1
|
Li X, Wang M, Zhong Y, Yin Q, Hu Z, Tian W, Liu Z, Liu Z. Comparative pharmacokinetics of six components in normal and rheumatoid arthritis rats after intragastrical administration of Qianghuo Shengshi Decoction granules by LC-MS/MS. CHINESE HERBAL MEDICINES 2024; 16:457-465. [PMID: 39072204 PMCID: PMC11283214 DOI: 10.1016/j.chmed.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2024] Open
Abstract
Objective To investigate the plasma pharmacokinetics of six representative components (nodakenin, osthole, 5-O-methylvisammioside, ferulic acid, liquiritigenin, and liquiritin), which were the ingredients of Qianghuo Shengshi Decoction (QSD) granules, in normal and rheumatoid arthritis (RA) rats administrated QSD granules intragastrically. Methods A rapid and accurate ultra-high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of six components in plasma, and it showed a good specificity, linearity, intra-day and inter-day precision, intra-day and inter-day accuracy, extraction recovery, stability, and the less matrix effect. Results The validated LC-MS/MS method was successfully used to compare the plasma pharmacokinetics of six ingredients between normal and RA rats after intragastrical administration of QSD granules and differences in the pharmacokinetics were found in two types of rats. The absorption rate in the RA rats was lower for nodakenin, osthole, 5-O-methylvisammioside, liquiritigenin and liquiritin than in the normal group, while the absorption rate of ferulic acid remained constant in two groups. In comparison with the normal rats, the exposure concentration of nodakenin was higher and that of other five components except for nodakenin was lower under pathological conditions. Additionally, the absorptive amount of nodakenin, osthole, 5-O-methylvisammioside and liquiritin was increased and that of ferulic acid and liquiritigenin was reduced in the RA rats than in the normal rats. Compared with the normal rats, the retention time of nodakenin, ferulic acid and liquiritin was reduced in vivo, whereas the retention time of osthole, 5-O-methylvisammioside and liquiritigenin was raised in the body for the RA rats. In contrast to the normal rats, the data demonstrated an increase in the elimination velocity of nodakenin and a decrease in the elimination velocity of the other five components except for nodakenin in the pathological state. Conclusion This study showed that the pharmacokinetic behavior of the six components, nodakenin, osthole, 5-O-methylvisammioside, ferulic acid, liquiritigenin, and liquiritin, is different in vivo between normal and pathological states of rats, and this research provided the necessary experimental data to explain the pharmacokinetics of QSD granules in both normal and pathological states and provide some references for its clinical application at some level.
Collapse
Affiliation(s)
- Xin Li
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Min Wang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuhong Zhong
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qianqian Yin
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheming Hu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenli Tian
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhongyan Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
2
|
Su R, Shao Y, Huang M, Liu D, Yu H, Qiu Y. Immunometabolism in cancer: basic mechanisms and new targeting strategy. Cell Death Discov 2024; 10:236. [PMID: 38755125 PMCID: PMC11099033 DOI: 10.1038/s41420-024-02006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Maturing immunometabolic research empowers immune regulation novel approaches. Progressive metabolic adaptation of tumor cells permits a thriving tumor microenvironment (TME) in which immune cells always lose the initial killing capacity, which remains an unsolved dilemma even with the development of immune checkpoint therapies. In recent years, many studies on tumor immunometabolism have been reported. The development of immunometabolism may facilitate anti-tumor immunotherapy from the recurrent crosstalk between metabolism and immunity. Here, we discuss clinical studies of the core signaling pathways of immunometabolism and their inhibitors or agonists, as well as the specific functions of these pathways in regulating immunity and metabolism, and discuss some of the identified immunometabolic checkpoints. Understanding the comprehensive advances in immunometabolism helps to revise the status quo of cancer treatment. An overview of the new landscape of immunometabolism. The PI3K pathway promotes anabolism and inhibits catabolism. The LKB1 pathway inhibits anabolism and promotes catabolism. Overactivation of PI3K/AKT/mTOR pathway and IDO, IL4I1, ACAT, Sirt2, and MTHFD2 promote immunosuppression of TME formation, as evidenced by increased Treg and decreased T-cell proliferation. The LKBI-AMPK pathway promotes the differentiation of naive T cells to effector T cells and memory T cells and promotes anti-tumor immunity in DCs.
Collapse
Affiliation(s)
- Ranran Su
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yingying Shao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Manru Huang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Donghui Liu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China.
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Bao J, Song Y, Hang M, Xu H, Li Q, Wang P, Chen T, Xia M, Shi Q, Wang Y, Wang X, Liang Q. Huangqi Guizhi Wuwu Decoction suppresses inflammation and bone destruction in collagen-induced arthritis mice. CHINESE HERBAL MEDICINES 2024; 16:274-281. [PMID: 38706818 PMCID: PMC11064554 DOI: 10.1016/j.chmed.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/02/2023] [Accepted: 10/13/2023] [Indexed: 05/07/2024] Open
Abstract
Objective Rheumatoid arthritis (RA) is a chronic inflammatory and destructive arthritis, characterized by inflammatory infiltration and bone destruction. Huangqi Guizhi Wuwu Decoction (HGWD) is traditional Chinese medicine, which has been applied in the treatment of RA in clinical. The aim of this study was to investigate the therapeutic effect of HGWD on collagen-induced arthritis (CIA) mouse model. Methods DBA/1J female mice were used to establish the collagen-induced arthritis (CIA) model. HGWD was administered intragastrically once a day for four weeks starting on the 22nd day after the first immunization. The body weight, hind paw thickness and clinical score were measured every five days. Gait analysis, histopathological staining, enzyme-linked immunosorbent assay (ELISA), ultrasound imaging and micro-computed tomography imaging were performed to determine the effects of HGWD treatment on inflammation and bone structure in this model. Moreover, Real-time PCR and Western blot analysis were used to detect inflammatory factors mRNA and protein levels after HGWD intervention in RAW 264.7 cells. Results HGWD attenuated symptoms of arthritis, suppressed inflammatory synovium area and the serum levels of inflammatory factors, inhibited joint space enlargement in the knee and ankle joints, reduced numbers of osteoclasts, protected bone destruction, as well as improved motor function. HGWD decreased the expression of mRNA for inflammatory factors and the protein expression levels of p-NF-кB and IL-17. Conclusion These results suggested that HGWD suppresses inflammation, attenuates bone erosion and maintains motor function in collagen-induced arthritis mice.
Collapse
Affiliation(s)
- Jiamin Bao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongjia Song
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minghui Hang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengyu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengxiong Xia
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qi Shi
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongjun Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qianqian Liang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
4
|
Wang L, Chen S, Liu S, Biu AM, Han Y, Jin X, Liang C, Liu Y, Li J, Fang S, Chang Y. A comprehensive review of ethnopharmacology, chemical constituents, pharmacological effects, pharmacokinetics, toxicology, and quality control of gardeniae fructus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117397. [PMID: 37956915 DOI: 10.1016/j.jep.2023.117397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardeniae Fructus (GF), the desiccative mature fruitage of Gardenia jasminoides J. Ellis (G. jasminoides), belongs to the Rubiaceae family. It has abundant medicinal value, such as purging fire and eliminating annoyance, clearing heat and diuresis, cooling blood, and detoxifying. GF is usually used in combination with other drugs to treat diseases such as fever and jaundice in damp heat syndrome in traditional Chinese medicines (TCMs) clinical practice. THE AIM OF THE REVIEW This review comprehensively summarizes the research progress in botany, traditional medical use, processing method, phytochemistry, pharmacological activity, quality control, pharmacokinetics, and toxicology, which aims to provide a scientific basis for the rational application and future research of GF. MATERIALS AND METHODS ScienceDirect, PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Embase, Scopus etc. databases were retrieved to gain the comprehensive information of GF. RESULTS At present, more than 215 compounds were isolated and identified from GF, including iridoids, diterpenes, triterpenoids, flavonoids, organic esters, and so on. The traditional application of GF mainly focused on clearing heat and detoxification. Pharmacological studies proved that GF had anti-inflammatory, antioxidation, antifatigue, antithrombotic, liver and gallbladder protection, and other pharmacological effects. In addition, many improved processing methods can alleviate the side effects and toxic reactions caused by long-term use of GF, so controlling its quality through multi-component content measurement has become an important means of research. CONCLUSION GF has a wide range of applications, the mechanisms by which some effective substances exert their pharmacological effects have not been clearly explained due to the complexity and diversity of its components. This review systematically elaborates on the traditional medical use, processing method, phytochemistry, pharmacological activity, quality control, and toxicology of GF, and it is expected to become a candidate drug for treating diseases, such as depression, pancreatitis, alcoholic or non-alcoholic fatty liver.
Collapse
Affiliation(s)
- Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Abdulmumin Muhammad Biu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuli Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Song L, Wang J, Zhang Y, Yan X, He J, Nie J, Zhang F, Han R, Yin H, Li J, Liu H, Huang L, Li Y. Association Between Human Metabolomics and Rheumatoid Arthritis: A Systematic Review and Meta-analysis. Arch Med Res 2024; 55:102907. [PMID: 38029644 DOI: 10.1016/j.arcmed.2023.102907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE The underdiagnosis and inadequate treatment of rheumatoid arthritis (RA) can be attributed to the various clinical manifestations presented by patients. To address this concern, we conducted an extensive review and meta-analysis, focusing on RA-related metabolites. METHODS A comprehensive literature search was conducted in PubMed, the Cochrane Library, Web of Science, and Embase to identify relevant studies published up to October 5, 2022. The quality of the included articles was evaluated and, subsequently, a meta-analysis was conducted using Review Manager software to analyze the association between metabolites and RA. RESULTS Forty nine studies met the inclusion criteria for the systematic review, and six of these studies were meta-analyzed to evaluate the association between 28 reproducible metabolites and RA. The results indicated that, compared to controls, the levels of histidine (RoM = 0.83, 95% CI = 0.79-0.88, I2 = 0%), asparagine (RoM = 0.83, 95% CI = 0.75-0.91, I2 = 0%), methionine (RoM = 0.82, 95% CI = 0.69-0.98, I2 = 85%), and glycine (RoM = 0.81, 95% CI = 0.67-0.97, I2 = 68%) were significantly lower in RA patients, while hypoxanthine levels (RoM = 1.14, 95% CI = 1.09-1.19, I2 = 0%) were significantly higher. CONCLUSION This study identified histidine, methionine, asparagine, hypoxanthine, and glycine as significantly correlated with RA, thus offering the potential for the advancement of biomarker discovery and the elucidation of disease mechanisms in RA.
Collapse
Affiliation(s)
- Lili Song
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Jiayi Wang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Yue Zhang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Xingxu Yan
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Junjie He
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Jiaxuan Nie
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Fangfang Zhang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Rui Han
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Hongqing Yin
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Jingfang Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Huimin Liu
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Liping Huang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China.
| |
Collapse
|
6
|
Liang Q, Wang JW, Bai YR, Li RL, Wu CJ, Peng W. Targeting TRPV1 and TRPA1: A feasible strategy for natural herbal medicines to combat postoperative ileus. Pharmacol Res 2023; 196:106923. [PMID: 37709183 DOI: 10.1016/j.phrs.2023.106923] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Under physiological or pathological conditions, transient receptor potential (TRP) channel vanilloid type 1 (TRPV1) and TRP ankyrin 1 (TRPA1) possess the ability to detect a vast array of stimuli and execute diverse functions. Interestingly, increasing works have reported that activation of TRPV1 and TRPA1 could also be beneficial for ameliorating postoperative ileus (POI). Increasing research has revealed that the gastrointestinal (GI) tract is rich in TRPV1/TRPA1, which can be stimulated by capsaicin, allicin and other compounds. This activation stimulates a variety of neurotransmitters, leading to increased intestinal motility and providing protective effects against GI injury. POI is the most common emergent complication following abdominal and pelvic surgery, and is characterized by postoperative bowel dysfunction, pain, and inflammatory responses. It is noteworthy that natural herbs are gradually gaining recognition as a potential therapeutic option for POI due to the lack of effective pharmacological interventions. Therefore, the focus of this paper is on the TRPV1/TRPA1 channel, and an analysis and summary of the processes and mechanism by which natural herbs activate TRPV1/TRPA1 to enhance GI motility and relieve pain are provided, which will lay the foundation for the development of natural herb treatments for this disease.
Collapse
Affiliation(s)
- Qi Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jing-Wen Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yu-Ru Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chun-Jie Wu
- Institute of Innovation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
7
|
Alba G, Dakhaoui H, Santa-Maria C, Palomares F, Cejudo-Guillen M, Geniz I, Sobrino F, Montserrat-de la Paz S, Lopez-Enriquez S. Nutraceuticals as Potential Therapeutic Modulators in Immunometabolism. Nutrients 2023; 15:411. [PMID: 36678282 PMCID: PMC9865834 DOI: 10.3390/nu15020411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Nutraceuticals act as cellular and functional modulators, contributing to the homeostasis of physiological processes. In an inflammatory microenvironment, these functional foods can interact with the immune system by modulating or balancing the exacerbated proinflammatory response. In this process, immune cells, such as antigen-presenting cells (APCs), identify danger signals and, after interacting with T lymphocytes, induce a specific effector response. Moreover, this conditions their change of state with phenotypical and functional modifications from the resting state to the activated and effector state, supposing an increase in their energy requirements that affect their intracellular metabolism, with each immune cell showing a unique metabolic signature. Thus, nutraceuticals, such as polyphenols, vitamins, fatty acids, and sulforaphane, represent an active option to use therapeutically for health or the prevention of different pathologies, including obesity, metabolic syndrome, and diabetes. To regulate the inflammation associated with these pathologies, intervention in metabolic pathways through the modulation of metabolic energy with nutraceuticals is an attractive strategy that allows inducing important changes in cellular properties. Thus, we provide an overview of the link between metabolism, immune function, and nutraceuticals in chronic inflammatory processes associated with obesity and diabetes, paying particular attention to nutritional effects on APC and T cell immunometabolism, as well as the mechanisms required in the change in energetic pathways involved after their activation.
Collapse
Affiliation(s)
- Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Hala Dakhaoui
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Consuelo Santa-Maria
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Marta Cejudo-Guillen
- Department of Pharmacology, Pediatry, and Radiology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Isabel Geniz
- Distrito Sanitario Seville Norte y Aljarafe, Servicio Andaluz de Salud, 41008 Seville, Spain
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
8
|
Li M, Lu W, Meng Y, Zhang W, Wang F, Sun L, Xu Y. Tetrahydroxy Stilbene Glucoside Alleviates Ischemic Stroke by Regulating Conformation-Dependent Intracellular Distribution of PKM2 for M2 Macrophage Polarization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15449-15463. [PMID: 36468551 DOI: 10.1021/acs.jafc.2c03923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tetrahydroxy stilbene glucoside (TSG) is a bioactive ingredient with powerful anti-inflammatory and neuroprotective properties. However, the detailed mechanisms concerning the neuroprotective effect of TSG are not fully understood. This study aims to address the molecular mechanism involved in the protective effects of TSG on murine ischemic stroke. We found that TSG meliorated the phenotypes of ischemic stroke in vivo, which was correlated with the increased percentage of infiltrated M2 macrophages in brain after stroke. Mechanistically, TSG regulated macrophage polarization by significantly downregulating the transcriptional levels of M1 marker genes (iNOS and IL-1β) but upregulating that of the M2 marker genes (arg-1 and IL-4) following lipopolysaccharide/interferon-γ stimulation. Consistently, TSG reversed the metabolic profiling of M1 macrophage toward the M2 status at intracellular energy levels. Surprisingly, the knockdown of an established metabolic enzyme pyruvate kinase M2 (PKM2) that is important for M1 switch in macrophages abolished the promotive effect of TSG on the M2 polarization. Further investigation revealed that TSG markedly downregulated the intracellular ratio of dimer/monomer to the tetramer of PKM2 without affecting its total protein expression, leading to a suppressed nuclear translocation of functioning PKM2 in macrophages for M1 differentiation. Taken together, we identified a novel mechanism for macrophage M2 polarization regulation by a small-molecule chemical that controls the quality (conformation) rather than the quantity (expression) of an intracellular M1-promoting metabolic enzyme, which offers a better understanding of the mechanisms of macrophage plasticity and has serious implication in translational strategies for the treatment of macrophage-mediated neurological diseases with natural bioactive products.
Collapse
Affiliation(s)
- Minghui Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wei Lu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanyuan Meng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Li Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
9
|
Development of sinomenine hydrochloride sustained-release pellet using a novel whirlwind fluidized bed. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Wang Y, Li X, Gu K, Gou J, Li X, Dong Y, Li R, Wei J, Dou Z, Li Y. Study on the potential mechanism of the active components in YiYiFuZi powder in homotherapy for hetropathy of coronary heart disease and rheumatoid arthritis. Front Chem 2022; 10:926950. [PMID: 36017167 PMCID: PMC9395646 DOI: 10.3389/fchem.2022.926950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, the incidence of coronary heart disease and rheumatoid arthritis has been increasing, which has become a common public health problem worldwide. YiYiFuZi (YYFZ ) powder is a classical traditional Chinese prescription, which is commonly used to treat metabolic diseases such as rheumatoid arthritis, with an ideal curative effect, but the therapeutic mechanism is still unclear. In this study, from the perspective of clinical metabolomics, combined with network pharmacology, we sought the comorbidity mechanism and key targets of coronary heart disease and rheumatoid arthritis and the mechanism by which YYFZ powder exerts therapeutic effects, combined with molecular docking and atomic force microscopy to determine the effective components, and found that the higenamine and steroid components in YYFZ powder can bind acid sphingomyelinase enzymes to affect the sphingolipid pathway to produce therapeutic effects, which can bind to sugars existing as a glycoside.
Collapse
Affiliation(s)
- Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaokai Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kun Gu
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Jing Gou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqian Dong
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinxia Wei
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiying Dou
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Identification and quality control strategy of impurities in Zhengqing Fengtongning injection. J Pharm Biomed Anal 2022; 219:114970. [PMID: 35914508 DOI: 10.1016/j.jpba.2022.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022]
Abstract
Zhengqing Fengtongning injection is the sterile aqueous solution of Sinomenine Hydrochloride extracted from the root and stem of Sinomenium acutum, and is widely used to treat rheumatoid arthritis. Due to the processes of extraction, separation, purification, preparation and storage, some related impurities might be formed, which may cause side effects on patients. It is important to rapidly separate and identify the related impurities to ensure the safe use of Zhengqing Fengtongning injection. However, there are few literatures about the impurity in Zhengqing Fengtongning injection. In this work, ultra-high performance liquid chromatography- quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was developed to analyze impurities in both Zhengqing Fengtongning injection and its drug substance, with Sinomenine Hydrochloride as its active pharmaceutical ingredient (API). Six impurities of the Zhengqing Fengtongning injection were found. Structures of impurities 1 and 6 were confirmed by NMR and other impurities were identified from the fragmentation pattern of Sinomenine, the similarity of molecular weight and fragment ions in references. Finally, the HPLC analytical technique was developed to achieve the quantification of impurities 1 and 6. In addition, some reasonable suggestions are put forward on the quality control of Zhengqing Fengtongning injection and its drug substance based on the processes and structural characteristics of the related substances. The technical system established in this paper is helpful to strengthen the quality control of Zhengqing Fengtongning injection and improve production, and can also provide references for the production and quality control of similar drugs.
Collapse
|
12
|
Comparative identification of the metabolites of dehydrocorydaline from rat plasma, bile, urine and feces by both the targeted and untargeted liquid chromatography/mass spectrometry strategies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|