1
|
Pardi N, Krammer F. mRNA vaccines for infectious diseases - advances, challenges and opportunities. Nat Rev Drug Discov 2024; 23:838-861. [PMID: 39367276 DOI: 10.1038/s41573-024-01042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/06/2024]
Abstract
The concept of mRNA-based vaccines emerged more than three decades ago. Groundbreaking discoveries and technological advancements over the past 20 years have resolved the major roadblocks that initially delayed application of this new vaccine modality. The rapid development of nucleoside-modified COVID-19 mRNA vaccines demonstrated that this immunization platform is easy to develop, has an acceptable safety profile and can be produced at a large scale. The flexibility and ease of antigen design have enabled mRNA vaccines to enter development for a wide range of viruses as well as for various bacteria and parasites. However, gaps in our knowledge limit the development of next-generation mRNA vaccines with increased potency and safety. A deeper understanding of the mechanisms of action of mRNA vaccines, application of novel technologies enabling rational antigen design, and innovative vaccine delivery strategies and vaccination regimens will likely yield potent novel vaccines against a wide range of pathogens.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Barbosa MS, Sampaio BA, Spergser J, Rosengarten R, Marques LM, Chopra-Dewasthaly R. Mycoplasma agalactiae Vaccines: Current Status, Hurdles, and Opportunities Due to Advances in Pathogenicity Studies. Vaccines (Basel) 2024; 12:156. [PMID: 38400139 PMCID: PMC10892753 DOI: 10.3390/vaccines12020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Contagious agalactia (CA) is a serious multietiological disease whose classic etiological agent is Mycoplasma agalactiae and which causes high morbidity and mortality rates in infected herds. CA is classified as a notifiable disease by the World Organization for Animal Health due to its significant worldwide economic impact on livestock, primarily involving goat and sheep farms. The emergence of atypical symptoms and strains of M. agalactiae in wildlife ungulates reestablishes its highly plastic genome and is also of great epidemiological significance. Antimicrobial therapy is the main form of control, although several factors, such as intrinsic antibiotic resistance and the selection of resistant strains, must be considered. Available vaccines are few and mostly inefficient. The virulence and pathogenicity mechanisms of M. agalactiae mainly rely on surface molecules that have direct contact with the host. Because of this, they are essential for the development of vaccines. This review highlights the currently available vaccines and their limitations and the development of new vaccine possibilities, especially considering the challenge of antigenic variation and dynamic genome in this microorganism.
Collapse
Affiliation(s)
- Maysa Santos Barbosa
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitoria da Conquista 45029-094, Brazil; (M.S.B.)
| | | | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| | - Renate Rosengarten
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| | - Lucas Miranda Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitoria da Conquista 45029-094, Brazil; (M.S.B.)
- Department of Microbiology, State University of Santa Cruz (UESC), Ilheus 45662-900, Brazil
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Sao Paulo 05508-000, Brazil
| | - Rohini Chopra-Dewasthaly
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| |
Collapse
|
3
|
Sepúlveda D, Hansen MJ, Dalsgaard I, Skov J, Lorenzen N. Antigenic variability of Vibrio anguillarum serotype O2a: A hurdle for vaccine efficacy against vibriosis in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 131:300-311. [PMID: 36202204 DOI: 10.1016/j.fsi.2022.09.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Despite vaccination, outbreaks of vibriosis still occur in sea-reared rainbow trout in Denmark. Vibriosis outbreaks are caused mainly by V. anguillarum serotypes O1 and O2a, and bacterins of both serotypes are included in the commonly used vaccine against this disease in Danish aquaculture. However, while the strains belonging to serotype O1 are genetically similar, the strains belonging to serotype O2a are highly diverse. This work aimed first at examining how the antibody response and protection induced by bacterin-based vaccines were affected by the antigenic variability within V. anguillarum serotype O2a strains. Following vaccination of rainbow trout with either a commercial or an experimental vaccine, specific antibody reactivity in serum from vaccinated fish was examined by ELISA against 23 strains of V. anguillarum serotype O2a (VaO2a). The strains were divided into 4 distinct subgroups according to the observed detection pattern. Seven strains were strongly recognized only by sera from fish vaccinated with the experimental vaccine (EV-I antisera), while 13 other strains were primarily recognized by sera from fish vaccinated with the commercial vaccine (CV antisera). Two strains were recognized by both EV-I and CV antisera, but with intermediate reactivity, while one strain was not recognized at all. A partly similar recognition pattern was observed when purified lipopolysaccharide (LPS) was used as antigen in the examination of antibody reactivity in Western blotting. The level of protection was highly dependent on both the vaccine and the strain used for challenge and showed no consistent correlation with antibody reactivity. Secondly, we attempted to use a bacterin vaccine based on one of the V. anguillarum O2a strains intermediately recognized by both EV-I and CV antisera to investigate whether that could potentially provide protection across strain variability. The immunized fish did mount a cross-reactive antibody response, but protection still varied depending on the strain used for challenge. Interestingly, the grouping of strains according to antibody reactivity correlated not only with genotyping based on single nucleotides polymorphisms analysis (SNP) but also with variability in the accessory genome, indicating that presence or absence of protein antigens or proteins associated with the biosynthesis of antigenic epitopes may explain the observed distinct serological subgrouping within VaO2a strains by trout immune sera. In terms of vaccination against VaO2a, our results demonstrate that it is important to take (local) antigen variations into account when using bacterin-based vaccines but also that alternatives to traditional bacterin-based vaccines might be needed to induce protection against the highly virulent Vibrio anguillarum serotype O2a strains.
Collapse
Affiliation(s)
- Dagoberto Sepúlveda
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark.
| | - Mie Johanne Hansen
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Inger Dalsgaard
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Jakob Skov
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Niels Lorenzen
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark
| |
Collapse
|
4
|
Bengtsson RJ, Simpkin AJ, Pulford CV, Low R, Rasko DA, Rigden DJ, Hall N, Barry EM, Tennant SM, Baker KS. Pathogenomic analyses of Shigella isolates inform factors limiting shigellosis prevention and control across LMICs. Nat Microbiol 2022; 7:251-261. [PMID: 35102306 PMCID: PMC8813619 DOI: 10.1038/s41564-021-01054-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Shigella spp. are the leading bacterial cause of severe childhood diarrhoea in low- and middle-income countries (LMICs), are increasingly antimicrobial resistant and have no widely available licenced vaccine. We performed genomic analyses of 1,246 systematically collected shigellae sampled from seven countries in sub-Saharan Africa and South Asia as part of the Global Enteric Multicenter Study (GEMS) between 2007 and 2011, to inform control and identify factors that could limit the effectiveness of current approaches. Through contemporaneous comparison among major subgroups, we found that S. sonnei contributes ≥6-fold more disease than other Shigella species relative to its genomic diversity, and highlight existing diversity and adaptative capacity among S. flexneri that may generate vaccine escape variants in <6 months. Furthermore, we show convergent evolution of resistance against ciprofloxacin, the current WHO-recommended antimicrobial for the treatment of shigellosis, among Shigella isolates. This demonstrates the urgent need to integrate existing genomic diversity into vaccine and treatment plans for Shigella, providing a framework for the focused application of comparative genomics to guide vaccine development, and the optimization of control and prevention strategies for other pathogens relevant to public health policy considerations.
Collapse
Affiliation(s)
- Rebecca J Bengtsson
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK
| | - Adam J Simpkin
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Systems Biology, The University of Liverpool, Liverpool, UK
| | - Caisey V Pulford
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK
- Gastrointestinal Infections and Food Safety (One Health), United Kingdom Health Security Agency, London, UK
| | - Ross Low
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - David A Rasko
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel J Rigden
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Systems Biology, The University of Liverpool, Liverpool, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eileen M Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kate S Baker
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK.
| |
Collapse
|
5
|
Alameh MG, Weissman D, Pardi N. Messenger RNA-Based Vaccines Against Infectious Diseases. Curr Top Microbiol Immunol 2022; 440:111-145. [PMID: 32300916 DOI: 10.1007/82_2020_202] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In vitro-transcribed, messenger RNA-based infectious disease vaccines have the potential to successfully address many of the weaknesses of traditional vaccine platforms, such as the lack of potency and/or durability of vaccine protection, time-consuming, and expensive manufacturing, and, in some cases, safety issues. This optimism is fueled by a great deal of impressive recent data demonstrating that mRNA vaccines have many of the attributes that are necessary for a viable new vaccine class for human use. This review briefly describes mRNA vaccine types, discusses the most relevant and recent publications on infectious disease mRNA vaccines, and highlights the hurdles that need to be overcome to bring this promising novel vaccine modality to the clinic.
Collapse
Affiliation(s)
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Kitiyodom S, Trullàs C, Rodkhum C, Thompson KD, Katagiri T, Temisak S, Namdee K, Yata T, Pirarat N. Modulation of the mucosal immune response of red tilapia (Oreochromis sp.) against columnaris disease using a biomimetic-mucoadhesive nanovaccine. FISH & SHELLFISH IMMUNOLOGY 2021; 112:81-91. [PMID: 33675991 DOI: 10.1016/j.fsi.2021.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Columnaris, a highly contagious bacterial disease caused by Flavobacterium columnare, is recognized as one of the most important infectious diseases in farmed tilapia, especially during the fry and fingerling stages of production. The disease is associated with characteristic lesions in the mucosa of affected fish, particularly their skin and gills. Vaccines delivered via the mucosa are therefore of great interest to scientists developing vaccines for this disease. In the present study, we characterized field isolates of F. columnare obtained from clinical columnaris outbreaks in red tilapia to select an isolate to use as a candidate for our vaccine study. This included characterizing its colony morphology, genotype and virulence status. The isolate was incorporated into a mucoadhesive polymer chitosan-complexed nanovaccine (CS-NE), the efficacy of which was determined by experimentally infecting red tilapia that had been vaccinated with the nanoparticles by immersion. The experimental infection was performed 30-days post-vaccination (dpv), which resulted in 89% of the unvaccinated control fish dying, while the relative percentage survival (RPS) of the CS-NE vaccinated group was 78%. Histology of the mucosal associated lymphoid tissue (MALT) showed a significantly higher presence of leucocytes and a greater antigen uptake by the mucosal epithelium in CS-NE vaccinated fish compared to control fish and whole cell vaccinated fish, respectively, and there was statistically significant up-regulation of IgT, IgM, TNF α, IL1-β and MHC-1 genes in the gill of the CS-NE vaccinated group. Overall, the results of our study confirmed that the CS-NE particles achieved better adsorption onto the mucosal surfaces of the fish, elicited great vaccine efficacy and modulated the MALT immune response better than the conventional whole cell-killed vaccine, demonstrating the feasibility of the mucoadhesive nano-immersion vaccine as an effective delivery system for the induction of a mucosal immune response against columnaris disease in tilapia.
Collapse
Affiliation(s)
- Sirikorn Kitiyodom
- Wildlife Exotic Aquatic Animal Pathology-Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Clara Trullàs
- Wildlife Exotic Aquatic Animal Pathology-Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Channarong Rodkhum
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, UK
| | - Takayuki Katagiri
- Laboratory of Fish Health Management, Course of Aquatic Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Sasithon Temisak
- Bio Analysis Group, Chemical Metrology and Biometry Department, National Institute of Metrology (NIMT), Pathum Thani, 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nopadon Pirarat
- Wildlife Exotic Aquatic Animal Pathology-Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Sarli M, Novoa MB, Mazzucco MN, Signorini ML, Echaide IE, de Echaide ST, Primo ME. A vaccine using Anaplasma marginale subdominant type IV secretion system recombinant proteins was not protective against a virulent challenge. PLoS One 2020; 15:e0229301. [PMID: 32084216 PMCID: PMC7034839 DOI: 10.1371/journal.pone.0229301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
Anaplasma marginale is the most prevalent tick-borne livestock pathogen with worldwide distribution. Bovine anaplasmosis is a significant threat to cattle industry. Anaplasmosis outbreaks in endemic areas are prevented via vaccination with live A. centrale produced in splenectomized calves. Since A. centrale live vaccine can carry other pathogens and cause disease in adult cattle, research efforts are directed to develop safe recombinant subunit vaccines. Previous work found that the subdominant proteins of A. marginale type IV secretion system (T4SS) and the subdominant elongation factor-Tu (Ef-Tu) were involved in the protective immunity against the experimental challenge in cattle immunized with the A. marginale outer membrane (OM). This study evaluated the immunogenicity and protection conferred by recombinant VirB9.1, VirB9.2, VirB10, VirB11, and Ef-Tu proteins cloned and expressed in E. coli. Twenty steers were randomly clustered into four groups (G) of five animals each. Cattle from G1 and G2 were immunized with a mixture of 50 μg of each recombinant protein with Quil A® or Montanide™ adjuvants, respectively. Cattle from G3 and G4 (controls) were immunized with Quil A and Montanide adjuvants, respectively. Cattle received four immunizations at three-week intervals and were challenged with 107 A. marginale-parasitized erythrocytes 42 days after the fourth immunization. After challenge, all cattle showed clinical signs, with a significant drop of packed cell volume and a significant increase of parasitized erythrocytes (p<0.05), requiring treatment with oxytetracycline to prevent death. The levels of IgG2 induced in the immunized groups did not correlate with the observed lack of protection. Additional strategies are required to evaluate the role of these proteins and their potential utility in the development of effective vaccines.
Collapse
Affiliation(s)
- Macarena Sarli
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rafaela, Santa Fe, Argentina
| | - María B. Novoa
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rafaela, Santa Fe, Argentina
| | - Matilde N. Mazzucco
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
| | - Marcelo L. Signorini
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rafaela, Santa Fe, Argentina
| | - Ignacio E. Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
| | - Susana T. de Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
| | - María E. Primo
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rafaela, Santa Fe, Argentina
| |
Collapse
|
8
|
LaFrentz BR, García JC, Shelley JP. Multiplex PCR for genotyping Flavobacterium columnare. JOURNAL OF FISH DISEASES 2019; 42:1531-1542. [PMID: 31469439 DOI: 10.1111/jfd.13068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Recent research has identified four distinct genetic groups among isolates of Flavobacterium columnare through multilocus phylogenetic analyses; however, there are no quick methods to determine the genotype of an isolate. The objective of this research was to develop a multiplex PCR to rapidly genotype F. columnare to genetic group. Comparative bacterial genomics was used to identify regions in the genomes unique to each genetic group, and primers were designed to specifically amplify different sized amplicons for each genetic group. The optimized assay was demonstrated to be specific for each genetic group and F. columnare, and no specific amplicons were generated using gDNA from a panel of other Flavobacterium spp. and bacterial fish pathogens. The analytical sensitivity of the assay ranged from 209 to 883 genome equivalents depending on the genetic group. The multiplex PCR was evaluated by genotyping a panel of 22 unknown F. columnare isolates and performing DNA sequencing of the dnaK gene in parallel. The results demonstrated 100% accordance between multiplex PCR results and assignment to genetic group via phylogenetic analysis. The multiplex PCR provides a useful tool for assigning an unknown isolate to genetic group and may be used to determine which genetic groups of F. columnare are circulating and most predominant in different aquaculture industries.
Collapse
Affiliation(s)
- Benjamin R LaFrentz
- Aquatic Animal Health Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Auburn, AL, USA
| | - Julio C García
- Aquatic Animal Health Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Auburn, AL, USA
| | - John P Shelley
- Aquatic Animal Health Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Auburn, AL, USA
| |
Collapse
|
9
|
Abstract
There is an urgent need to develop vaccines against pathogenic bacteria. However, this is often hindered by antigenic diversity and difficulties encountered manufacturing membrane proteins. Here we show how to use structure-based design to develop chimeric antigens (ChAs) for subunit vaccines. ChAs are generated against serogroup B Neisseria meningitidis (MenB), the predominant cause of meningococcal disease in wealthy countries. MenB ChAs exploit factor H binding protein (fHbp) as a molecular scaffold to display the immunogenic VR2 epitope from the integral membrane protein PorA. Structural analyses demonstrate fHbp is correctly folded and the PorA VR2 epitope adopts an immunogenic conformation. In mice, immunisation with ChAs generates fHbp and PorA antibodies that recognise the antigens expressed by clinical MenB isolates; these antibody responses correlate with protection against meningococcal disease. Application of ChAs is therefore a potentially powerful approach to develop multivalent subunit vaccines, which can be tailored to circumvent pathogen diversity. Factor H binding protein (fHbp) and PorA are components of experimental serogroup B N. meningitidis vaccines. Here the authors graft the VR2 loop of PorA onto an fHBp-based scaffold to demonstrate proof-of-principle of a chimeric antigen strategy and vaccination against meningococcal disease.
Collapse
|
10
|
LaFrentz BR, García JC, Waldbieser GC, Evenhuis JP, Loch TP, Liles MR, Wong FS, Chang SF. Identification of Four Distinct Phylogenetic Groups in Flavobacterium columnare With Fish Host Associations. Front Microbiol 2018; 9:452. [PMID: 29593693 PMCID: PMC5859164 DOI: 10.3389/fmicb.2018.00452] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/27/2018] [Indexed: 12/04/2022] Open
Abstract
Columnaris disease, caused by the Gram-negative bacterium Flavobacterium columnare, is one of the most prevalent fish diseases worldwide. An exceptionally high level of genetic diversity among isolates of F. columnare has long been recognized, whereby six established genomovars have been described to date. However, little has been done to quantify or characterize this diversity further in a systematic fashion. The objective of this research was to perform phylogenetic analyses of 16S rRNA and housekeeping gene sequences to decipher the genetic diversity of F. columnare. Fifty isolates and/or genomes of F. columnare, originating from diverse years, geographic locations, fish hosts, and representative of the six genomovars were analyzed in this study. A multilocus phylogenetic analysis (MLPA) of the 16S rRNA and six housekeeping genes supported four distinct F. columnare genetic groups. There were associations between genomovar and genetic group, but these relationships were imperfect indicating that genomovar assignment does not accurately reflect F. columnare genetic diversity. To expand the dataset, an additional 90 16S rRNA gene sequences were retrieved from GenBank and a phylogenetic analysis of this larger dataset also supported the establishment of four genetic groups. Examination of isolate historical data indicated biological relevance to the identified genetic diversity, with some genetic groups isolated preferentially from specific fish species or families. It is proposed that F. columnare isolates be assigned to the four genetic groups defined in this study rather than genomovar in order to facilitate a standard nomenclature across the scientific community. An increased understanding of which genetic groups are most prevalent in different regions and/or aquaculture industries may allow for the development of improved targeted control and treatment measures for columnaris disease.
Collapse
Affiliation(s)
- Benjamin R LaFrentz
- Aquatic Animal Health Research Unit, United States Department of Agriculture - Agricultural Research Service, Auburn, AL, United States
| | - Julio C García
- Aquatic Animal Health Research Unit, United States Department of Agriculture - Agricultural Research Service, Auburn, AL, United States
| | - Geoffrey C Waldbieser
- Warmwater Aquaculture Research Unit, Thad Cochran National Warmwater Aquaculture Center, United States Department of Agriculture - Agricultural Research Service, Stoneville, MS, United States
| | - Jason P Evenhuis
- National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture - Agricultural Research Service, Kearneysville, WV, United States
| | - Thomas P Loch
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Fong S Wong
- MSD Animal Health Innovation Pte. Ltd., Singapore, Singapore
| | - Siow F Chang
- MSD Animal Health Innovation Pte. Ltd., Singapore, Singapore
| |
Collapse
|
11
|
Monk J, Bosi E. Integration of Comparative Genomics with Genome-Scale Metabolic Modeling to Investigate Strain-Specific Phenotypical Differences. Methods Mol Biol 2018; 1716:151-175. [PMID: 29222753 DOI: 10.1007/978-1-4939-7528-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Genome-scale metabolic reconstructions are powerful resources that allow translation biological knowledge and genomic information to phenotypical predictions using a number of constraint-based methods. This approach has been applied in recent years to gain deep insights into the cellular phenotype role of the genes at a systems-level, driving the design of targeted experiments and paving the way for knowledge-based synthetic biology.The identification of genetic determinants underlying the variability at the phenotypical level is crucial to understand the evolutionary trajectories of a bacterial species. Recently, genome-scale metabolic models of different strains have been assembled to highlight the intra-species diversity at the metabolic level. The strain-specific metabolic capabilities and auxotrophies can be used to identify factors related to the lifestyle diversity of a bacterial species.In this chapter, we present the computational steps to perform genome-scale metabolic modeling in the context of comparative genomics, and the different challenges related to this task.
Collapse
Affiliation(s)
- Jonathan Monk
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Emanuele Bosi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
12
|
Xer1-independent mechanisms of Vpma phase variation in Mycoplasma agalactiae are triggered by Vpma-specific antibodies. Int J Med Microbiol 2017; 307:443-451. [DOI: 10.1016/j.ijmm.2017.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/24/2017] [Accepted: 10/23/2017] [Indexed: 11/23/2022] Open
|
13
|
Host Determinants of Expression of the Helicobacter pylori BabA Adhesin. Sci Rep 2017; 7:46499. [PMID: 28418004 PMCID: PMC5394467 DOI: 10.1038/srep46499] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Abstract
Expression of the Helicobacter pylori blood group antigen binding adhesin A (BabA) is more common in strains isolated from patients with peptic ulcer disease or gastric cancer, rather than asymptomatic colonization. Here we used mouse models to examine host determinants that affect H. pylori BabA expression. BabA expression was lost by phase variation as frequently in WT mice as in RAG2−/− mice that do not have functional B or T cells, and in MyD88−/−, TLR2−/− and TLR4−/− mice that are defective in toll like receptor signaling. The presence of other bacteria had no effect on BabA expression as shown by infection of germ free mice. Moreover, loss of BabA expression was not dependent on Leb expression or the capacity of BabA to bind Leb. Surprisingly, gender was the host determinant most associated with loss of BabA expression, which was maintained to a greater extent in male mice and was associated with greater bacterial load. These results suggest the possibility that loss of BabA expression is not driven by adaptive immunity or toll-like receptor signaling, and that BabA may have other, unrecognized functions in addition to serving as an adhesin that binds Leb.
Collapse
|
14
|
Passive immunization with anti-ActA and anti-listeriolysin O antibodies protects against Listeria monocytogenes infection in mice. Sci Rep 2016; 6:39628. [PMID: 28004800 PMCID: PMC5177876 DOI: 10.1038/srep39628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/25/2016] [Indexed: 01/08/2023] Open
Abstract
Listeria monocytogenes is an intracellular pathogen that causes listeriosis. Due to its intracellular niche, L. monocytogenes has evolved to limit immune recognition and response to infection. Antibodies that are slightly induced by listerial infection are completely unable to protect re-infection of L. monocytogenes. Thus, a role of antibody on the protective effect against L. monocytogenes infection has been neglected for a long time. In the present study, we reported that passive immunization with an excessive amount of antibodies against ActA and listeriolysin O (LLO) attenuates severity of L. monocytogenes infection. Combination of these antibodies improved survival of L. monocytogenes infected mice. Bacterial load in spleen and liver of listerial infected mice and infected RAW264.7 cells were significantly reduced by administration of anti-ActA and anti-LLO antibodies. In addition, anti-LLO antibody neutralized LLO activity and inhibited the bacterial escape from the lysosomal compartments. Moreover, anti-ActA antibody neutralized ActA activity and suppressed actin tail formation and cell-to-cell spread. Thus, our studies reveal that passive immunization with the excessive amount of anti-ActA and -LLO antibodies has potential to provide the protective effect against listerial infection.
Collapse
|
15
|
Abstract
INTRODUCTION The success of the vaccines available on the market has significantly increased interest in vaccine development. Areas covered: The main aim of this paper is to discuss the most important vaccines of pediatric interest that are currently being developed. New pneumococcal vaccines and vaccines against group B Streptococcus, Staphylococcus aureus and respiratory syncytial virus are analyzed in detail. Expert commentary: Advances in understanding human immunology, including human monoclonal antibody identification, sequencing technology, and the ability to solve atomic level structures of vaccine targets have provided tools to guide the rational design of future vaccines. It is likely that some of these vaccines will reach the market in the future and will thus partially contribute to the prevention of very severe diseases that significantly affect the morbidity and mortality of children. However, further studies in animals and several clinical trials in children must be performed before new vaccines become licensed.
Collapse
Affiliation(s)
- Susanna Esposito
- a Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Nicola Principi
- a Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| |
Collapse
|
16
|
Ram S, Shaughnessy J, DeOliveira RB, Lewis LA, Gulati S, Rice PA. Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: Lessons from the pathogenic Neisseriae. Immunobiology 2016; 221:1110-23. [PMID: 27297292 DOI: 10.1016/j.imbio.2016.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/27/2016] [Indexed: 12/30/2022]
Abstract
Novel therapies are urgently needed to combat the global threat of multidrug-resistant pathogens. Complement forms an important arm of innate defenses against infections. In physiological conditions, complement activation is tightly controlled by soluble and membrane-associated complement inhibitors, but must be selectively activated on invading pathogens to facilitate microbial clearance. Many pathogens, including Neisseria gonorrhoeae and N. meningitidis, express glycans, including N-acetylneuraminic acid (Neu5Ac), that mimic host structures to evade host immunity. Neu5Ac is a negatively charged 9-cabon sugar that inhibits complement, in part by enhancing binding of the complement inhibitor factor H (FH) through C-terminal domains (19 and 20) on FH. Other microbes also bind FH, in most instances through FH domains 6 and 7 or 18-20. Here we describe two strategies to target complement activation on Neisseriae. First, microbial binding domains of FH were fused to IgG Fc to create FH18-20/Fc (binds gonococci) and FH6,7/Fc (binds meningococci). A point mutation in FH domain 19 eliminated hemolysis caused by unmodified FH18-20, but retained binding to gonococci. FH18-20/Fc and FH6,7/Fc mediated complement-dependent killing in vitro and showed efficacy in animal models of gonorrhea and meningococcal bacteremia, respectively. The second strategy utilized CMP-nonulosonate (CMP-NulO) analogs of sialic acid that were incorporated into LOS and prevented complement inhibition by physiologic CMP-Neu5Ac and resulted in attenuated gonococcal infection in mice. While studies to establish the safety of these agents are needed, enhancing complement activation on microbes may represent a promising strategy to treat antimicrobial resistant organisms.
Collapse
Affiliation(s)
- Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosane B DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
17
|
Pors SE, Skjerning RB, Flachs EM, Bojesen AM. Recombinant proteins from Gallibacterium anatis induces partial protection against heterologous challenge in egg-laying hens. Vet Res 2016; 47:36. [PMID: 26915521 PMCID: PMC4766669 DOI: 10.1186/s13567-016-0320-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/10/2016] [Indexed: 12/20/2022] Open
Abstract
Gallibacterium anatis is a Gram-negative bacterium and major cause of salpingitis and peritonitis in egg-laying hens, thereby contributing to decreased egg production and increased mortality among the hens. Due to widespread drug resistance and antigenic diversity, novel prophylactic measures are urgently required. The aim of the present study was to evaluate the cross-protective capacity of three recombinant proteins recently identified as potential vaccine candidates; GtxA-N, GtxA-C, and FlfA, in an in vivo challenge model. Nine groups of birds were immunized twice with each protein, respectively, with 14 days separation. Additionally, three groups served as non-immunized controls. After 3 weeks, the birds were challenged with either of three G. anatis strains: 12656-12, 7990 or IPDH 697-78, respectively. Blood samples were taken at three different time points prior to challenge, as well as 48 h after challenge. All birds were euthanized and subjected to a post mortem procedure including scoring of lesions and sampling for bacterial growth. Moreover, ELISA assays were used to quantify antigen-specific IgG titers in serum. The results showed that all three proteins induced protection against the homologous strain 12656-12. No protein induced complete protection against strain 7990, although FlfA reduced the bacterial re-isolation rate. Moreover, immunization with GtxA-N and FlfA induced protection, while GtxA-C reduced the bacterial re-isolation, against strain IPDH 697-78. Thus although complete cross-protection against all three strains was not achieved, the results hold great promise for a new generation of immunogens in the search for novel prophylactic measures against G. anatis.
Collapse
Affiliation(s)
- Susanne Elisabeth Pors
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Ragnhild Bager Skjerning
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Esben M Flachs
- Department of Occupational and Environmental Medicine, Bispebjerg University Hospital, Copenhagen, Denmark.
| | - Anders Miki Bojesen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
18
|
Ducken DR, Brown WC, Alperin DC, Brayton KA, Reif KE, Turse JE, Palmer GH, Noh SM. Subdominant Outer Membrane Antigens in Anaplasma marginale: Conservation, Antigenicity, and Protective Capacity Using Recombinant Protein. PLoS One 2015; 10:e0129309. [PMID: 26079491 PMCID: PMC4469585 DOI: 10.1371/journal.pone.0129309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 05/08/2015] [Indexed: 12/21/2022] Open
Abstract
Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a defined surface protein complex reproducibly induce protective immunity. However, there are several knowledge gaps limiting progress in vaccine development. First, are these OMPs conserved among the diversity of A. marginale strains circulating in endemic regions? Second, are the most highly conserved outer membrane proteins in the immunogens recognized by immunized and protected animals? Lastly, can this subset of OMPs recognized by antibody from protected vaccinates and conserved among strains recapitulate the protection of outer membrane vaccines? To address the first goal, genes encoding OMPs AM202, AM368, AM854, AM936, AM1041, and AM1096, major subdominant components of the outer membrane, were cloned and sequenced from geographically diverse strains and isolates. AM202, AM936, AM854, and AM1096 share 99.9 to 100% amino acid identity. AM1041 has 97.1 to 100% and AM368 has 98.3 to 99.9% amino acid identity. While all four of the most highly conserved OMPs were recognized by IgG from animals immunized with outer membranes, linked surface protein complexes, or unlinked surface protein complexes and shown to be protected from challenge, the highest titers and consistent recognition among vaccinates were to AM854 and AM936. Consequently, animals were immunized with recombinant AM854 and AM936 and challenged. Recombinant vaccinates and purified outer membrane vaccinates had similar IgG and IgG2 responses to both proteins. However, the recombinant vaccinates developed higher bacteremia after challenge as compared to adjuvant-only controls and outer membrane vaccinates. These results provide the first evidence that vaccination with specific antigens may exacerbate disease. Progressing from the protective capacity of outer membrane formulations to recombinant vaccines requires testing of additional antigens, optimization of the vaccine formulation and a better understanding of the protective immune response.
Collapse
Affiliation(s)
- Deirdre R. Ducken
- Animal Disease Research Unit, Agricultural Research Service, U. S. Department of Agriculture, Pullman, Washington, United States of America
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Wendy C. Brown
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Debra C. Alperin
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Kelly A. Brayton
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Kathryn E. Reif
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Joshua E. Turse
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Guy H. Palmer
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Susan M. Noh
- Animal Disease Research Unit, Agricultural Research Service, U. S. Department of Agriculture, Pullman, Washington, United States of America
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
19
|
Hendrickx APA, van Schaik W, Willems RJL. The cell wall architecture of Enterococcus faecium: from resistance to pathogenesis. Future Microbiol 2014; 8:993-1010. [PMID: 23902146 DOI: 10.2217/fmb.13.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell wall of Gram-positive bacteria functions as a surface organelle that continuously interacts with its environment through a plethora of cell wall-associated molecules. Enterococcus faecium is a normal inhabitant of the GI tract of mammals, but has recently become an important etiological agent of hospital-acquired infections in debilitated patients. Insights into the assembly and function of enterococcal cell wall components and their interactions with the host during colonization and infection are essential to explain the worldwide emergence of E. faecium as an important multiantibiotic-resistant nosocomial pathogen. Understanding the biochemistry of cell wall biogenesis and principles of antibiotic resistance at the molecular level may open up new frontiers in research on enterococci, particularly for the development of novel antimicrobial strategies. In this article, we outline the current knowledge on the most important antimicrobial resistance mechanisms that involve peptidoglycan synthesis and the role of cell wall constituents, including lipoteichoic acid, wall teichoic acid, capsular polysaccharides, LPxTG cell wall-anchored surface proteins, WxL-type surface proteins and pili, in the pathogenesis of E. faecium.
Collapse
Affiliation(s)
- Antoni P A Hendrickx
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
20
|
Walters MS, Mobley HLT. Bacterial proteomics and identification of potential vaccine targets. Expert Rev Proteomics 2014; 7:181-4. [DOI: 10.1586/epr.10.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Del Tordello E, Serruto D. Functional genomics studies of the human pathogen Neisseria meningitidis. Brief Funct Genomics 2013; 12:328-40. [PMID: 23723380 DOI: 10.1093/bfgp/elt018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neisseria meningitidis is a strictly human pathogen and is one of the major causes of septicemia and meningitis worldwide. Functional genomics approaches have been extensively applied to study how N. meningitidis adapts to grow and survive in different human niches encountered during the infection. DNA microarrays performed in in vitro and ex vivo conditions have revealed changes in the transcriptome profiles of N. meningitidis upon interaction with human cells and after incubation in human serum and blood. Mutagenesis studies allowed detecting mutants in genes crucial for N. meningitidis colonization and systemic infection. The analysis of N. meningitidis genomes has been also successful in the identification of vaccine candidates used to develop an effective protein-based vaccine. The application of all these approaches revealed the potential to identify new virulence factors and vaccine candidates and to assign functions to previously uncharacterized genes providing new insights in the biology and pathogenesis of N. meningitidis.
Collapse
|
22
|
|
23
|
Wu W, Huang J, Duan B, Traficante DC, Hong H, Risech M, Lory S, Priebe GP. Th17-stimulating protein vaccines confer protection against Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 2012; 186:420-7. [PMID: 22723292 DOI: 10.1164/rccm.201202-0182oc] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RATIONALE New vaccine approaches are needed for Pseudomonas aeruginosa, which continues to be a major cause of serious pulmonary infections. Although Th17 cells can protect against gram-negative pathogens at mucosal surfaces, including the lung, the bacterial proteins recognized by Th17 cells are largely unknown and could be potential new vaccine candidates. OBJECTIVES We describe a strategy to identify Th17-stimulating protein antigens of Pseudomonas aeruginosa to assess their efficacy as vaccines against pneumonia. METHODS Using a library of in vitro transcribed and translated P. aeruginosa proteins, we screened for Th17-stimulating antigens by coculturing the library proteins with splenocytes from mice immunized with a live-attenuated P. aeruginosa vaccine that is protective via Th17-based immunity. We measured antibody and Th17 responses after intranasal immunization of mice with the purified proteins mixed with the Th17 adjuvant curdlan, and we tested the protective efficacy of vaccination in a murine model of acute pneumonia. MEASUREMENTS AND MAIN RESULTS The proteins PopB, FpvA, FptA, OprL, and PilQ elicited strong IL-17 secretion in the screen, and purified versions of PopB, FpvA, and OprL stimulated high IL-17 production from immune splenocytes. Immunization with PopB, which is a highly conserved component of the type III secretion system and a known virulence factor, elicited Th17 responses and also enhanced clearance of P. aeruginosa from the lung and spleen after challenge. PopB-immunized mice were protected from lethal pneumonia in an antibody-independent, IL-17-dependent manner. CONCLUSIONS Screening for Th17-stimulating protein antigens identified PopB as a novel and promising vaccine candidate for P. aeruginosa.
Collapse
Affiliation(s)
- Weihui Wu
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Genome-wide recombination drives diversification of epidemic strains of Acinetobacter baumannii. Proc Natl Acad Sci U S A 2011; 108:13758-63. [PMID: 21825119 DOI: 10.1073/pnas.1104404108] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is an emerging human pathogen and a significant cause of nosocomial infections among hospital patients worldwide. The enormous increase in multidrug resistance among hospital isolates and the recent emergence of pan-drug-resistant strains underscores the urgency to understand how A. baumannii evolves in hospital environments. To this end, we undertook a genomic study of a polyclonal outbreak of multidrug-resistant A. baumannii at the research-based National Institutes of Health Clinical Center. Comparing the complete genome sequences of the three dominant outbreak strain types enabled us to conclude that, despite all belonging to the same epidemic lineage, the three strains diverged before their arrival at the National Institutes of Health. The simultaneous presence of three divergent strains from this lineage supports its increasing prevalence in international hospitals and suggests an ongoing adaptation to the hospital environment. Further genomic comparisons uncovered that much of the diversification that occurred since the divergence of the three outbreak strains was mediated by homologous recombination across 20% of their genomes. Inspection of recombinant regions revealed that several regions were associated with either the loss or swapping out of genes encoding proteins that are exposed to the cell surface or that synthesize cell-surface molecules. Extending our analysis to a larger set of international clinical isolates revealed a previously unappreciated ability of A. baumannii to vary surface molecules through horizontal gene transfer, with subsequent intraspecies dissemination by homologous recombination. These findings have immediate implications in surveillance, prevention, and treatment of A. baumannii infections.
Collapse
|
25
|
Hendrickx APA, Budzik JM, Oh SY, Schneewind O. Architects at the bacterial surface - sortases and the assembly of pili with isopeptide bonds. Nat Rev Microbiol 2011; 9:166-76. [PMID: 21326273 DOI: 10.1038/nrmicro2520] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The cell wall envelope of Gram-positive bacteria can be thought of as a surface organelle for the assembly of macromolecular structures that enable the unique lifestyle of each microorganism. Sortases - enzymes that cleave the sorting signals of secreted proteins to form isopeptide (amide) bonds between the secreted proteins and peptidoglycan or polypeptides - function as the principal architects of the bacterial surface. Acting alone or with other sortase enzymes, sortase construction leads to the anchoring of surface proteins at specific sites in the envelope or to the assembly of pili, which are fibrous structures formed from many protein subunits. The catalysis of intermolecular isopeptide bonds between pilin subunits is intertwined with the assembly of intramolecular isopeptide bonds within pilin subunits. Together, these isopeptide bonds endow these sortase products with adhesive properties and resistance to host proteases.
Collapse
Affiliation(s)
- Antoni P A Hendrickx
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
26
|
Domain movement within a gene: a novel evolutionary mechanism for protein diversification. PLoS One 2011; 6:e18819. [PMID: 21533192 PMCID: PMC3077401 DOI: 10.1371/journal.pone.0018819] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/10/2011] [Indexed: 12/30/2022] Open
Abstract
A protein function is carried out by a specific domain localized at a specific position. In the present study, we report that, within a gene, a specific amino acid sequence can move between a certain position and another position. This was discovered when the sequences of restriction-modification systems within the bacterial species Helicobacter pylori were compared. In the specificity subunit of Type I restriction-modification systems, DNA sequence recognition is mediated by target recognition domain 1 (TRD1) and TRD2. To our surprise, several sequences are shared by TRD1 and TRD2 of genes (alleles) at the same locus (chromosomal location); these domains appear to have moved between the two positions. The gene/protein organization can be represented as x-(TRD1)-y-x-(TRD2)-y, where x and y represent repeat sequences. Movement probably occurs by recombination at these flanking DNA repeats. In accordance with this hypothesis, recombination at these repeats also appears to decrease two TRDs into one TRD or increase these two TRDs to three TRDs (TRD1-TRD2-TRD2) and to allow TRD movement between genes even at different loci. Similar movement of domains between TRD1 and TRD2 was observed for the specificity subunit of a Type IIG restriction enzyme. Similar movement of domain between TRD1 and TRD2 was observed for Type I restriction-modification enzyme specificity genes in two more eubacterial species, Streptococcus pyogenes and Mycoplasma agalactiae. Lateral domain movements within a protein, which we have designated DOMO (domain movement), represent novel routes for the diversification of proteins.
Collapse
|
27
|
Phase variation: how to create and coordinate population diversity. Curr Opin Microbiol 2011; 14:205-11. [DOI: 10.1016/j.mib.2011.01.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 12/26/2022]
|
28
|
Capparelli R, Nocerino N, Lanzetta R, Silipo A, Amoresano A, Giangrande C, Becker K, Blaiotta G, Evidente A, Cimmino A, Iannaccone M, Parlato M, Medaglia C, Roperto S, Roperto F, Ramunno L, Iannelli D. Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. PLoS One 2010; 5:e11720. [PMID: 20661301 PMCID: PMC2908692 DOI: 10.1371/journal.pone.0011720] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 06/29/2010] [Indexed: 01/21/2023] Open
Abstract
In the presence of a bacteriophage (a bacteria-attacking virus) resistance is clearly beneficial to the bacteria. As expected in such conditions, resistant bacteria emerge rapidly. However, in the absence of the phage, resistant bacteria often display reduced fitness, compared to their sensitive counterparts. The present study explored the fitness cost associated with phage-resistance as an opportunity to isolate an attenuated strain of S. aureus. The phage-resistant strain A172 was isolated from the phage-sensitive strain A170 in the presence of the MSa phage. Acquisition of phage-resistance altered several properties of A172, causing reduced growth rate, under-expression of numerous genes and production of capsular polysaccharide. In vivo, A172 modulated the transcription of the TNF-α, IFN-γ and Il-1β genes and, given intramuscularly, protected mice from a lethal dose of A170 (18/20). The heat-killed vaccine also afforded protection from heterologous methicillin-resistant S. aureus (MRSA) (8/10 mice) or vancomycin-intermediate S. aureus (VISA) (9/10 mice). The same vaccine was also effective when administered as an aerosol. Anti-A172 mouse antibodies, in the dose of 10 µl/mouse, protected the animals (10/10, in two independent experiments) from a lethal dose of A170. Consisting predominantly of the sugars glucose and galactose, the capsular polysaccharide of A172, given in the dose of 25 µg/mouse, also protected the mice (20/20) from a lethal dose of A170. The above results demonstrate that selection for phage-resistance can facilitate bacterial vaccine preparation.
Collapse
Affiliation(s)
| | - Nunzia Nocerino
- Faculty of Biotechnology, University of Naples, Portici, Naples, Italy
| | - Rosa Lanzetta
- Department of Organic Chemistry and Biochemistry, University of Naples, Naples, Italy
| | - Alba Silipo
- Department of Organic Chemistry and Biochemistry, University of Naples, Naples, Italy
| | - Angela Amoresano
- Department of Organic Chemistry and Biochemistry, University of Naples, Naples, Italy
| | - Chiara Giangrande
- Department of Organic Chemistry and Biochemistry, University of Naples, Naples, Italy
| | - Karsten Becker
- Universitätsklinikum Münster Institut für Medizinische Mikrobiologie, Münster, Germany
| | | | - Antonio Evidente
- School of Agriculture, University of Naples, Portici, Naples, Italy
| | - Alessio Cimmino
- School of Agriculture, University of Naples, Portici, Naples, Italy
| | - Marco Iannaccone
- Faculty of Biotechnology, University of Naples, Portici, Naples, Italy
| | - Marianna Parlato
- Faculty of Biotechnology, University of Naples, Portici, Naples, Italy
| | - Chiara Medaglia
- School of Agriculture, University of Naples, Portici, Naples, Italy
| | - Sante Roperto
- Department of Pathology and Animal Health, University of Naples, Naples, Italy
| | - Franco Roperto
- Department of Pathology and Animal Health, University of Naples, Naples, Italy
| | - Luigi Ramunno
- School of Agriculture, University of Naples, Portici, Naples, Italy
| | - Domenico Iannelli
- School of Agriculture, University of Naples, Portici, Naples, Italy
- * E-mail:
| |
Collapse
|
29
|
Wack A, Seubert A, Hilleringmann M. [Novel vaccines. Vaccinations in the near and distant future]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2010; 52:1083-90. [PMID: 19760246 DOI: 10.1007/s00103-009-0953-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Easy-to-develop vaccines usually induce antibodies against acute, self-limiting infections by stable pathogens. Today, most of these vaccines have been made, and the future diseases to tackle are more challenging: highly variable pathogens, rapidly emerging new infections with the potential of developing into pandemics, or therapeutic applications for chronic infections and cancer which most likely require complex immune responses beyond the induction of antibodies. The impact of scientific and technological progress on vaccinology has multiplied the strategies to improve vaccines. Here, we describe how genome-based approaches have revolutionized the way to identify vaccine antigen candidates, how the vast numbers of candidates can be further ranked by sophisticated gene- and protein-array based screening methods, and how surface proteomics may accelerate this target identification process. Increased structural knowledge of antigens will allow exposing or stabilizing those antigen parts relevant for protection and thereby direct the immune response to them. Improved adjuvants will enhance and bias the immune response to induce the relevant arms of the immune system. In conclusion, thanks to conceptual and biotechnological progress, future vaccines will be safer, more efficient and more complex than those today.
Collapse
Affiliation(s)
- A Wack
- Division of Immunoregulation, National Institute for Medical Research, Mill Hill, NW7 1AA, London, England.
| | | | | |
Collapse
|
30
|
Changes in membrane fluid state and heat shock response cause attenuation of virulence. J Bacteriol 2010; 192:1999-2005. [PMID: 20139193 DOI: 10.1128/jb.00990-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
So far attenuation of pathogens has been mainly obtained by chemical or heat treatment of microbial pathogens. Recently, live attenuated strains have been produced by genetic modification. We have previously demonstrated that in several prokaryotes as well as in yeasts and mammalian cells the heat shock response is controlled by the membrane physical state (MPS). We have also shown that in Salmonella enterica serovar Typhimurium LT2 (Salmonella Typhimurium) overexpression of a Delta(12)-desaturase gene alters the MPS, inducing a sharp impairment of transcription of major heat shock genes and failure of the pathogen to grow inside macrophage (MPhi) (A. Porta et al., J. Bacteriol. 192:1988-1998, 2010). Here, we show that overexpression of a homologous Delta(9)-desaturase sequence in the highly virulent G217B strain of the human fungal pathogen Histoplasma capsulatum causes loss of its ability to survive and persist within murine MPhi along with the impairment of the heat shock response. When the attenuated strain of H. capsulatum was injected in a mouse model of infection, it did not cause disease. Further, treated mice were protected when challenged with the virulent fungal parental strain. Attenuation of virulence in MPhi of two evolutionarily distant pathogens was obtained by genetic modification of the MPS, suggesting that this is a new method that may be used to produce attenuation or loss of virulence in both other intracellular prokaryotic and eukaryotic pathogens. This new procedure to generate attenuated forms of pathogens may be used eventually to produce a novel class of vaccines based on the genetic manipulation of a pathogen's membrane fluid state and stress response.
Collapse
|
31
|
Rinaudo CD, Telford JL, Rappuoli R, Seib KL. Vaccinology in the genome era. J Clin Invest 2009; 119:2515-25. [PMID: 19729849 DOI: 10.1172/jci38330] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vaccination has played a significant role in controlling and eliminating life-threatening infectious diseases throughout the world, and yet currently licensed vaccines represent only the tip of the iceberg in terms of controlling human pathogens. However, as we discuss in this Review, the arrival of the genome era has revolutionized vaccine development and catalyzed a shift from conventional culture-based approaches to genome-based vaccinology. The availability of complete bacterial genomes has led to the development and application of high-throughput analyses that enable rapid targeted identification of novel vaccine antigens. Furthermore, structural vaccinology is emerging as a powerful tool for the rational design or modification of vaccine antigens to improve their immunogenicity and safety.
Collapse
|
32
|
Genomic research for important pathogenic bacteria in China. ACTA ACUST UNITED AC 2009; 52:50-63. [DOI: 10.1007/s11427-009-0009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/22/2008] [Indexed: 12/21/2022]
|