental Medicine, Future University in Egypt (FUE) New Cairo Egypt
| |
Collapse
|
7
|
He Y, Zheng Y, Liu C, Zhang H, Shen J. Citric acid cross-linked β-cyclodextrins: A review of preparation and environmental/biomedical application. Carbohydr Polym 2024; 323:121438. [PMID: 37940303 DOI: 10.1016/j.carbpol.2023.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
The β-cyclodextrins (β-CD) are biocompatible macrocyclic candidates for the preparation of various composites with enhanced functions. While nontoxic and biodegradable citric acid (CA) is the favorite crosslinking agent for fabricating hierarchical advanced structures. The carboxyl and hydroxyl groups on CA can serve as "structural bridges" and enhance the solubility of β-CD. Leading to the construction of CA cross-linked β-CD with marvelous complicated structures and targeted functions. Here, we directly categorized the grafted composite materials into two main types such as organic and inorganic materials. Particularly, some representative composite materials are listed and analyzed in detail according to their preparation, advantages of unique characteristics, as well as the possible applications in environmental and biomedical fields such as adsorption of pollutants, sensors, and biomedical applications.
Collapse
Affiliation(s)
- Ye He
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yangyang Zheng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Jian Shen
- School of Chemistry, Chemical and Environmental Engineering, Weifang University, Weifang, Shandong 261061, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore.
| |
Collapse
|
8
|
Zdarta A, Kaczorek E. Advances in electrospun materials for the adsorption and separation of environmental pollutants: A comprehensive review. ENVIRONMENTAL RESEARCH 2023; 236:116783. [PMID: 37517499 DOI: 10.1016/j.envres.2023.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Despite a broad range of new techniques developed, adsorption methods remain one of the technologies of choice for the removal of contaminants. However, significant progress has also been made in these, which finds reflection in a new spectrum of adsorbents that can be used. This comprehensive review discusses properties, advantages, and perspectives on the use of custom-made electrospun adsorbents in the processes of heavy metals, agrochemicals, and microplastic contaminants removal from the environment. It presents the versatility and adaptability of materials that can be used as electrospun fibers matrix, also considering the mechanism and parameters of the sorption process carried out with them. The presented review proves, that due to the use of new, custom-made sorbents, such as electrospun materials, the adsorption processes still possess great application potential and development opportunities to provide an attractive and effective alternative to other remediation techniques.
Collapse
Affiliation(s)
- Agata Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Greater Poland, Poland.
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Greater Poland, Poland.
| |
Collapse
|
9
|
Netto MS, Pinto D, Franco DSP, Georgin J, Mallmann ES, de Oliveira AHP, Silva LFO, Dotto GL. Ivermectin adsorption by commercial charcoal in batch and fixed-bed operations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95326-95337. [PMID: 37542690 DOI: 10.1007/s11356-023-29042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Emerging contaminants were used during the COVID-19 pandemic, including ivermectin. Studies that limit the optimal adsorption parameters of ivermectin are scarce in the literature. In this study, we analyzed the adsorption of ivermectin with a high surface area and porosity charcoal. Isotherms were better fitted to the Koble-Corrigan model. The maximum capacity was 203 μg g-1 at 328 K. Thermodynamics indicated a spontaneous and endothermic behavior. The equilibrium was quickly reached within the first few minutes regardless of the ivermectin concentration. The linear driving force (LDF) model fitted the kinetic data (qexp = 164.8 μg g-1; qpred = 148.1 μg g-1) at 100 μg L-1 of ivermectin. The model coefficient (KLDF) and diffusivity (Ds) increased with increasing drug concentration. Two sloped curves were obtained in the column experiments, with a breakthrough time of 415 min and 970 min. The capacity of the column (qeq) was 76 μg g-1. The length of the mass transfer zone was 9.04 and 14.13 cm. Therefore, it can be concluded that the adsorption of ivermectin is highly sensitive to changes in pH, being favored in conditions close to neutrality. Commercial activated charcoal was highly efficient in removing the studied compound showing high affinity with very fast kinetics and a good performance in continuous operation mode.
Collapse
Affiliation(s)
- Matias S Netto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Diana Pinto
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Dison S P Franco
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Jordana Georgin
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Evandro S Mallmann
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Anelise H P de Oliveira
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Luis F O Silva
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Guilherme L Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
10
|
Huang X, Jin K, Yang S, Zeng J, Zhou H, Zhang R, Xue J, Liu Y, Liu G, Peng H. Fabrication of polyvinylidene fluoride and acylthiourea composite membrane and its adsorption performance and mechanism on silver ions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
11
|
Krishnan SAG, Gumpu MB, Arthanareeswaran G, Goh PS, Aziz F, Ismail AF. Electrochemical quantification of atrazine-fulvic acid and removal through bismuth tungstate photocatalytic hybrid membranes. CHEMOSPHERE 2023; 311:137016. [PMID: 36374783 DOI: 10.1016/j.chemosphere.2022.137016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Herbicides such as atrazine and humus substances such as fulvic acid are widely used in agricultural sector. They can be traced in surface and groundwater around the agriculture field at concentrations beyond the approved limit due to their mobility and persistence. Bismuth-based photocatalysts activated by visible light are potential materials for removing various organic pollutants from water bodies. These photocatalysts can also be suitable candidates for developing a hybrid membrane with anti-fouling properties. In this study, Bi2WO6 nanoparticles were synthesized via the hydrothermal method and integrated into the cellulose acetate (CA), polyetherimide (PEI), polysulfone (PSF) and polyvinylidene fluoride (PVDF) polymers via physical blending approach. The hybrid membranes were then characterized by FTIR, XPS and FESEM to confirm the chemical bonding, chemical composition and surface morphology of Bi2WO6. Thus, the pure water flux of CA (35.6 L m-2 h-1), PEI (46.56 L m-2 h-1), PSF (6.84 L m-2 h-1), and PVDF (68.47 L m-2 h-1) hybrid membranes has significantly enhanced than the pristine CA, PEI, PSF and PVDF membranes. The significant rejection of atrazine-fulvic acid was observed with hybrid membranes in the order of CA (84.1%) > PVDF (72.7%) > PEI (47.8%) > PSF (37.2%), and these membranes have shown an excellent flux recovery ratio than pristine membranes. Further, electrochemical quantification studies were performed to analyze the removal efficiency of atrazine-fulvic acid from water. In this present work, GO-modified SPE was employed for electrochemical sensing studies. The resultant CA hybrid membrane achieved removal efficiency of 84.08% for atrazine. It was observed that the Bi2WO6 established strong bonding with CA, and PVDF membranes, thus showing a significant removal efficiency and FRR than other hybrid and pristine membranes.
Collapse
Affiliation(s)
- S A Gokula Krishnan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamilnadu, India
| | - Manju Bhargavi Gumpu
- Fossil and Alternative Fuel Processing Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamilnadu, India
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamilnadu, India.
| | - P S Goh
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - F Aziz
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - A F Ismail
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
12
|
Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
İlyasoglu G, Kose-Mutlu B, Mutlu-Salmanli O, Koyuncu I. Removal of organic micropollutans by adsorptive membrane. CHEMOSPHERE 2022; 302:134775. [PMID: 35537632 DOI: 10.1016/j.chemosphere.2022.134775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Various emerging organic micropollutants, such as pharmaceuticals, have attracted the interest of the water industry during the last two decades due to their insufficient removal during conventional water and wastewater treatment methods and increasing demand for pharmaceuticals projected to climate change-related impacts and COVID-19, nanosorbents such as carbon nanotubes (CNTs), graphene oxides (GOs), and metallic organic frameworks (MOFs) have recently been extensively explored regarding their potential environmental applications. Due to their unique physicochemical features, the use of these nanoadsorbents for organic micropollutans in water and wastewater treatment processes has been a rapidly growing topic of research in recent literature. Adsorptive membranes, which include these nanosorbents, combine the benefits of adsorption with membrane separation, allowing for high flow rates and faster adsorption/desorption rates, and have received a lot of publicity in recent years. The most recent advances in the fabrication of adsorptive membranes (including homogeneous membranes, mixed matrix membranes, and composite membranes), as well as their basic principles and applications in water and wastewater treatment, are discussed in this review. This paper covers ten years, from 2011 to 2021, and examines over 100 published studies, highlighting that micropollutans can pose a serious threat to surface water environments and that adsorptive membranes are promising, particularly in the adsorption of trace substances with fast kinetics. Membrane fouling, on the other hand, should be given more attention in future studies due to the high costs and restricted reusability.
Collapse
Affiliation(s)
- Gülmire İlyasoglu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Borte Kose-Mutlu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Oyku Mutlu-Salmanli
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| |
Collapse
|
14
|
Fakhry H, El-Sonbati M, Omar B, El-Henawy R, Zhang Y, El-Kady M. Novel fabricated low-cost hybrid polyacrylonitrile/polyvinylpyrrolidone coated polyurethane foam (PAN/PVP@PUF) membrane for the decolorization of cationic and anionic dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115128. [PMID: 35483254 DOI: 10.1016/j.jenvman.2022.115128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Dyes are recalcitrait organic pollutants threatening the aquatic environment and human health. In the present study, a novel low-cost hybrid membrane was fabricated by coating polyurethane foam (PUF) with polyacrylonitrile/polyvinylpyrrolidone (PAN/PVP) via phase inversion technique from casting solutions consisting of PAN and PVP with Dimethyl formamide (DMF) and applied for removal of cationic (Methylene Blue (MB)) and anionic (Methyl Orange (MO)) dyes from aqueous solutions. The as-prepared membrane was first characterized by Scan Electron Microscope (SEM), Fourier Transform Infrared (FTIR), Energy Dispersive Spectrometry (EDS), etc. Then, batch experiments were conducted to optimize the adsorption conditions, including contact time, adsorbent dose, dyes concentration, and pH. The dye removal results fitted with pseudo first and second-order kinetics; Langmuir, Freundlich, and Temkin isotherms' models. The maximum dye decolorization was approximately 97% and 95% within 60 and 120 min using 0.5 and 1 g of the fabricated composite for MB and MO, respectively. The kinetic studies showed rapid sorption dynamics following a second-order kinetic model. In addition, dye adsorption equilibrium data fitted well to the Freundlich isotherm with monolayer maximum adsorption capacity of 6.356 and 3.321 mg/g for MO and MB dye, respectively. Thus, the novel hybrid membrane is promising as a cheap and efficient adsorbent for the removal of both cationic and anionic dyes from wastewater. The current study demonstrated a new avenue to achieve efficient management of dyes in aquatic environments.
Collapse
Affiliation(s)
- Hala Fakhry
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Mervat El-Sonbati
- Department of Environmental Sciences, Faculty of Science, Damietta University, 34517, Damietta, Egypt
| | - Basma Omar
- Department of Environmental Sciences, Faculty of Science, Damietta University, 34517, Damietta, Egypt
| | - Reham El-Henawy
- Department of Environmental Sciences, Faculty of Science, Damietta University, 34517, Damietta, Egypt
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| | - Marwa El-Kady
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications, (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt; Chemical and Petrochemicals Engineering Department, Engineering Faculty, Egypt-Japan University of Science and Technology, New BorgEl-Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
15
|
Al-Ghafri B, Kyaw HH, Al-Abri M, Lau WJ. Performance Study of Novel PES Membrane using Electrospray Deposition Method for Organic Contaminants Separation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Ndlovu LN, Malatjie KI, Chabalala MB, Mishra AK, Mishra SB, Nxumalo EN. Beta cyclodextrin modified polyvinylidene fluoride adsorptive mixed matrix membranes for removal of Congo red. J Appl Polym Sci 2022. [DOI: 10.1002/app.52302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lloyd N. Ndlovu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| | - Kgolofelo I. Malatjie
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| | - Mandla B. Chabalala
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| | - Ajay K. Mishra
- Academy of Nanotechnology and Waste Water Innovations Johannesburg South Africa
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Shivani B. Mishra
- Academy of Nanotechnology and Waste Water Innovations Johannesburg South Africa
| | - Edward N. Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| |
Collapse
|
17
|
Hernandes PT, Franco DSP, Georgin J, Salau NPG, Dotto GL. Adsorption of atrazine and 2,4-D pesticides on alternative biochars from cedar bark sawdust (Cedrella fissilis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22566-22575. [PMID: 34796439 DOI: 10.1007/s11356-021-17590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Bark residues of the forest species Cedrela fissilis were physically and chemically modified with zinc chloride (ZnCl2) as an activating agent. The two modified materials were analyzed as adsorbents in removing atrazine and 2,4-D herbicides from effluents. Firstly, the precursor material and the modified ones were characterized by different techniques to identify the structural changes that occurred in the surfaces. Through TGA, it was observed that both modified materials have thermal stability close to each other and are highly superior to the precursor. X-ray diffractions proved that the amorphous structure was not altered, the three materials being highly heterogeneous and irregular. The micrographs showed that the treatments brought new spaces and cavities on the surface, especially for the material carbonized with ZnCl2. The pHPZC of the modified materials was close to 7.5. The physically modified material had a surface area of 47.31 m2 g-1 and pore volume of 0.0095 cm3 g-1, whereas the carbonized material had a surface area of 98.12 m2 g-1 and pore volume of 0.0099 cm3 g-1. Initial tests indicated that none of the adsorbents were efficient in removing 2,4-D. However, they showed good potential for removing atrazine. The Koble-Corrigan isothermal model best fits the experimental data, with a maximum capacity of 3.44 mg g-1 and 2.70 mg g-1 for physically modified and with ZnCl2, respectively. The kinetic studies showed that the system tends to enter into equilibrium after 120 min, presenting good statistical indicators to the linear driving force model (LDF). The surface diffusion coefficients were 2.18×10-9 and 2.37×10-9 cm2 s-1 for atrazine adsorption on the physically and chemically modified materials. These results showed that the application of residues from the processing of cedar bark is promising. However, new future studies must be carried out to improve the porous development of the material and obtain greater adsorption capacities.
Collapse
Affiliation(s)
- Paola T Hernandes
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Civil Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Nina P G Salau
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
18
|
Application of araçá fruit husks (Psidium cattleianum) in the preparation of activated carbon with FeCl3 for atrazine herbicide adsorption. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Multifunctional Membranes-A Versatile Approach for Emerging Pollutants Removal. MEMBRANES 2022; 12:membranes12010067. [PMID: 35054593 PMCID: PMC8778428 DOI: 10.3390/membranes12010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
This paper presents a comprehensive literature review surveying the most important polymer materials used for electrospinning processes and applied as membranes for the removal of emerging pollutants. Two types of processes integrate these membrane types: separation processes, where electrospun polymers act as a support for thin film composites (TFC), and adsorption as single or coupled processes (photo-catalysis, advanced oxidation, electrochemical), where a functionalization step is essential for the electrospun polymer to improve its properties. Emerging pollutants (EPs) released in the environment can be efficiently removed from water systems using electrospun membranes. The relevant results regarding removal efficiency, adsorption capacity, and the size and porosity of the membranes and fibers used for different EPs are described in detail.
Collapse
|
20
|
El-Aswar EI, Ramadan H, Elkik H, Taha AG. A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113908. [PMID: 34626949 DOI: 10.1016/j.jenvman.2021.113908] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
The direct discharge of significant amounts of polluted water into water bodies causes adverse ecological and human health effects. This severe deterioration in water quality creates significant challenges to meet the growing demand for clean water. Therefore, the world urgently needs environmentally friendly advanced technology to overcome this global crisis. In this regard, nanofiber-based membrane filtration is a promising technique in wastewater remediation because of their huge surface area, extremely porous structure, amenable pore size/pore size distribution, variety of material choices, and flexibility to modification with other functional materials. However, despite their unique properties, fouling, poor mechanical properties, shrinkage, and deformation are major drawbacks of nanofiber membranes for treating wastewater. This review presents a comprehensive overview of nanofiber membranes' fabrication and function in water purification applications as well as providing novel approaches to overcoming/alleviating the mentioned disadvantages. The review first presents nanofiber membrane preparation methods, focusing on electrospinning as a versatile and viable technique alongside discussing the parameters controlling nanofiber morphology. Afterward, the functionalization of nanofiber membranes by combining them with other nanomaterials, such as metal and metal-oxide nanoparticles, carbon nanotubes, metal-organic frameworks, and biomolecules, were demonstrated and discussed. In addition, nanofiber membranes functionalized with microorganisms were highlighted. Finally, we introduced and discussed in detail the most relevant and recent advances in nanofiber applications in wastewater treatment in the context of removing different pollutants (e.g., heavy metals, nutrients, radioactive elements, pharmaceuticals, and personal care products, dyes, and pesticides). Moreover, the promising antimicrobial ability of nanofiber membranes in removing microorganisms from wastewater has been fully underscored. We believe this comprehensive review could provide researchers with preliminary data and guide both researchers and producers engaged in the nanofiber membrane industry, letting them focus on the research gaps in wastewater treatment.
Collapse
Affiliation(s)
- Eslam Ibrahim El-Aswar
- Central Laboratories for Environmental Quality Monitoring, National Water Research Center, El-Kanater, Qalyubiyah, 13621, Egypt.
| | - Hassan Ramadan
- Public Works Engineering Department, Faculty of Engineering, Tanta University, Tanta, 31733, Egypt
| | - Hussin Elkik
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Ahmed G Taha
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
21
|
Skwierawska AM, Nowacka D, Nowicka P, Rosa S, Kozłowska-Tylingo K. Structural Adaptive, Self-Separating Material for Removing Ibuprofen from Waters and Sewage. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7697. [PMID: 34947291 PMCID: PMC8709425 DOI: 10.3390/ma14247697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
β-Cyclodextrin nanosponge (β-CD-M) was used for the adsorption of ibuprofen (IBU) from water and sewage. The obtained material was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH), Harkins and Jura t-Plot, zeta potential, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and elementary analysis (EA). Batch adsorption experiments were employed to investigate the effects of the adsorbent dose, initial IBU concentration, contact time, electrolyte ions and humic acids, and sewage over adsorption efficiency. The experimental isotherms were show off using Langmuir, Freundlich, Hill, Halsey and Sips isotherm models and thermodynamic analysis. The fits of the results were estimated according to the Sips isotherm, with a maximum adsorption capacity of 86.21 mg g-1. The experimental kinetics were studied by pseudo-first-order, pseudo-second-order, Elovich, modified Freundlich, Weber Morris, Bangham's pore diffusion, and liquid film diffusion models. The performed experiments revealed that the adsorption process fits perfectly to the pseudo-second-order model. The Elovich and Freundlich models indicate chemisorption, and the kinetic adsorption model itself is complex. The data obtained throughout the study prove that this nanosponge (NS) is extremely stable, self-separating, and adjusting to the guest structure. It also represents a potential biodegradable adsorbent for the removal IBU from wastewaters.
Collapse
Affiliation(s)
- Anna Maria Skwierawska
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Dominika Nowacka
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Paulina Nowicka
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Sandra Rosa
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Katarzyna Kozłowska-Tylingo
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| |
Collapse
|
22
|
Zhang H, He Q, Zhao W, Guo F, Han L, Wang W. Superior dyes removal by a recyclable magnetic silicate@Fe3O4 adsorbent synthesized from abundant natural mixed clay. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Abstract
In the past few decades, the role of nanotechnology has expanded into environmental remediation applications. In this regard, nanofibers have been reported for various applications in water treatment and air filtration. Nanofibers are fibers of polymeric origin with diameters in the nanometer to submicron range. Electrospinning has been the most widely used method to synthesize nanofibers with tunable properties such as high specific surface area, uniform pore size, and controlled hydrophobicity. These properties of nanofibers make them highly sought after as adsorbents, photocatalysts, electrode materials, and membranes. In this review article, a basic description of the electrospinning process is presented. Subsequently, the role of different operating parameters in the electrospinning process and precursor polymeric solution is reviewed with respect to their influence on nanofiber properties. Three key areas of nanofiber application for water treatment (desalination, heavy-metal removal, and contaminant of emerging concern (CEC) remediation) are explored. The latest research in these areas is critically reviewed. Nanofibers have shown promising results in the case of membrane distillation, reverse osmosis, and forward osmosis applications. For heavy-metal removal, nanofibers have been able to remove trace heavy metals due to the convenient incorporation of specific functional groups that show a high affinity for the target heavy metals. In the case of CECs, nanofibers have been utilized not only as adsorbents but also as materials to localize and immobilize the trace contaminants, making further degradation by photocatalytic and electrochemical processes more efficient. The key issues with nanofiber application in water treatment include the lack of studies that explore the role of the background water matrix in impacting the contaminant removal performance, regeneration, and recyclability of nanofibers. Furthermore, the end-of-life disposal of nanofibers needs to be explored. The availability of more such studies will facilitate the adoption of nanofibers for water treatment applications.
Collapse
|
24
|
Xing W, Ma Z, Wang C, Lu J, Gao J, Yu C, Lin X, Li C, Wu Y. Novel Molecular Organic Framework Composite Molecularly Imprinted Nanofibrous Membranes with a Bioinspired Viscid Bead Structure for Selective Recognition and Separation of Atrazine. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28749-28763. [PMID: 34106691 DOI: 10.1021/acsami.1c02829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, novel atrazine (ATZ) molecularly imprinted nanofibrous membranes (A-MNMs) with a molecular organic framework (MOF)-based viscid bead structure were developed based on a natural spider-web-inspired strategy for selective separation of ATZ. Poly(vinylidene fluoride)/poly(vinyl alcohol) (PVDF/PVA) blended nanofibrous membranes as the basal membrane were synthesized by electrospinning technology combined with a chemical cross-linking procedure. The most critical design is that MOF nanocrystals as the matrix of the viscid bead structure were assembled on the PVDF/PVA blended nanofibrous membrane surface and the specific recognition sites were efficiently constructed on the surface and pores of the MOF-based viscid bead structure by a surface imprinting strategy. Significantly, the as-synthesized MOF-based viscid bead structure has an enhanced specific surface area, which helps to form abundant specific recognition sites in A-MNMs. Therefore, the A-MNMs with a spider-web-like structure presented an enhanced rebinding capacity (37.62 mg g-1) and permselectivity (permselectivity factors β were 4.21 and 4.31) toward ATZ. Moreover, the A-MNMs display strong practicability in separation of ATZ from simulated environmental water samples. The presented work has shown tremendous potential for preparing natural spider-web-like molecularly imprinted membranes (MIMs) for selective separation of environment pollutants.
Collapse
Affiliation(s)
- Wendong Xing
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhongfei Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chong Wang
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Jian Lu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jia Gao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chao Yu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Lin
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
25
|
Zhang L, Zhao D, Lu Y, Chen J, Li H, Xie J, Xu Y, Yuan H, Liu X, Zhu X, Lu J. A graphene oxide modified cellulose nanocrystal/PNIPAAm IPN hydrogel for the adsorption of Congo red and methylene blue. NEW J CHEM 2021. [DOI: 10.1039/d1nj01969d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A simple strategy is developed to fabricate a graphene oxide modified cellulose nanocrystal/PNIPAAm IPN (GO-CNC/PNIPAAm IPN) hydrogel. It is a high-efficiency and low-cost adsorbent for the removal the anionic dye CR and cationic dye MB.
Collapse
Affiliation(s)
- Lijuan Zhang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Dongqing Zhao
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yao Lu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Jinghan Chen
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Haotian Li
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Jinghan Xie
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yue Xu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
- School of Chemical Engineering, University of Ulsan, Ulsan 44610, Korea
| | - Haikuan Yuan
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xueyan Zhu
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|