1
|
Kita K, Gawinowska M, Chełmińska M, Niedoszytko M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int J Mol Sci 2024; 25:7395. [PMID: 39000502 PMCID: PMC11242091 DOI: 10.3390/ijms25137395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic respiratory diseases. Chronic inflammation of the airways leads to an increased production of inflammatory markers by the effector cells of the respiratory tract and lung tissue. These biomarkers allow the assessment of physiological and pathological processes and responses to therapeutic interventions. Lung cancer, which is characterized by high mortality, is one of the most frequently diagnosed cancers worldwide. Current screening methods and tissue biopsies have limitations that highlight the need for rapid diagnosis, patient differentiation, and effective management and monitoring. One promising non-invasive diagnostic method for respiratory diseases is the assessment of exhaled breath condensate (EBC). EBC contains a mixture of volatile and non-volatile biomarkers such as cytokines, leukotrienes, oxidative stress markers, and molecular biomarkers, providing significant information about inflammatory and neoplastic states in the lungs. This article summarizes the research on the application and development of EBC assessment in diagnosing and monitoring respiratory diseases, focusing on asthma, COPD, and lung cancer. The process of collecting condensate, potential issues, and selected groups of markers for detailed disease assessment in the future are discussed. Further research may contribute to the development of more precise and personalized diagnostic and treatment methods.
Collapse
Affiliation(s)
- Karolina Kita
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marika Gawinowska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marta Chełmińska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
2
|
Sweed NM, Zaafan MA, El-Bishbishy MH, Dawoud MHS. The pulmonary protective potential of vanillic acid-loaded TPGS-liposomes: modulation of miR-217/MAPK/NF-κb signalling pathway. J Microencapsul 2024; 41:255-268. [PMID: 38647544 DOI: 10.1080/02652048.2024.2335166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
The aim is to investigate the possible pulmonary protective effect of vanillic acid (VA) in liposome-TPGS nanoparticles, to overcome VA's poor bioavailability. VA was successfully extracted. Liposomes were prepared using thin film hydration. Central composite design was adopted for optimisation of liposomes to get the maximum entrapment efficiency (EE%) and the minimum mean diameter, where the liposomes were further modified with TPGS, and tested for PDI, zeta-potential, and in-vitro drug release. In-vivo study on mice with LPS-acute pulmonary toxicity was tested. TPGS-modified VA-liposomes showed EE% of 69.35 ± 1.23%, PS of 201.7 ± 3.23 nm, PDI of 0.19 ± 0.02, and zeta-potential of -32.2 ± 0.32 mv. A sustained drug release of the TPGS-modified VA-liposomes was observed compared to standard VA, and a pulmonary-protective effect through decreasing miR-217 expression with subsequent anti-inflammatory effect through suppression of MAPK and PI3K/NF-κB pathways was also demonstrated in the current study. TPGS-modified VA-liposomes showed an enhanced bioavailability and a sustained drug release with promising pulmonary protective effects against acute pulmonary injury diseases.
Collapse
Affiliation(s)
- Nabila M Sweed
- Pharmaceutics Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6 October, Egypt
| | - Mai A Zaafan
- Pharmacology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6 October, Egypt
| | - Mahitab H El-Bishbishy
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6 October, Egypt
| | - Marwa H S Dawoud
- Pharmaceutics Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6 October, Egypt
| |
Collapse
|
3
|
Elrebehy MA, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Elshaer SS, Fathi D, Rizk NI, Moustafa YM, Elballal MS, Mohammed OA, Abdel-Reheim MA, Zaki MB, Mahmoud AMA, Rashad AA, Sawan ES, Al-Noshokaty TM, Saber S, Doghish AS. Tuning into miRNAs: A comprehensive analysis of their impact on diagnosis, and progression in asthma. Pathol Res Pract 2024; 254:155147. [PMID: 38246033 DOI: 10.1016/j.prp.2024.155147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Asthma is a diverse inflammatory illness affecting the respiratory passages, leading to breathing challenges, bouts of coughing and wheezing, and, in severe instances, significant deterioration in quality of life. Epigenetic regulation, which involves the control of gene expression through processes such as post-transcriptional modulation of microRNAs (miRNAs), plays a role in the evolution of various asthma subtypes. In immune-mediated diseases, miRNAs play a regulatory role in the behavior of cells that form the airway structure and those responsible for defense mechanisms in the bronchi and lungs. They control various cellular processes such as survival, growth, proliferation, and the production of chemokines and immune mediators. miRNAs possess chemical and biological characteristics that qualify them as suitable biomarkers for diseases. They allow for the categorization of patients to optimize drug selection, thus streamlining clinical management and decreasing both the economic burden and the necessity for critical care related to the disease. This study provides a concise overview of the functions of miRNAs in asthma and elucidates their regulatory effects on the underlying processes of the disease. We provide a detailed account of the present status of miRNAs as biomarkers for categorizing asthma, identifying specific asthma subtypes, and selecting appropriate treatment options.
Collapse
Affiliation(s)
- Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Eman S Sawan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
4
|
Al-Noshokaty TM, Fathi D, Abulsoud AI, Moustafa YM, Abdel Mageed SS, Mohammed OA, Abdel-Reheim MA, Abdelmaksoud NM, Doghish AS. Harnessing the power of miRNAs: The molecular architects of asthma pathogenesis and potential targets for therapeutic innovation. Pathol Res Pract 2024; 253:155054. [PMID: 38142525 DOI: 10.1016/j.prp.2023.155054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Asthma is a chronic non-communicable respiratory disease that is characterized by airway inflammation and hyperreactivity. Defective functions of airway smooth muscle and dysregulated signaling pathways play a crucial role in the pathogenesis of asthma. Anti-inflammatories and targeted therapy are mainly used for the treatment of asthma. Recent studies have investigated the role of non-coding RNAs, especially microRNAs (miRNAs; miR) in regulating gene expression and their involvement in the dysfunctional signaling pathways. In immune-mediated diseases, including asthma, miRNAs govern the actions of cells that form the airway structure and those responsible for the defense mechanisms in the bronchi and lungs. miRNAs control cell survival, proliferation, and growth, as well as the cells' capacity to produce and release chemokines and immune mediators. Moreover, miRNAs have an important role in the response to therapeutic interventions. Collectively, this review highlights the regulatory roles of miRNAs in modulating the different signaling pathways and therapeutic responses in asthma. Patients who suffer from asthma, particularly those with severe disease characteristics, may benefit from the prospective treatment options that include targeting miRNAs in order to reduce airway inflammation, hyperreactivity, and mucus production.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| |
Collapse
|
5
|
Ayeldeen G, Shaker OG, Amer E, Zaafan MA, Herzalla MR, Keshk MA, Abdelhamid AM. The Impact of lncRNA-GAS5/miRNA-200/ACE2 Molecular Pathway on the Severity of COVID-19. Curr Med Chem 2024; 31:1142-1151. [PMID: 37190816 DOI: 10.2174/0929867330666230515144133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2), which is responsible for coronavirus disease (COVID-19), potentially has severe adverse effects, leading to public health crises worldwide. In COVID-19, deficiency of ACE-2 is linked to increased inflammation and cytokine storms via increased angiotensin II levels and decreased ACE-2/Mas receptor axis activity. MiRNAs are small sequences of noncoding RNAs that regulate gene expression by binding to the targeted mRNAs. MiR-200 dysfunction has been linked to the development of ARDS following acute lung injury and has been proposed as a key regulator of ACE2 expression. LncRNA growth arrest-specific transcript 5 (GAS5) has been recently studied for its modulatory effect on the miRNA-200/ACE2 axis. OBJECTIVE The current study aims to investigate the role of lncRNA GAS5, miRNA-200, and ACE2 as new COVID-19 diagnostic markers capable of predicting the severity of SARS-CoV-2 complications. METHODS A total of 280 subjects were classified into three groups: COVID-19-negative controls (n = 80), and COVID-19 patients (n=200) who required hospitalization were classified into two groups: group (2) moderate cases (n = 112) and group (3) severe cases (n = 88). RESULTS The results showed that the serum GAS5 expression was significantly down-expressed in COVID-19 patients; as a consequence, the expression of miR-200 was reported to be overexpressed and its targeted ACE2 was down-regulated. The ROC curve was drawn to examine the diagnostic abilities of GAS5, miR-200, and ACE2, yielding high diagnostic accuracy with high sensitivity and specificity. CONCLUSION lncRNA-GAS5, miRNA-200, and ACE2 panels presented great diagnostic potential as they demonstrated the highest diagnostic accuracy for discriminating moderate COVID-19 and severe COVID-19 cases.
Collapse
Affiliation(s)
- Ghada Ayeldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Amer
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Mai A Zaafan
- Pharmacology & Toxicology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Mohamed R Herzalla
- Internal Medicine Department, Endocrinology & Diabetes Unit, Zagazig University, 6th of October City, Egypt
| | - Mofida A Keshk
- Department of Molecular Diagnostics and Therapeutics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), El-Sadat City, Egypt
| | - Amr M Abdelhamid
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| |
Collapse
|
6
|
Pradère P, Zajacova A, Bos S, Le Pavec J, Fisher A. Molecular monitoring of lung allograft health: is it ready for routine clinical use? Eur Respir Rev 2023; 32:230125. [PMID: 37993125 PMCID: PMC10663940 DOI: 10.1183/16000617.0125-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023] Open
Abstract
Maintenance of long-term lung allograft health in lung transplant recipients (LTRs) requires a fine balancing act between providing sufficient immunosuppression to reduce the risk of rejection whilst at the same time not over-immunosuppressing individuals and exposing them to the myriad of immunosuppressant drug side-effects that can cause morbidity and mortality. At present, lung transplant physicians only have limited and rather blunt tools available to assist them with this task. Although therapeutic drug monitoring provides clinically useful information about single time point and longitudinal exposure of LTRs to immunosuppressants, it lacks precision in determining the functional level of immunosuppression that an individual is experiencing. There is a significant gap in our ability to monitor lung allograft health and therefore tailor optimal personalised immunosuppression regimens. Molecular diagnostics performed on blood, bronchoalveolar lavage or lung tissue that can detect early signs of subclinical allograft injury, differentiate rejection from infection or distinguish cellular from humoral rejection could offer clinicians powerful tools in protecting lung allograft health. In this review, we look at the current evidence behind molecular monitoring in lung transplantation and ask if it is ready for routine clinical use. Although donor-derived cell-free DNA and tissue transcriptomics appear to be the techniques with the most immediate clinical potential, more robust data are required on their performance and additional clinical value beyond standard of care.
Collapse
Affiliation(s)
- Pauline Pradère
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Department of Respiratory Diseases, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Paris, France
| | - Andrea Zajacova
- Prague Lung Transplant Program, Department of Pneumology, Motol University Hospital and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Jérôme Le Pavec
- Department of Respiratory Diseases, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Paris, France
| | - Andrew Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
7
|
Farasati Far B, Vakili K, Fathi M, Yaghoobpoor S, Bhia M, Naimi-Jamal MR. The role of microRNA-21 (miR-21) in pathogenesis, diagnosis, and prognosis of gastrointestinal cancers: A review. Life Sci 2023; 316:121340. [PMID: 36586571 DOI: 10.1016/j.lfs.2022.121340] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs regulating the expression of several target genes. miRNAs play a significant role in cancer biology, as they can downregulate their corresponding target genes by impeding the translation of mRNA (at the mRNA level) as well as degrading mRNAs by binding to the 3'-untranslated (UTR) regions (at the protein level). miRNAs may be employed as cancer biomarkers. Therefore, miRNAs are widely investigated for early detection of cancers which can lead to improved survival rates and quality of life. This is particularly important in the case of gastrointestinal cancers, where early detection of the disease could substantially impact patients' survival. MicroRNA-21 (miR-21 or miRNA-21) is one of the most frequently researched miRNAs, where it is involved in the pathophysiology of cancer and the downregulation of several tumor suppressor genes. In gastrointestinal cancers, miR-21 regulates phosphatase and tensin homolog (PTEN), programmed cell death 4 (PDCD4), mothers against decapentaplegic homolog 7 (SMAD7), phosphatidylinositol 3-kinase /protein kinase B (PI3K/AKT), matrix metalloproteinases (MMPs), β-catenin, tropomyosin 1, maspin, and ras homolog gene family member B (RHOB). In this review, we investigate the functions of miR-21 in pathogenesis and its applications as a diagnostic and prognostic cancer biomarker in four different gastrointestinal cancers, including colorectal cancer (CRC), pancreatic cancer (PC), gastric cancer (GC), and esophageal cancer (EC).
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammed Bhia
- Student Research Committee, Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Reza Naimi-Jamal
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
8
|
Role of cellular senescence in inflammatory lung diseases. Cytokine Growth Factor Rev 2023; 70:26-40. [PMID: 36797117 DOI: 10.1016/j.cytogfr.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Cellular senescence, a characteristic sign of aging, classically refers to permanent cell proliferation arrest and is a vital contributor to the pathogenesis of cancer and age-related illnesses. A lot of imperative scientific research has shown that senescent cell aggregation and the release of senescence-associated secretory phenotype (SASP) components can cause lung inflammatory diseases as well. In this study, the most recent scientific progress on cellular senescence and phenotypes was reviewed, including their impact on lung inflammation and the contributions of these findings to understanding the underlying mechanisms and clinical relevance of cell and developmental biology. Within a dozen pro-senescent stimuli, the irreparable DNA damage, oxidative stress, and telomere erosion are all crucial in the long-term accumulation of senescent cells, resulting in sustained inflammatory stress activation in the respiratory system. An emerging role for cellular senescence in inflammatory lung diseases was proposed in this review, followed by the identification of the main ambiguities, thus further understanding this event and the potential to control cellular senescence and pro-inflammatory response activation. In addition, novel therapeutic strategies for the modulation of cellular senescence that might help to attenuate inflammatory lung conditions and improve disease outcomes were also presented in this research.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The study of microRNA in asthma has revealed a vibrant new level of gene regulation underlying asthma pathology. Several miRNAs have been shown to be important in asthma, influencing various biological mechanisms which lead to asthma pathology and symptoms. In addition, miRNAs have been proposed as biomarkers of asthma affection status, asthma severity, and asthma treatment response. We review all recent asthma-miRNA work, while also presenting comprehensive tables of all miRNA results related to asthma. RECENT FINDINGS We here reviewed 63 recent studies published reporting asthma and miRNA research, and an additional 14 reviews of the same. We summarized the information for both adult and childhood asthma, as well as research on miRNAs in asthma-COPD overlap syndrome (ACOs), and virus-induced asthma exacerbations. We attempted to present a comprehensive collection of recently published asthma-associated miRNAs as well as tables of all published asthma-related miRNA results.
Collapse
Affiliation(s)
- Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Yang Y, Li Y, Yuan H, Liu X, Ren Y, Gao C, Jiao T, Cai Y, Zhao S. Characterization of circRNA–miRNA–mRNA networks regulating oxygen utilization in type II alveolar epithelial cells of Tibetan pigs. Front Mol Biosci 2022; 9:854250. [PMID: 36213124 PMCID: PMC9532862 DOI: 10.3389/fmolb.2022.854250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the signaling pathway regulatory mechanisms in type II alveolar epithelial (ATII) cells, the progenitor cells responsible for proliferating and regenerating type I alveolar epithelial (ATI) and ATII cells, in Tibetan pigs is beneficial for exploring methods of preventing and repairing cellular damage during hypoxia. We simulated a hypoxic environment (2% O2) for culture ATII cells of Tibetan pigs and Landrace pigs, with cells cultured under normoxic conditions (21% O2) as a control group, and performed integrated analysis of circular RNA (circRNA)–microRNA (miRNA)–messenger RNA (mRNA) regulatory axes by whole-transcriptome sequencing. Functional enrichment analysis indicated that the source genes of the differential expressed circRNAs (DEcircRNAs) were primarily involved in cell proliferation, cellular processes, and cell killing. A series of DEcircRNAs were derived from inhibitors of apoptosis proteins and led to a key autonomous effect as modulators of cell repair in Tibetan pigs under hypoxia. The significant higher expression of COL5A1 in TL groups may inhibited apoptosis of ATII cells in Tibetan pigs under lower oxygen concentration, and may lead their better survive in the hypoxia environment. In addition, a competing endogenous RNA (ceRNA) network of functional interactions was constructed that included novel_circ_000898-ssc-miR-199a-5p-CAV1 and novel_circ_000898-ssc-miR-378-BMP2, based on the node genes ssc-miR-199a-5p and ssc-miR-378, which may regulate multiple miRNAs and mRNAs that mediate endoplasmic reticulum (ER) stress-induced apoptosis and inflammation and attenuate hypoxia-induced injury in ATII cells under hypoxic conditions. These results broaden our knowledge of circRNAs, miRNAs, and mRNAs associated with hypoxia and provide new insights into the hypoxic response of ATII cells in Tibetan pigs.
Collapse
Affiliation(s)
- Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongqing Li
- Xinjiang Academy of Animal Sciences, Ürümqi, Xinjiang, China
| | - Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuanbo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yue Ren
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Jiao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Shengguo Zhao,
| |
Collapse
|
11
|
Thorenoor N, Floros J. The Lung Alveolar Cell (LAC) miRNome and Gene Expression Profile of the SP-A-KO Mice After Infection With and Without Rescue With Human Surfactant Protein-A2 (1A0). Front Immunol 2022; 13:854434. [PMID: 35844510 PMCID: PMC9283764 DOI: 10.3389/fimmu.2022.854434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Human surfactant protein (SP)-A1 and SP-A2 exhibit differential qualitative and quantitative effects on the alveolar macrophage (AM), including a differential impact on the AM miRNome. Moreover, SP-A rescue (treatment) of SP-A-knockout (KO) infected mice impoves survival. Here, we studied for the first time the role of exogenous SP-A protein treatment on the regulation of lung alveolar cell (LAC) miRNome, the miRNA-RNA targets, and gene expression of SP-A-KO infected mice of both sexes. Toward this, SP-A-KO mice of both sexes were infected with Klebsiella pneumoniae, and half of them were also treated with SP-A2 (1A0). After 6 h of infection/SP-A treatment, the expression levels and pathways of LAC miRNAs, genes, and target miRNA-mRNAs were studied in both groups. We found 1) significant differences in the LAC miRNome, genes, and miRNA-mRNA targets in terms of sex, infection, and infection plus SP-A2 (1A0) protein rescue; 2) an increase in the majority of miRNA-mRNA targets in both study groups in KO male vs. female mice and involvement of the miRNA-mRNA targets in pathways of inflammation, antiapoptosis, and cell cycle; 3) genes with significant changes to be involved in TP-53, tumor necrosis factor (TNF), and cell cycle signaling nodes; 4) when significant changes in the expression of molecules from all analyses (miRNAs, miRNA-mRNA targets, and genes) were considered, two signaling pathways, the TNF and cell cycle, referred to as “integrated pathways” were shown to be significant; 5) the cell cycle pathway to be present in all comparisons made. Because SP-A could be used therapeutically in pulmonary diseases, it is important to understand the molecules and pathways involved in response to an SP-A acute treatment. The information obtained contributes to this end and may help to gain insight especially in the case of infection.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Obstetrics and Gynecology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
12
|
Zhong Y, Zhang Z, Chen X. Inhibition of miR-21 improves pulmonary vascular responses in bronchopulmonary dysplasia by targeting the DDAH1/ADMA/NO pathway. Open Med (Wars) 2022; 17:1949-1964. [PMID: 36561848 PMCID: PMC9743197 DOI: 10.1515/med-2022-0584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/07/2022] [Accepted: 10/02/2022] [Indexed: 12/14/2022] Open
Abstract
miR-21 has been confirmed to be overexpressed in neonatal rat lungs with hyperoxia-mediated bronchopulmonary dysplasia (BPD). The specific function of miR-21 in BPD is still unclear. We established the hyperoxia-induced BPD rat model in vivo and the hyperoxia-induced pulmonary microvascular endothelial cells (PMVECs) model in vitro. Transwell assay was utilized to detect the migratory capability of PMVECs. Tube formation assay was utilized to measure angiogenesis ability. ELISA was utilized to test nitric oxide (NO) production and the intracellular and extracellular Asymmetric Dimethylarginine (ADMA) concentration. Furthermore, the interaction between miR-21 and dimethylarginine dimethylaminohydrolase 1 (DDAH1) was evaluated using luciferase reporter assay. We found that miR-21 expression in PMVECs was increased by hyperoxia stimulation. Inhibition of miR-21 improved the migratory and angiogenic activities of PMVECs and overexpression of miR-21 exerted the opposite effects. Furthermore, knockdown of miR-21 increased NO production and decreased intracellular and extracellular ADMA concentration in hyperoxia-treated PMVECs. Next we proved that miR-21 could bind to DDAH1 and negatively regulate its expression. Rescues assays showed that DDAH1 knockdown reversed the effects of miR-21 depletion on hyperoxia-mediated PMVEC functions, NO production, and ADMA concentration. Importantly, miR-21 downregulation restored alveolarization and vascular density in BPD rats. This study demonstrates that inhibition of miR-21 improves pulmonary vascular responses in BPD by targeting the DDAH1/ADMA/NO pathway.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Child Health Care, The First Affiliated Hospital of Nanjing Medical University, 368 Jiangdong North Road, Nanjing 210036, Jiangsu, China
| | - Zhiqun Zhang
- Department of Neonatology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Xiaoqing Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, Jiangsu, China
| |
Collapse
|
13
|
Zhang Y, Jing X, Li Z, Tian Q, Wang Q, Chen X. Investigation of the role of the miR17-92 cluster in BMP9-induced osteoblast lineage commitment. J Orthop Surg Res 2021; 16:652. [PMID: 34717687 PMCID: PMC8557618 DOI: 10.1186/s13018-021-02804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) has been identified as a crucial inducer of osteoblastic differentiation in mesenchymal stem cells (MSCs). Although microRNAs (miRNAs) are known to play a role in MSC osteogenesis, the mechanisms of action of miRNAs in BMP9-induced osteoblastic differentiation remain poorly understood. METHODS In this study, we investigate the possible role of the miR17-92 cluster in the BMP9-induced osteogenic differentiation of MSCs by using both in vitro and in vivo bone formation assays. RESULTS The results show that miR-17, a member of the miR17-92 cluster, significantly impairs BMP9-induced osteogenic differentiation. This impairment is effectively rescued by a miR-17 sponge, an antagomiR sequence against miR-17. Using TargetScan and the 3'-untranslated region luciferase reporter assays, we show that the direct target of miR-17 is the retinoblastoma gene (RB1), a gene that is pivotal to osteoblastic differentiation. We also confirm that RB1 is essential for the miR-17 effects on osteogenesis. CONCLUSION Our results indicate that miR-17 expression impairs normal osteogenesis by downregulating RB1 expression and significantly inhibiting the function of BMP9.
Collapse
Affiliation(s)
- Yunyuan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuran Jing
- Department of Molecular Laboratory, Qingdao, Endocrine and Diabetes Hospital, Qingdao, Shandong, China
| | - Zhongzhu Li
- Department of Clinical Laboratory, Pingyi Hospital of Traditional Chinese Medicine, Linyi, 273300, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
14
|
Tang S, Guo W, Kang L, Liang J. MiRNA-182-5p aggravates experimental ulcerative colitis via sponging Claudin-2. J Mol Histol 2021; 52:1215-1224. [PMID: 34623552 PMCID: PMC8616881 DOI: 10.1007/s10735-021-10021-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
Tight junction proteins play crucial roles in maintaining the integrity of intestinal mucosal barrier. MiRNA-182-5p is capable of targeting claudin-2 which is one of the vital tight junction proteins and the effect and mechanism of miRNA-182-5p was explored here in the DSS-induced colitis model. The pathological conditions were evaluated via hematoxylin and eosin staining. The gene expression level was assessed via PCR. Quantitative immunohistochemistry analysis was performed for the measurement of claudin-2. microRNA.org online tool was used for target gene prediction. Luciferase reporter assay and RNA pull-down assay were performed to detect the target of miRNA-182-5p. The inflammatory and oxidative stress level were measured using corresponding kits. MiRNA-182-5p was highly expressed in colitis model and miRNA-182-5p inhibitor exerted protective effects on colitis induced by DSS in mice. The protective effects includded improvement of pathological changes, increases in anti-inflammation and anti-oxidative genes, and up-regulation of TGF-β1. Claudin-2 mRNA was predicted as the target of miRNA-182-5p, which was validated via luciferase reporter assay and RNA pull-down assay. Claudin-2 overexpression was found in miRNA-182-5p inhibitor group. Consistent with the role of miRNA-182-5p, claudin-2 overexpression also exerted protective effects on DSS-induced colitis in mice. Inhibition of miRNA-182-5p exerted protective effects on colitis via targeting and upregulating claudin-2. The findings in study provide a new therapeutic strategy for colitis treatment and lay the foundation for future study.
Collapse
Affiliation(s)
- Siwen Tang
- Shenzhen Traditional Chinese Medicine Anorectal Hospital (FuTian), No. 1 Songling Road, Futian District, 518000, Shenzhen, China
| | - Wentao Guo
- Shenzhen Traditional Chinese Medicine Anorectal Hospital (FuTian), No. 1 Songling Road, Futian District, 518000, Shenzhen, China
| | - Liumin Kang
- Suzhou Science and Technology City Hospital Affiliated to Nanjing Medical University, 215000, Suzhou, China
| | - Jinghua Liang
- Shenzhen Traditional Chinese Medicine Anorectal Hospital (FuTian), No. 1 Songling Road, Futian District, 518000, Shenzhen, China.
| |
Collapse
|
15
|
Tian K, Xu W. MiR-155 regulates Th9 differentiation in children with methicillin-resistant Staphylococcus aureus pneumonia by targeting SIRT1. Hum Immunol 2021; 82:775-781. [PMID: 34294459 DOI: 10.1016/j.humimm.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023]
Abstract
Th9 is a subset of CD4+ T cells that mainly secrete IL-9. Th9/IL-9 participates in immune response during Staphylococcus aureus and methicillin-resistant Staphylococcus aureus pneumonia (MRSA) infection. Here, we collected bronchoalveolar lavage fluid (BALF) from 30 children with MRSA pneumonia (MRSA group) and 10 children with bronchial foreign bodies (Control group). RT-PCR, ELISA and flow cytometry were used to detect the expression of miR-155 and IL-9 in BALF and the number of Th9 cells. CD4+ T cells isolated from BALF of MRSA and Control group were transfected with miR-155 mimic or inhibitor, and then induced Th9 cell differentiation. The results showed that the expression of miR-155 and IL-9 were significantly increased in BALF and Th9 cell of MRSA group, as well as the number of Th9 cells. miR-155 mimic upregulated IL-9 mRNA expression, IL-9 secretion and increased number of Th9 cells. On the contrary, miR-155 inhibitor inhibited IL-9 mRNA expression, IL-9 secretion and decreased number of Th9 cells. The dual luciferase assays demonstrated miR-155 can target binding to SIRT1 3'UTR. Moreover, overexpression of SIRT1 could reverse the effect of miR-155 mimic on IL-9 expression level, Th9 cell number and transcription factors PU.1 and IRF4 expression. In conclusion, miR-155 regulates Th9 differentiation in children with MRSA by targeting SIRT1.
Collapse
Affiliation(s)
- Keyin Tian
- Department of Emergency, Anhui Children's Hospital, 39 Wangjiang East Road, Baohe District, Hefei 230051, China; Department of Emergency, Anhui Medical University Affiliated Provincial Children's Hospital, Hefei 230051, China.
| | - Weihua Xu
- Department of Emergency, Anhui Children's Hospital, 39 Wangjiang East Road, Baohe District, Hefei 230051, China
| |
Collapse
|
16
|
Pattnaik B, Madan K, Mohan A, Mittal S. MicroRNAs in Lung Disease: A Focus on Sarcoidosis. Chest 2021; 158:828. [PMID: 32768067 DOI: 10.1016/j.chest.2020.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Bijay Pattnaik
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Karan Madan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
17
|
Ma ZH, Shuai Y, Gao XY, Yan Y, Wang KM, Wen XZ, Ji JF. BTEB2-Activated lncRNA TSPEAR-AS2 Drives GC Progression through Suppressing GJA1 Expression and Upregulating CLDN4 Expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1129-1141. [PMID: 33294297 PMCID: PMC7689408 DOI: 10.1016/j.omtn.2020.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) are characterized as key layers of the genome in various cancers. TSPEAR-AS2 was highlighted to be a candidate lncRNA potentially involved in gastric cancer (GC) progression. However, the clinical significance and mechanism of TSPEAR-AS2 in GC required clarification. The clinical significance of TSPEAR-AS2 was elucidated through Kaplan-Meier Plotter. The mechanism of TSPEAR-AS2 in GC was clarified in vitro and in vivo using luciferase reporter, chromatin immunoprecipitation, RNA immunoprecipitation assays, and animal models. TSPEAR-AS2 elevation was closely correlated with overall survival of GC patients. A basic transcription element-binding protein 2 (BTEB2)-activated TSPEAR-AS2 model was first explored in this study. TSPEAR-AS2 silencing substantially reduced tumorigenic capacities of GC cells, while TSPEAR-AS2 elevation had the opposite effect. Mechanistically, TSPEAR-AS2 bound with both polycomb repressive complex 2 (PRC2) and argonaute 2 (Ago2). TSPEAR-AS2 knockdown significantly decreased H3K27me3 levels at promoter regions of gap junction protein alpha 1 (GJA1). Ago2 was recruited by TSPEAR-AS2, which was defined to sponge miR-1207-5p, contributing to the repression of claudin 4 (CLDN4) translation. The axis of EZH2/GJA1 and miR-1207-5p/CLDN4 mediated by BTEB2-activated-TSPEAR-AS2 plays an important role in GC progression, suggesting a new therapeutic direction in GC treatment.
Collapse
Affiliation(s)
- Zhong-Hua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang-Yu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yan Yan
- Department of Endoscopy Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Ke-Ming Wang
- Department of Oncology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xian-Zi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
18
|
Thorenoor N, Phelps DS, Floros J. Differential Sex-Dependent Regulation of the Alveolar Macrophage miRNome of SP-A2 and co-ex (SP-A1/SP-A2) and Sex Differences Attenuation after 18 h of Ozone Exposure. Antioxidants (Basel) 2020; 9:antiox9121190. [PMID: 33260937 PMCID: PMC7768498 DOI: 10.3390/antiox9121190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Human SP-A1 and SP-A2, encoded by SFTPA1 and SFTPA2, and their genetic variants differentially impact alveolar macrophage (AM) functions and regulation, including the miRNome. We investigated whether miRNome differences previously observed between AM from SP-A2 and SP-A1/SP-A2 mice are due to continued qualitative differences or a delayed response of mice carrying a single gene. Methods: Human transgenic (hTG) mice, carrying SP-A2 or both SP-A genes, and SP-A-KO mice were exposed to filtered air (FA) or ozone (O3). AM miRNA levels, target gene expression, and pathways determined 18 h after O3 exposure. RESULTS: We found (a) differences in miRNome due to sex, SP-A genotype, and exposure; (b) miRNome of both sexes was largely downregulated by O3, and co-ex had fewer changed (≥2-fold) miRNAs than either group; (c) the number and direction of the expression of genes with significant changes in males and females in co-ex are almost the opposite of those in SP-A2; (d) the same pathways were found in the studied groups; and (e) O3 exposure attenuated sex differences with a higher number of genotype-dependent and genotype-independent miRNAs common in both sexes after O3 exposure. Conclusion: Qualitative differences between SP-A2 and co-ex persist 18 h post-O3, and O3 attenuates sex differences.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (N.T.); (D.S.P.)
- Department of Biochemistry & Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - David S. Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (N.T.); (D.S.P.)
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (N.T.); (D.S.P.)
- Department of Obstetrics & Gynecology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
19
|
Dai YL, Hsu RJ, Huang HK, Huang TW, Tsai WC, Chang H, Lan CC, Huang KL. Adaptive support ventilation attenuates postpneumonectomy acute lung injury in a porcine model. Interact Cardiovasc Thorac Surg 2020; 31:718-726. [PMID: 33051664 DOI: 10.1093/icvts/ivaa157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES An optimal ventilation strategy that causes as little mechanical stress and inflammation as possible is critical for patients undergoing pneumonectomy. The aim of this study was to determine whether adaptive support ventilation (ASV) can provide protective ventilation to the remaining lung after pneumonectomy with minimal mechanical stress and less inflammation than volume-control ventilation (VCV). METHODS In this study, 15 pigs were randomly allocated to 3 groups (n = 5 for each group): the control group, the VCV group and the ASV group. After left pneumonectomy, the VCV group was treated with the volume-control set to 20 ml/kg, and the ASV group with the mode set to achieve 60% of the minute ventilation of 2 lungs. RESULTS The ASV group had lower alveolar strain than the VCV group. The ASV group exhibited less lung injury and greater alveolar fluid clearance than the VCV group (13.3% vs -17.8%; P ≤ 0.018). Ventilator-induced lung injury was associated with changes in the cytokine levels in the exhaled breath condensate, differential changes in plasma and changes in the cytokines in the bronchoalveolar lavage fluid. Expression of 3 microRNAs (miR449b-3p, P ≤ 0.001; miR451-5p, P = 0.027; and miR144-5p, P = 0.008) was increased in the VCV group compared with the ASV group. CONCLUSIONS The ASV mode was capable of supporting rapid, shallow breathing patterns to exert lung-protective effects in a porcine postpneumonectomy model. Further investigation of microRNAs as biomarkers of ventilator-induced lung injury is warranted.
Collapse
Affiliation(s)
- Yu-Ling Dai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ren-Jun Hsu
- Cancer Research Center, Hualien Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hsu-Kai Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Wang Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital Taipei, National Defense Medical Center, Taipei, Taiwan
| | - Hung Chang
- Department of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Kun-Lun Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
20
|
Sewer A, Zanetti F, Iskandar AR, Guedj E, Dulize R, Peric D, Bornand D, Mathis C, Martin F, Ivanov NV, Peitsch MC, Hoeng J. A meta-analysis of microRNAs expressed in human aerodigestive epithelial cultures and their role as potential biomarkers of exposure response to nicotine-containing products. Toxicol Rep 2020; 7:1282-1295. [PMID: 33014713 PMCID: PMC7522043 DOI: 10.1016/j.toxrep.2020.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 11/03/2022] Open
Abstract
The expression of some microRNAs (miRNA) is modulated in response to cigarette smoke (CS), which is a leading cause of major preventable diseases. However, whether miRNA expression is also modulated by the aerosol/extract from potentially reduced-risk products is not well studied. The present work is a meta-analysis of 12 in vitro studies in human organotypic epithelial cultures of the aerodigestive tract (buccal, gingival, bronchial, nasal, and small airway epithelia). These studies compared the effects of exposure to aerosols from electronic vapor (e-vapor) products and heated tobacco products, and to extracts from Swedish snus products (in the present work, will be referred to as reduced-risk products [RRPs]) on miRNA expression with the effects of exposure to CS or its total particulate matter fraction. This meta-analysis evaluated 12 datasets of a total of 736 detected miRNAs and 2775 exposed culture inserts. The t-distributed stochastic neighbor embedding method was used to find similarities across the diversity of miRNA responses characterized by tissue type, exposure type, and product concentration. The CS-induced changes in miRNA expression in gingival cultures were close to those in buccal cultures; similarly, the alterations in miRNA expression in small airway, bronchial, and nasal tissues resembled each other. A supervised clustering was performed to identify miRNAs exhibiting particular response patterns. The analysis identified a set of miRNAs whose expression was altered in specific tissues upon exposure to CS (e.g., miR-125b-5p, miR-132-3p, miR-99a-5p, and 146a-5p). Finally, we investigated the impact of RRPs on miRNA expression in relation to that of CS by calculating the response ratio r between the RRP- and CS-induced alterations at an individual miRNA level, showing reduced alterations in miRNA expression following RRP exposure relative to CS exposure (94 % relative reduction). No specific miRNA response pattern indicating exposure to aerosols from heated tobacco products and e-vapor products, or extracts from Swedish snus was identifiable.
Collapse
Key Words
- 2D, two-dimensional
- AKT, protein kinase B
- ALI, air-liquid interface
- CHTP 1.2, Carbon Heated Tobacco Product 1.2
- COPD, chronic obstructive pulmonary disease
- CRP, CORESTA Reference Product
- CS, cigarette smoke and its TPM fraction
- FDA, Food & Drug Administration
- FDR, false discovery rate
- GCW, General Classic White
- HCI, Health Canada intense
- HTP, heated tobacco product
- Heated tobacco product
- IL-1β, interleukin 1β
- MMP-1, matrix metalloproteinase 1
- N/A, not applicable
- Organotypic aerodigestive culture
- RRP, reduced-risk product
- Systems toxicology
- THS 2.2, Tobacco Heating System 2.2
- TPM, total particulate matter
- Tobacco Heating System 2.2
- e-vapor
- e-vapor, electronic vapor
- mRNA, messenger RNA
- mTOR, mammalian target of rapamycin
- miRNA
- miRNA, microRNA
- t-SNE, t-distributed stochastic neighbor embedding
Collapse
Affiliation(s)
- Alain Sewer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Anita R Iskandar
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Remi Dulize
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Dariusz Peric
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - David Bornand
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Carole Mathis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
21
|
Hoefel GA, Tay HL, Foster PS. Response. Chest 2020; 158:828-829. [PMID: 32768068 DOI: 10.1016/j.chest.2020.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Gabriela A Hoefel
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Medicine, Faculty of Health and Medicine, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, Australia
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Medicine, Faculty of Health and Medicine, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Medicine, Faculty of Health and Medicine, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|