1
|
Plaza N, Pérez-Reytor D, Corsini G, García K, Urrutia ÍM. Contribution of the Type III Secretion System (T3SS2) of Vibrio parahaemolyticus in Mitochondrial Stress in Human Intestinal Cells. Microorganisms 2024; 12:813. [PMID: 38674757 PMCID: PMC11051933 DOI: 10.3390/microorganisms12040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Vibrio parahaemolyticus is an important human pathogen that is currently the leading cause of shellfish-borne gastroenteritis in the world. Particularly, the pandemic strain has the capacity to induce cytotoxicity and enterotoxicity through its Type 3 Secretion System (T3SS2) that leads to massive cell death. However, the specific mechanism by which the T3SS2 induces cell death remains unclear and its contribution to mitochondrial stress is not fully understood. In this work, we evaluated the contribution of the T3SS2 of V. parahaemolyticus in generating mitochondrial stress during infection in human intestinal HT-29 cells. To evaluate the contribution of the T3SS2 of V. parahaemolyticus in mitochondrial stress, infection assays were carried out to evaluate mitochondrial transition pore opening, mitochondrial fragmentation, ATP quantification, and cell viability during infection. Our results showed that the Δvscn1 (T3SS2+) mutant strain contributes to generating the sustained opening of the mitochondrial transition pore. Furthermore, it generates perturbations in the ATP production in infected cells, leading to a significant decrease in cell viability and loss of membrane integrity. Our results suggest that the T3SS2 from V. parahaemolyticus plays a role in generating mitochondrial stress that leads to cell death in human intestinal HT-29 cells. It is important to highlight that this study represents the first report indicating the possible role of the V. parahaemolyticus T3SS2 and its effector proteins involvement in generating mitochondrial stress, its impact on the mitochondrial pore, and its effect on ATP production in human cells.
Collapse
Affiliation(s)
| | | | | | | | - Ítalo M. Urrutia
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile; (N.P.); (D.P.-R.); (G.C.); (K.G.)
| |
Collapse
|
2
|
Borkar SB, Negi M, Acharya TR, Lamichhane P, Kaushik N, Choi EH, Kaushik NK. Mitigation of T3SS-mediated virulence in waterborne pathogenic bacteria by multi-electrode cylindrical-DBD plasma-generated nitric oxide water. CHEMOSPHERE 2024; 350:140997. [PMID: 38128737 DOI: 10.1016/j.chemosphere.2023.140997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
S. enterica, S. flexneri, and V. parahaemolyticus bacteria are globally recognized to cause severe diarrheal diseases, consisting of Type III Secretion System (T3SS) effectors that help in bacterial infection and virulence in host cells. This study investigates the properties of multi-electrode cylindrical DBD plasma-generated nitric oxide water (MCDBD-PG-NOW) treatment on the survival and virulence of S. enterica, S. flexneri, and V. parahaemolyticus bacteria. The Colony Forming Unit (CFU) assay, live/dead cell staining, lipid peroxidation assay, and bacteria morphological analysis showed substantial growth inhibition of bacteria. Moreover, to confirm the interaction of reactive nitrogen species (RNS) with bacterial membrane biotin switch assay, DAF-FM, and FTIR analysis were carried out, which established the formation of S-nitrosothiols in the cell membrane, intracellular accumulation of RNS, and changes in the cell composition post-PG-NOW treatment. Furthermore, the conventional culture-based method and a quantitative PCR using propidium monoazide showed minimal VBNC induction under similar condition. The efficiency of bacteria to adhere to mammalian colon cells was significantly reduced. In addition, the infection rate was also controlled by disrupting the virulent genes, leading to the collapse of the infection mechanism. This study provides insights into whether RNS generated from PG-NOW might be beneficial for preventing diarrheal infections.
Collapse
Affiliation(s)
- Shweta B Borkar
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Manorma Negi
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Tirtha Raj Acharya
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Prajwal Lamichhane
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea.
| | - Eun Ha Choi
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.
| |
Collapse
|
3
|
Wu X, Zhou L, Ye C, Zha Z, Li C, Feng C, Zhang Y, Jin Q, Pan J. Destruction of self-derived PAMP via T3SS2 effector VopY to subvert PAMP-triggered immunity mediates Vibrio parahaemolyticus pathogenicity. Cell Rep 2023; 42:113261. [PMID: 37847589 DOI: 10.1016/j.celrep.2023.113261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/20/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Cyclic di-guanosine monophosphate (c-di-GMP) is a unique bacterial second messenger but is hijacked by host cells during bacterial infection as a pathogen-associated molecular pattern (PAMP) to trigger STING-dependent immune responses. Here, we show that upon infection, VopY, an effector of Vibrio parahaemolyticus, is injected into host cells by type III secretion system 2 (T3SS2), a secretion system unique to its pathogenic strains and indispensable for enterotoxicity. VopY is an EAL-domain-containing phosphodiesterase and is capable of hydrolyzing c-di-GMP. VopY expression in host cells prevents the activation of STING and STING-dependent downstream signaling triggered by c-di-GMP and, consequently, suppresses type I interferon immune responses. The presence of VopY in V. parahaemolyticus enables it to cause both T3SS2-dependent enterotoxicity and cytotoxicity. These findings uncover the destruction of self-derived PAMPs by injecting specific effectors to suppress PAMP-triggered immune responses as a unique strategy for bacterial pathogens to subvert immunity and cause disease.
Collapse
Affiliation(s)
- Xuan Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lantian Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chen Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenzhong Zha
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chuchu Li
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chao Feng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yue Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qian Jin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianyi Pan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Meng Y, Mu L, Li Y, Yu M, Liu H, Pan Y, Zhao Y. Expression patterns and influence of the two-component system in Vibrio parahaemolyticus of different genotypes. Gene 2023; 859:147187. [PMID: 36627093 DOI: 10.1016/j.gene.2023.147187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Vibrio parahaemolyticus is a foodborne pathogen that threatens global food security and human health. The two-component system (TCS) is a primary method for bacteria self-regulate and adapt to the environment. Previous studies have shown that V. parahaemolyticus has four hemolytic genotypes with diverse biological phenotypes and environmental adaptability, but the mechanism is unclear. In this study, we investigated TCS expression patterns in V. parahaemolyticus with different genotypes for the first time and explored the differences in TCS between strains. The results showed similarities in the TCS expression pattern between VPC17 (tdh+/trh-) and VPC44 (tdh-/trh-), while VPC85(tdh-/trh+) had the least similar TCS expression pattern to the other three strains. Analysis of biological information revealed that different regulations of C4 dicarboxylate transport, tetrathionate uptake, antibiotic resistance, and flagellar synthesis involved in the TCS might influence strains' growth, antibiotic resistance, biofilm, and virulence. The different TCS regulatory abilities of strains might be one of the reasons for diverse biological characteristics and different environmental adaptations. This work provides a theoretical basis and a new research direction for the strain variability of V. parahaemolyticus.
Collapse
Affiliation(s)
- Yuanyuan Meng
- College of Food Science and Technology, Shanghai Ocean University, 999#, Hu Cheng Huan Road, Shanghai 201306, China
| | - Lili Mu
- College of Food Science and Technology, Shanghai Ocean University, 999#, Hu Cheng Huan Road, Shanghai 201306, China
| | - Yinhui Li
- College of Food Science and Technology, Shanghai Ocean University, 999#, Hu Cheng Huan Road, Shanghai 201306, China
| | - Man Yu
- College of Food Science and Technology, Shanghai Ocean University, 999#, Hu Cheng Huan Road, Shanghai 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Engineering Research Center of Food Thermal-processing Technology, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Food Industry Chain Ecological Recycling Research Institute of Food Science and Technology College, 999#, Hu Cheng Huan Road, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999#, Hu Cheng Huan Road, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs, 999#, Hu Cheng Huan Road, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999#, Hu Cheng Huan Road, Shanghai 201306, China.
| |
Collapse
|
5
|
Jerez SA, Plaza N, Bravo V, Urrutia IM, Blondel CJ. Vibrio type III secretion system 2 is not restricted to the Vibrionaceae and encodes differentially distributed repertoires of effector proteins. Microb Genom 2023; 9:mgen000973. [PMID: 37018030 PMCID: PMC10210961 DOI: 10.1099/mgen.0.000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/01/2023] [Indexed: 04/06/2023] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis worldwide. A distinctive feature of the O3:K6 pandemic clone, and its derivatives, is the presence of a second, phylogenetically distinct, type III secretion system (T3SS2) encoded within the genomic island VPaI-7. The T3SS2 allows the delivery of effector proteins directly into the cytosol of infected eukaryotic cells to subvert key host-cell processes, critical for V. parahaemolyticus to colonize and cause disease. Furthermore, the T3SS2 also increases the environmental fitness of V. parahaemolyticus in its interaction with bacterivorous protists; hence, it has been proposed that it contributed to the global oceanic spread of the pandemic clone. Several reports have identified T3SS2-related genes in Vibrio and non-Vibrio species, suggesting that the T3SS2 gene cluster is not restricted to the Vibrionaceae and can mobilize through horizontal gene transfer events. In this work, we performed a large-scale genomic analysis to determine the phylogenetic distribution of the T3SS2 gene cluster and its repertoire of effector proteins. We identified putative T3SS2 gene clusters in 1130 bacterial genomes from 8 bacterial genera, 5 bacterial families and 47 bacterial species. A hierarchical clustering analysis allowed us to define six T3SS2 subgroups (I-VI) with different repertoires of effector proteins, redefining the concepts of T3SS2 core and accessory effector proteins. Finally, we identified a subset of the T3SS2 gene clusters (subgroup VI) that lacks most T3SS2 effector proteins described to date and provided a list of 10 novel effector candidates for this subgroup through bioinformatic analysis. Collectively, our findings indicate that the T3SS2 extends beyond the family Vibrionaceae and suggest that different effector protein repertories could have a differential impact on the pathogenic potential and environmental fitness of each bacterium that has acquired the Vibrio T3SS2 gene cluster.
Collapse
Affiliation(s)
- Sebastian A. Jerez
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nicolas Plaza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Veronica Bravo
- Programa Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Italo M. Urrutia
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carlos J. Blondel
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
6
|
Kaval KG, Chimalapati S, Siegel SD, Garcia N, Jaishankar J, Dalia AB, Orth K. Membrane-localized expression, production and assembly of Vibrio parahaemolyticus T3SS2 provides evidence for transertion. Nat Commun 2023; 14:1178. [PMID: 36859532 PMCID: PMC9977878 DOI: 10.1038/s41467-023-36762-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
It has been proposed that bacterial membrane proteins may be synthesized and inserted into the membrane by a process known as transertion, which involves membrane association of their encoding genes, followed by coupled transcription, translation and membrane insertion. Here, we provide evidence supporting that the pathogen Vibrio parahaemolyticus uses transertion to assemble its type III secretion system (T3SS2), to inject virulence factors into host cells. We propose a two-step transertion process where the membrane-bound co-component receptor (VtrA/VtrC) is first activated by bile acids, leading to membrane association and expression of its target gene, vtrB, located in the T3SS2 pathogenicity island. VtrB, the transmembrane transcriptional activator of T3SS2, then induces the localized expression and membrane assembly of the T3SS2 structural components and its effectors. We hypothesize that the proposed transertion process may be used by other enteric bacteria for efficient assembly of membrane-bound molecular complexes in response to extracellular signals.
Collapse
Affiliation(s)
- Karan Gautam Kaval
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Sara D Siegel
- Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, NC, 27606, USA
| | - Nalleli Garcia
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Jananee Jaishankar
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
7
|
Gavilan RG, Caro-Castro J, Blondel CJ, Martinez-Urtaza J. Vibrio parahaemolyticus Epidemiology and Pathogenesis: Novel Insights on an Emerging Foodborne Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:233-251. [PMID: 36792879 DOI: 10.1007/978-3-031-22997-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The epidemiological dynamics of V. parahaemolyticus´ infections have been characterized by the abrupt appearance of outbreaks in remote areas where these diseases had not been previously detected, without knowing the routes of entry of the pathogens in the new area. However, there are recent studies that show the link between the appearance of epidemic outbreaks of Vibrio and environmental factors such as oceanic transport of warm waters, which has provided a possible mechanism for the dispersion of Vibrio diseases globally. Despite this evidence, there is little information on the possible routes of entry and transport of infectious agents from endemic countries to the entire world. In this sense, the recent advances in genomic sequencing tools are making it possible to infer possible biogeographical patterns of diverse pathogens with relevance in public health like V. parahaemolyticus. In this chapter, we will address several general aspects about V. parahaemolyticus, including their microbiological and genetic detection, main virulence factors, and the epidemiology of genotypes involved in foodborne outbreaks globally.
Collapse
Affiliation(s)
- Ronnie G Gavilan
- Instituto Nacional de Salud, Lima, Peru. .,Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru.
| | | | - Carlos J Blondel
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Transcriptome Analysis Reveals the Effect of Low NaCl Concentration on Osmotic Stress and Type III Secretion System in Vibrio parahaemolyticus. Int J Mol Sci 2023; 24:ijms24032621. [PMID: 36768942 PMCID: PMC9916905 DOI: 10.3390/ijms24032621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/02/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Vibrio parahaemolyticus is a moderately halophilic foodborne pathogen that is mainly distributed in marine and freshwater environments. The transition of V. parahaemolyticus between aquatic ecosystems and hosts is essential for infection. Both freshwater and host environments have low salinity. In this study, we sought to further investigate the effects of low salinity (0.5% NaCl) on the fitness and virulence of V. parahaemolyticus. We found that V. parahaemolyticus could survive in Luria-Bertani (LB) and M9 mediums with different NaCl concentrations, except for the M9 medium containing 9% NaCl. Our results further showed that V. parahaemolyticus cultured in M9 medium with 0.5% NaCl had a higher cell density than that cultured at other NaCl concentrations when it entered the stationary phase. Therefore, we compared the transcriptomes of V. parahaemolyticus wild type (WT) cultured in an M9 medium with 0.5% and 3% NaCl at the stationary phase using RNA-seq. A total of 658 genes were significantly differentially expressed in the M9 medium with 0.5% NaCl, including regulators, osmotic adaptive responses (compatible solute synthesis systems, transporters, and outer membrane proteins), and virulence factors (T3SS1 and T6SS1). Furthermore, a low salinity concentration in the M9 medium induced the expression of T3SS1 to mediate the cytotoxicity of V. parahaemolyticus to HeLa cells. Similarly, low salinity could also induce the secretion of the T3SS2 translocon protein VPA1361. These factors may result in the high pathogenicity of V. parahaemolyticus in low-salinity environments. Taken together, these results suggest that low salinity (0.5% NaCl) could affect gene expression to mediate fitness and virulence, which may contribute to the transition of V. parahaemolyticus between aquatic ecosystems and the host.
Collapse
|
9
|
Changsen C, Likhitrattanapisal S, Lunha K, Chumpol W, Jiemsup S, Prachumwat A, Kongkasuriyachai D, Ingsriswang S, Chaturongakul S, Lamalee A, Yongkiettrakul S, Buates S. Incidence, genetic diversity, and antimicrobial resistance profiles of Vibrio parahaemolyticus in seafood in Bangkok and eastern Thailand. PeerJ 2023; 11:e15283. [PMID: 37193031 PMCID: PMC10183165 DOI: 10.7717/peerj.15283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/03/2023] [Indexed: 05/18/2023] Open
Abstract
Background Emergence of Vibrio parahaemolyticus pandemic strain O3:K6 was first documented in 1996. Since then it has been accounted for large outbreaks of diarrhea globally. In Thailand, prior studies on pandemic and non-pandemic V. parahaemolyticus had mostly been done in the south. The incidence and molecular characterization of pandemic and non-pandemic strains in other parts of Thailand have not been fully characterized. This study examined the incidence of V. parahaemolyticus in seafood samples purchased in Bangkok and collected in eastern Thailand and characterized V. parahaemolyticus isolates. Potential virulence genes, VPaI-7, T3SS2, and biofilm were examined. Antimicrobial resistance (AMR) profiles and AMR genes (ARGs) were determined. Methods V. parahaemolyticus was isolated from 190 marketed and farmed seafood samples by a culture method and confirmed by polymerase chain reaction (PCR). The incidence of pandemic and non-pandemic V. parahaemolyticus and VPaI-7, T3SS2, and biofilm genes was examined by PCR. AMR profiles were verified by a broth microdilution technique. The presence of ARGs was verified by genome analysis. V. parahaemolyticus characterization was done by multilocus sequence typing (MLST). A phylogenomic tree was built from nucleotide sequences by UBCG2.0 and RAxML softwares. Results All 50 V. parahaemolyticus isolates including 21 pathogenic and 29 non-pathogenic strains from 190 samples had the toxRS/old sequence, indicating non-pandemic strains. All isolates had biofilm genes (VP0950, VP0952, and VP0962). None carried T3SS2 genes (VP1346 and VP1367), while VPaI-7 gene (VP1321) was seen in two isolates. Antimicrobial susceptibility profiles obtained from 36 V. parahaemolyticus isolates revealed high frequency of resistance to colistin (100%, 36/36) and ampicillin (83%, 30/36), but susceptibility to amoxicillin/clavulanic acid and piperacillin/tazobactam (100%, 36/36). Multidrug resistance (MDR) was seen in 11 isolates (31%, 11/36). Genome analysis revealed ARGs including blaCARB (100%, 36/36), tet(34) (83%, 30/36), tet(35) (42%, 15/36), qnrC (6%, 2/36), dfrA6 (3%, 1/36), and blaCTX-M-55 (3%, 1/36). Phylogenomic and MLST analyses classified 36 V. parahaemolyticus isolates into 5 clades, with 12 known and 13 novel sequence types (STs), suggesting high genetic variation among the isolates. Conclusions Although none V. parahaemolyticus strains isolated from seafood samples purchased in Bangkok and collected in eastern Thailand were pandemic strains, around one third of isolates were MDR V. parahaemolyticus strains. The presence of resistance genes of the first-line antibiotics for V. parahaemolyticus infection raises a major concern for clinical treatment outcome since these resistance genes could be highly expressed under suitable circumstances.
Collapse
Affiliation(s)
- Chartchai Changsen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somsak Likhitrattanapisal
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kamonwan Lunha
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wiyada Chumpol
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Surasak Jiemsup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anuphap Prachumwat
- AQHT, AAQG, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
- CENTEX SHRIMP, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Darin Kongkasuriyachai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Soraya Chaturongakul
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Aekarin Lamalee
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suganya Yongkiettrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sureemas Buates
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Lafrance AE, Chimalapati S, Garcia Rodriguez N, Kinch LN, Kaval KG, Orth K. Enzymatic Specificity of Conserved Rho GTPase Deamidases Promotes Invasion of Vibrio parahaemolyticus at the Expense of Infection. mBio 2022; 13:e0162922. [PMID: 35862776 PMCID: PMC9426531 DOI: 10.1128/mbio.01629-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Vibrio parahaemolyticus is among the leading causes of bacterial seafood-borne acute gastroenteritis. Like many intracellular pathogens, V. parahaemolyticus invades host cells during infection by deamidating host small Rho GTPases. The Rho GTPase deamidating activity of VopC, a type 3 secretion system (T3SS) translocated effector, drives V. parahaemolyticus invasion. The intracellular pathogen uropathogenic Escherichia coli (UPEC) invades host cells by secreting a VopC homolog, the secreted toxin cytotoxic necrotizing factor 1 (CNF1). Because of the homology between VopC and CNF1, we hypothesized that topical application of CNF1 during V. parahaemolyticus infection could supplement VopC activity. Here, we demonstrate that CNF1 improves the efficiency of V. parahaemolyticus invasion, a bottleneck in V. parahaemolyticus infection, across a range of doses. CNF1 increases V. parahaemolyticus invasion independent of both VopC and the T3SS altogether but leaves a disproportionate fraction of intracellular bacteria unable to escape the endosome and complete their infection cycle. This phenomenon holds true in the presence or absence of VopC but is particularly pronounced in the absence of a T3SS. The native VopC, by contrast, promotes a far less efficient invasion but permits the majority of internalized bacteria to escape the endosome and complete their infection cycle. These studies highlight the significance of enzymatic specificity during infection, as virulence factors (VopC and CNF1 in this instance) with similarities in function (bacterial uptake), catalytic activity (deamidation), and substrates (Rho GTPases) are not sufficiently interchangeable for mediating a successful invasion for neighboring bacterial pathogens. IMPORTANCE Many species of intracellular bacterial pathogens target host small Rho GTPases to initiate invasion, including the human pathogens Vibrio parahaemolyticus and uropathogenic Escherichia coli (UPEC). The type three secretion system (T3SS) effector VopC of V. parahaemolyticus promotes invasion through the deamidation of Rac1 and CDC42 in the host, whereas the secreted toxin cytotoxic necrotizing factor 1 (CNF1) drives UPEC's internalization through the deamidation of Rac1, CDC42, and RhoA. Despite these similarities in the catalytic activity of CNF1 and VopC, we observed that the two enzymes were not interchangeable. Although CNF1 increased V. parahaemolyticus endosomal invasion, most intracellular V. parahaemolyticus aborted their infection cycle and remained trapped in endosomes. Our findings illuminate how the precise biochemical fine-tuning of T3SS effectors is essential for efficacious pathogenesis. Moreover, they pave the way for future investigations into the biochemical mechanisms underpinning V. parahaemolyticus endosomal escape and, more broadly, the regulation of successful pathogenesis.
Collapse
Affiliation(s)
- Alexander E. Lafrance
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suneeta Chimalapati
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nalleli Garcia Rodriguez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa N. Kinch
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Karan Gautam Kaval
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Hounmanou YMG, Sit B, Fakoya B, Waldor MK, Dalsgaard A. Genomic and Phenotypic Insights for Toxigenic Clinical Vibrio cholerae O141. Emerg Infect Dis 2022; 28:617-624. [PMID: 35202520 PMCID: PMC8888207 DOI: 10.3201/eid2803.210715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Vibrio cholerae remains a major public health threat worldwide, causing millions of cholera cases each year. Although much is known about the evolution and pathogenicity of the O1/O139 serogroups of V. cholerae, information is lacking on the molecular epidemiology of non‒O1/O139 strains isolated from patients who have diarrheal illnesses. We performed whole-genome sequence analysis and in vivo infections to investigate characteristics of V. cholerae O141 isolated from sporadic diarrheal cases in 4 countries. The strains formed a distinct phylogenetic clade distinguishable from other serogroups and a unique multilocus sequence type 42, but interstrain variation suggests that O141 isolates are not clonal. These isolates encode virulence factors including cholera toxin and the toxin-coregulated pilus, as well as a type 3 secretion system. They had widely variable capacities for intestinal colonization in the infant mouse model. We propose that O141 isolates comprise a distinct clade of V. cholerae non‒O1/O139, and their continued surveillance is warranted.
Collapse
|
12
|
Wang J, Zhan Y, Sun H, Fu X, Kong Q, Zhu C, Mou H. Regulation of Virulence Factors Expression During the Intestinal Colonization of Vibrio parahaemolyticus. Foodborne Pathog Dis 2022; 19:169-178. [PMID: 35085447 DOI: 10.1089/fpd.2021.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Colonization and adhesion are the key steps for Vibrio parahaemolyticus to infect human body and cause seafood poisoning. However, at present, there is a lack of systematic review on the regulation of virulence factors expression during the intestinal colonization of V. parahaemolyticus. This review aims to describe the virulence factors associated with the colonization and adhesion of V. parahaemolyticus (multivalent adhesion molecule 7, enolase secretion, use of flagella, biofilm formation, and the action of secretion systems) and focuses on the aspects that affect these processes in V. parahaemolyticus, including secretion systems, quorum sensing (QS), and the human gastrointestinal tract. V. parahaemolyticus regulates the expression of virulence factors by forming a virulence regulation network through QS and the core regulator, ToxR, which contributes to the early colonization of the pathogen. In the virulence regulation network, the secretion systems, type III and type VI secretion systems, help V. parahaemolyticus adhere to the distal end of the small intestine by secreting effectors that induce the lysis of epithelial cells and change the shape of the intestinal lining, which provides nutrients and a suitable environment for its growth. This review summarizes the research progress in recent years on the virulence factors associated with the colonization and adhesion of V. parahaemolyticus, which provides valuable information for the safety control of marine food.
Collapse
Affiliation(s)
- Jingyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuming Zhan
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal, Jinan, China
| | - Han Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
13
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
15
|
Pazhani GP, Chowdhury G, Ramamurthy T. Adaptations of Vibrio parahaemolyticus to Stress During Environmental Survival, Host Colonization, and Infection. Front Microbiol 2021; 12:737299. [PMID: 34690978 PMCID: PMC8530187 DOI: 10.3389/fmicb.2021.737299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023] Open
Abstract
Vibrio parahaemolyticus (Vp) is an aquatic Gram-negative bacterium that may infect humans and cause gastroenteritis and wound infections. The first pandemic of Vp associated infection was caused by the serovar O3:K6 and epidemics caused by the other serovars are increasingly reported. The two major virulence factors, thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH), are associated with hemolysis and cytotoxicity. Vp strains lacking tdh and/or trh are avirulent and able to colonize in the human gut and cause infection using other unknown factors. This pathogen is well adapted to survive in the environment and human host using several genetic mechanisms. The presence of prophages in Vp contributes to the emergence of pathogenic strains from the marine environment. Vp has two putative type-III and type-VI secretion systems (T3SS and T6SS, respectively) located on both the chromosomes. T3SS play a crucial role during the infection process by causing cytotoxicity and enterotoxicity. T6SS contribute to adhesion, virulence associated with interbacterial competition in the gut milieu. Due to differential expression, type III secretion system 2 (encoded on chromosome-2, T3SS2) and other genes are activated and transcribed by interaction with bile salts within the host. Chromosome-1 encoded T6SS1 has been predominantly identified in clinical isolates. Acquisition of genomic islands by horizontal gene transfer provides enhanced tolerance of Vp toward several antibiotics and heavy metals. Vp consists of evolutionarily conserved targets of GTPases and kinases. Expression of these genes is responsible for the survival of Vp in the host and biochemical changes during its survival. Advanced genomic analysis has revealed that various genes are encoded in Vp pathogenicity island that control and expression of virulence in the host. In the environment, the biofilm gene expression has been positively correlated to tolerance toward aerobic, anaerobic, and micro-aerobic conditions. The genetic similarity analysis of toxin/antitoxin systems of Escherichia coli with VP genome has shown a function that could induce a viable non-culturable state by preventing cell division. A better interpretation of the Vp virulence and other mechanisms that support its environmental fitness are important for diagnosis, treatment, prevention and spread of infections. This review identifies some of the common regulatory pathways of Vp in response to different stresses that influence its survival, gut colonization and virulence.
Collapse
Affiliation(s)
- Gururaja Perumal Pazhani
- School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Goutam Chowdhury
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
16
|
Identification of a Family of Vibrio Type III Secretion System Effectors That Contain a Conserved Serine/Threonine Kinase Domain. mSphere 2021; 6:e0059921. [PMID: 34346702 PMCID: PMC8386410 DOI: 10.1128/msphere.00599-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vibrio parahaemolyticus is a marine Gram-negative bacterium that is a leading cause of seafood-borne gastroenteritis. Pandemic strains of V. parahaemolyticus rely on a specialized protein secretion machinery known as the type III secretion system 2 (T3SS2) to cause disease. The T3SS2 mediates the delivery of effector proteins into the cytosol of infected cells, where they subvert multiple cellular pathways. Here, we identify a new T3SS2 effector protein encoded by VPA1328 (VP_RS21530) in V. parahaemolyticus RIMD2210633. Bioinformatic analysis revealed that VPA1328 is part of a larger family of uncharacterized T3SS effector proteins with homology to the VopG effector protein in Vibrio cholerae AM-19226. These VopG-like proteins are found in many but not all T3SS2 gene clusters and are distributed among diverse Vibrio species, including V. parahaemolyticus, V. cholerae, V. mimicus, and V. diabolicus and also in Shewanella baltica. Structure-based prediction analyses uncovered the presence of a conserved C-terminal kinase domain in VopG orthologs, similar to the serine/threonine kinase domain found in the NleH family of T3SS effector proteins. However, in contrast to NleH effector proteins, in tissue culture-based infections, VopG did not impede host cell death or suppress interleukin 8 (IL-8) secretion, suggesting a yet undefined role for VopG during V. parahaemolyticus infection. Collectively, our work reveals that VopG effector proteins, a new family of likely serine/threonine kinases, is widely distributed in the T3SS2 effector armamentarium among marine bacteria. IMPORTANCE Vibrio parahaemolyticus is the leading bacterial cause of seafood-borne gastroenteritis worldwide. The pathogen relies on a type III secretion system to deliver a variety of effector proteins into the cytosol of infected cells to subvert cellular function. In this study, we identified a novel Vibrio parahaemolyticus effector protein that is similar to the VopG effector of Vibrio cholerae. VopG-like effectors were found in diverse Vibrio species and contain a conserved serine/threonine kinase domain that bears similarity to the kinase domain in the enterohemorrhagic Escherichia coli (EHEC) and Shigella NleH effectors that manipulate host cell survival pathways and host immune responses. Together our findings identify a new family of Vibrio effector proteins and highlight the role of horizontal gene transfer events among marine bacteria in shaping T3SS gene clusters.
Collapse
|
17
|
Hu M, Zhang Y, Gu D, Chen X, Waldor MK, Zhou X. Nucleolar c-Myc recruitment by a Vibrio T3SS effector promotes host cell proliferation and bacterial virulence. EMBO J 2021; 40:e105699. [PMID: 33347626 PMCID: PMC7809790 DOI: 10.15252/embj.2020105699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Pathogen type 3 secretion systems (T3SS) manipulate host cell pathways by directly delivering effector proteins into host cells. In Vibrio parahaemolyticus, the leading cause of bacterial seafood-borne diarrheal disease, we showed that a T3SS effector, VgpA, localizes to the host cell nucleolus where it binds Epstein-Barr virus nuclear antigen 1-binding protein 2 (EBP2). An amino acid substitution in VgpA (VgpAL10A ) did not alter its translocation to the nucleus but abolished the effector's capacity to interact with EBP2. VgpA-EBP2 interaction led to the re-localization of c-Myc to the nucleolus and increased cellular rRNA expression and proliferation of cultured cells. The VgpA-EBP2 interaction elevated EBP2's affinity for c-Myc and prolonged the oncoprotein's half-life. Studies in infant rabbits demonstrated that VgpA is translocated into intestinal epithelial cells, where it interacts with EBP2 and leads to nucleolar re-localization of c-Myc. Moreover, the in vivo VgpA-EBP2 interaction during infection led to proliferation of intestinal cells and heightened V. parahaemolyticus' colonization and virulence. These observations suggest that direct effector stimulation of a c-Myc controlled host cell growth program can contribute to pathogenesis.
Collapse
Affiliation(s)
- Maozhi Hu
- Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutMansfieldCTUSA
| | - Yibei Zhang
- Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutMansfieldCTUSA
| | - Dan Gu
- Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutMansfieldCTUSA
| | - Xiang Chen
- Division of Infectious DiseasesBrigham and Women's HospitalBostonMAUSA
| | - Matthew K Waldor
- Division of Infectious DiseasesBrigham and Women's HospitalBostonMAUSA
- Howard Hughes Medical InstituteBostonMAUSA
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutMansfieldCTUSA
| |
Collapse
|
18
|
Matsuda S. [Mechanisms of action of Vibrio parahaemoltyicus cytotoxins]. Nihon Saikingaku Zasshi 2021; 75:215-225. [PMID: 33390409 DOI: 10.3412/jsb.75.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vibrio parahaemolyticus, one of the Gram-negative common enteric pathogens, was first isolated in Japan in 1950. Since its discovery, this bacterium has been a major cause of food-poisoning in Japan, and its infection has recently undergone a global expansion. V. parahaemolyticus possesses a classical exotoxin, thermostable direct hemolysin, and two sets of type III secretion systems (T3SSs) that are able to inject effectors directly into host cells, which are its key virulence factors. Exotoxin/effector is exploited by many Gram-negative pathogens, and plays critical roles in pathogenesis by damaging host cells or by modulating host cell functions, through its activity on/in host cells. In recent years, functional activities of T3SS effectors produced by V. parahaemolyticus have been extensively studied, which has substantially increased our understanding of the pathogenic mechanisms of the bacterium. In paricular, some T3SS effectors of V. parahaemolyticus act as cytotoxins and thereby damage host cells. Here, I focus on these cytotoxic effectors of V. parahaemolyticus and describe recent advances in our understanding of their mechanisms of action.
Collapse
Affiliation(s)
- Shigeaki Matsuda
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University
| |
Collapse
|
19
|
Meparambu Prabhakaran D, Ramamurthy T, Thomas S. Genetic and virulence characterisation of Vibrio parahaemolyticus isolated from Indian coast. BMC Microbiol 2020; 20:62. [PMID: 32293257 PMCID: PMC7092547 DOI: 10.1186/s12866-020-01746-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/05/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND V. parahaemolyticus is autochthonous to the marine environment and causes seafood-borne gastroenteritis in humans. Generally, V. parahaemolyticus recovered from the environment and/or seafood is thought to be non-pathogenic and the relationship between environmental isolates and acute diarrhoeal disease is poorly understood. In this study, we explored the virulence potential of environmental V. parahaemolyticus isolated from water, plankton and assorted seafood samples collected from the Indian coast. RESULTS Twenty-two V. parahaemolyticus isolates from seafood harboured virulence associated genes encoding the thermostable-direct haemolysin (TDH), TDH-related haemolysin (TRH), and Type 3 secretion systems (T3SS) and 95.5% of the toxigenic isolates had pandemic strain attributes (toxRS/new+). Nine serovars, with pandemic strain traits were newly identified and an O4:K36 tdh-trh+V. parahaemolyticus bearing pandemic marker gene was recognised for the first time. Results obtained by reverse transcription PCR showed trh, T3SS1 and T3SS2β to be functional in the seafood isolates. Moreover, the environmental strains were cytotoxic and could invade Caco-2 cells upon infection as well as induce changes to the tight junction protein, ZO-1 and the actin cytoskeleton. CONCLUSION Our study provides evidence that environmental isolates of V. parahaemolyticus are potentially invasive and capable of eliciting pathogenic characteristics typical of clinical strains and present a potential health risk. We also demonstrate that virulence of this pathogen is highly complex and hence draws attention for the need to investigate more reliable virulence markers in order to distinguish the environmental and clinical isolates, which will be crucial for the pathogenomics and control of this pathogen.
Collapse
Affiliation(s)
- Divya Meparambu Prabhakaran
- Cholera and Biofilm Research Lab, Department of Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695 014, India
| | - Thandavarayan Ramamurthy
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India
| | - Sabu Thomas
- Cholera and Biofilm Research Lab, Department of Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695 014, India.
| |
Collapse
|
20
|
Matsuda S, Hiyoshi H, Tandhavanant S, Kodama T. Advances on
Vibrio parahaemolyticus
research in the postgenomic era. Microbiol Immunol 2020; 64:167-181. [DOI: 10.1111/1348-0421.12767] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/08/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Shigeaki Matsuda
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| | - Hirotaka Hiyoshi
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Medical Microbiology and Immunology, School of MedicineUniversity of California Davis California, USA
| | - Sarunporn Tandhavanant
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Microbiology and Immunology, Faculty of Tropical MedicineMahidol University Bangkok Thailand
| | - Toshio Kodama
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| |
Collapse
|
21
|
A Novel Mouse Model of Enteric Vibrio parahaemolyticus Infection Reveals that the Type III Secretion System 2 Effector VopC Plays a Key Role in Tissue Invasion and Gastroenteritis. mBio 2019; 10:mBio.02608-19. [PMID: 31848276 PMCID: PMC6918077 DOI: 10.1128/mbio.02608-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Gram-negative marine bacterium Vibrio parahaemolyticus is a common cause of infectious gastroenteritis due to the ingestion of contaminated seafood. Most virulent V. parahaemolyticus strains encode two type III secretion systems (T3SS1 and T3SS2); however, the roles they and their translocated effectors play in causing intestinal disease remain unclear. While studies have identified T3SS1 effectors as responsible for killing epithelial cells in culture, the T3SS2 effectors caused massive epithelial cell disruption in a rabbit ileal loop model. Additional models are thus needed to clarify the pathogen-host interactions that drive V. parahaemolyticus-associated gastroenteritis. Germfree mice were infected with a pathogenic clinical isolate of V. parahaemolyticus, RIMD2210633 (RIMD). The pathogen was found to adhere to as well as invade the cecal mucosa, accompanied by severe inflammation and dramatic mucosal damage, including widespread sloughing of infected epithelial cells. Mice infected with a V. parahaemolyticus strain lacking the T3SS1 (POR2) also developed severe pathology, similar to that seen with RIMD. In contrast, the ΔT3SS2 strain (POR3) appeared unable to invade the intestinal mucosa or cause any mucosal pathology. Confirming a role for TS332 effectors, a strain expressing the T3SS2 but lacking VopC (POR2ΔvopC), a T3SS2 effector implicated in epithelial cell invasion in culture, was strongly attenuated in invading the intestinal mucosa and in causing gastroenteritis, although infection with this mutant resulted in more pathology than the ΔT3SS2 strain. We thus present an experimental system that enables further characterization of T3SS effectors as well as the corresponding host inflammatory response involved in the gastroenteritis caused by invasive V. parahaemolyticus IMPORTANCE Vibrio parahaemolyticus causes severe gastroenteritis following consumption of contaminated seafood. Global warming has allowed this pathogen to spread worldwide, contributing to recent outbreaks. Clinical isolates are known to harbor an array of virulence factors, including T3SS1 and T3SS2; however, the precise role these systems play in intestinal disease remains unclear. There is an urgent need to improve our understanding of how V. parahaemolyticus infects hosts and causes disease. We present a novel mouse model for this facultative intracellular pathogen and observe that the T3SS2 is essential to pathogenicity. Moreover, we show that the T3SS2 effector VopC, previously shown to be a Rac and Cdc42 deamidase that facilitates bacterial uptake by nonphagocytic cells, also plays a key role in the ability of V. parahaemolyticus to invade the intestinal mucosa and cause gastroenteritis. This experimental model thus provides a valuable tool for future elucidation of virulence mechanisms used by this facultative intracellular pathogen during in vivo infection.
Collapse
|
22
|
Li L, Gao M, Lu T, Gu D. RETRACTED: Dissection of ToxR-dependent and ToxR-independent stress-regulated pathways in Vibrio parahaemolyticus. Microbiol Res 2019; 223-225:79-87. [PMID: 31178055 DOI: 10.1016/j.micres.2019.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 12/28/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the authors. After having been alerted by an anonymous reader the authors found out that in order to substantiate one of their conclusions (DeltaToxR-reduced killing activity is mediated via T6SS2) more experiments are needed. To avoid any potentially wrong conclusions being published, the authors decided to retract the article and to resubmit their manuscript once the additional experiments have been completed. The Editor-in-Chief agreed to the retraction. The authors wish to apologize for any inconvenience caused.
Collapse
Affiliation(s)
- Lingzhi Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Yangzhou University, Yangzhou, 225009, China
| | - Miaomiao Gao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Yangzhou University, Yangzhou, 225009, China
| | - Tianyu Lu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Yangzhou University, Yangzhou, 225009, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
23
|
Li L, Meng H, Gu D, Li Y, Jia M. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis. Microbiol Res 2019; 222:43-51. [PMID: 30928029 DOI: 10.1016/j.micres.2019.03.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is mainly distributed in the seafood such as fish, shrimps and shellfish throughout the world. V. parahaemolyticus can cause diseases in marine aquaculture, leading to huge economic losses to the aquaculture industry. More importantly, it is also the leading cause of seafood-borne diarrheal disease in humans worldwide. With the development of animal model, next-generation sequencing as well as biochemical and cell biological technologies, deeper understanding of the virulence factors and pathogenic mechanisms of V. parahaemolyticus has been gained. As a globally transmitted pathogen, the pathogenicity of V. parahaemolyticus is closely related to a variety of virulence factors. This article comprehensively reviewed the molecular mechanisms of eight types of virulence factors: hemolysin, type III secretion system, type VI secretion system, adhesion factor, iron uptake system, lipopolysaccharide, protease and outer membrane proteins. This review comprehensively summarized our current understanding of the virulence factors in V. parahaemolyticus, which are potentially new targets for the development of therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Lingzhi Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Hongmei Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yang Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Mengdie Jia
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
24
|
Matsuda S, Okada R, Tandhavanant S, Hiyoshi H, Gotoh K, Iida T, Kodama T. Export of a Vibrio parahaemolyticus toxin by the Sec and type III secretion machineries in tandem. Nat Microbiol 2019; 4:781-788. [DOI: 10.1038/s41564-019-0368-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/10/2019] [Indexed: 12/25/2022]
|
25
|
Miller KA, Tomberlin KF, Dziejman M. Vibrio variations on a type three theme. Curr Opin Microbiol 2019; 47:66-73. [PMID: 30711745 DOI: 10.1016/j.mib.2018.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 11/18/2022]
Abstract
Mounting evidence suggests that Type 3 Secretion Systems (T3SS) are widespread among Vibrio species, and are present in strains isolated from diverse sources such as human clinical infections, environmental reservoirs, and diseased marine life. Experiments evaluating Vibrio parahaemolyticus and Vibrio cholerae T3SS mediated virulence suggest that Vibrio T3SS pathogenicity islands have a tripartite composition. A conserved 'core' region encodes functions essential for colonization and disease in vivo, including modulation of innate immune signaling pathways and actin dynamics, whereas regions flanking core sequences are variable among strains and encode effector proteins performing a diverse array of activities. Characterizing novel functions associated with Vibrio-specific effectors is, therefore, essential for understanding how vibrios employ T3SS mechanisms to cause disease in a broad range of hosts and how T3SS island composition potentially defines species-specific disease.
Collapse
Affiliation(s)
- Kelly A Miller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Katharine F Tomberlin
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
26
|
Vibrio parahaemolyticus Senses Intracellular K + To Translocate Type III Secretion System 2 Effectors Effectively. mBio 2018; 9:mBio.01366-18. [PMID: 30042203 PMCID: PMC6058294 DOI: 10.1128/mbio.01366-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Gram-negative bacterial symbionts and pathogens employ a type III secretion system (T3SS) to live in contact with eukaryotic cells. Because T3SSs inject bacterial proteins (effectors) directly into host cells, the switching of secretory substrates between translocators and effectors in response to host cell attachment is a crucial step for the effective delivery of effectors. Here, we show that the protein secretion switch of Vibrio parahaemolyticus T3SS2, which is a main contributor to the enteropathogenicity of a food poisoning bacterium, is regulated by two gatekeeper proteins, VgpA and VgpB. In the absence of these gatekeepers, effector secretion was activated, but translocator secretion was abolished, causing the loss of virulence. We found that the K+ concentration, which is high inside the host cell but low outside, is a key factor for VgpA- and VgpB-mediated secretion switching. Exposure of wild-type bacteria to K+ ions provoked both gatekeeper and effector secretions but reduced the level of secretion of translocators. The secretion protein profile of wild-type bacteria cultured with 0.1 M KCl was similar to that of gatekeeper mutants. Furthermore, depletion of K+ ions in host cells diminished the efficiency of T3SS2 effector translocation. Thus, T3SS2 senses the high intracellular concentration of K+ of the host cell so that T3SS2 effectors can be effectively injected. The pathogenesis of many Gram-negative bacterial pathogens arises from a type III secretion system (T3SS), whereby bacterial proteins (effectors) are directly injected into host cells. The injected effectors then modify host cell functions. For effective delivery of effector proteins, bacteria need to both recognize host cell attachment and switch the type of secreted proteins. Here, we identified gatekeeper proteins that play important roles in a T3SS2 secretion switch of Vibrio parahaemolyticus, a causative agent of food-borne gastroenteritis. We also found that K+, which is present in high concentrations inside the host cell but in low concentrations outside, is a key factor for the secretion switch. Thus, V. parahaemolyticus senses the high intracellular K+ concentration, triggering the effective injection of effectors.
Collapse
|
27
|
The Transcriptional Regulator HlyU Positively Regulates Expression of exsA, Leading to Type III Secretion System 1 Activation in Vibrio parahaemolyticus. J Bacteriol 2018; 200:JB.00653-17. [PMID: 29440251 DOI: 10.1128/jb.00653-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/06/2018] [Indexed: 01/04/2023] Open
Abstract
Vibrio parahaemolyticus is a marine bacterium that is globally recognized as the leading cause of seafood-borne gastroenteritis. V. parahaemolyticus uses various toxins and two type 3 secretion systems (T3SS-1 and T3SS-2) to subvert host cells during infection. We previously determined that V. parahaemolyticus T3SS-1 activity is upregulated by increasing the expression level of the master regulator ExsA under specific growth conditions. In this study, we set out to identify V. parahaemolyticus genes responsible for linking environmental and growth signals to exsA gene expression. Using transposon mutagenesis in combination with a sensitive and quantitative luminescence screen, we identify HlyU and H-NS as two antagonistic regulatory proteins controlling the expression of exsA and, hence, T3SS-1 in V. parahaemolyticus Disruption of hns leads to constitutive unregulated exsA gene expression, consistent with its known role in repressing exsA transcription. In contrast, genetic disruption of hlyU completely abrogated exsA expression and T3SS-1 activity. A V. parahaemolyticushlyU null mutant was significantly deficient for T3SS-1-mediated host cell death during in vitro infection. DNA footprinting studies with purified HlyU revealed a 56-bp protected DNA region within the exsA promoter that contains an inverted repeat sequence. Genetic evidence suggests that HlyU acts as a derepressor, likely by displacing H-NS from the exsA promoter, leading to exsA gene expression and appropriately regulated T3SS-1 activity. Overall, the data implicate HlyU as a critical positive regulator of V. parahaemolyticus T3SS-1-mediated pathogenesis.IMPORTANCE Many Vibrio species are zoonotic pathogens, infecting both animals and humans, resulting in significant morbidity and, in extreme cases, mortality. While many Vibrio species virulence genes are known, their associated regulation is often modestly understood. We set out to identify genetic factors of V. parahaemolyticus that are involved in activating exsA gene expression, a process linked to a type III secretion system involved in host cytotoxicity. We discover that V. parahaemolyticus employs a genetic regulatory switch involving H-NS and HlyU to control exsA promoter activity. While HlyU is a well-known positive regulator of Vibrio species virulence genes, this is the first report linking it to a transcriptional master regulator and type III secretion system paradigm.
Collapse
|
28
|
Castillo D, Pérez-Reytor D, Plaza N, Ramírez-Araya S, Blondel CJ, Corsini G, Bastías R, Loyola DE, Jaña V, Pavez L, García K. Exploring the Genomic Traits of Non-toxigenic Vibrio parahaemolyticus Strains Isolated in Southern Chile. Front Microbiol 2018; 9:161. [PMID: 29472910 PMCID: PMC5809470 DOI: 10.3389/fmicb.2018.00161] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/24/2018] [Indexed: 01/30/2023] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis worldwide. As reported in other countries, after the rise and fall of the pandemic strain in Chile, other post-pandemic strains have been associated with clinical cases, including strains lacking the major toxins TDH and TRH. Since the presence or absence of tdh and trh genes has been used for diagnostic purposes and as a proxy of the virulence of V. parahaemolyticus isolates, the understanding of virulence in V. parahaemolyticus strains lacking toxins is essential to detect these strains present in water and marine products to avoid possible food-borne infection. In this study, we characterized the genome of four environmental and two clinical non-toxigenic strains (tdh-, trh-, and T3SS2-). Using whole-genome sequencing, phylogenetic, and comparative genome analysis, we identified the core and pan-genome of V. parahaemolyticus of strains of southern Chile. The phylogenetic tree based on the core genome showed low genetic diversity but the analysis of the pan-genome revealed that all strains harbored genomic islands carrying diverse virulence and fitness factors or prophage-like elements that encode toxins like Zot and RTX. Interestingly, the three strains carrying Zot-like toxin have a different sequence, although the alignment showed some conserved areas with the zot sequence found in V. cholerae. In addition, we identified an unexpected diversity in the genetic architecture of the T3SS1 gene cluster and the presence of the T3SS2 gene cluster in a non-pandemic environmental strain. Our study sheds light on the diversity of V. parahaemolyticus strains from the southern Pacific which increases our current knowledge regarding the global diversity of this organism.
Collapse
Affiliation(s)
- Daniel Castillo
- Marine Biological Section, University of Copenhagen, Helsingør, Denmark
| | - Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Nicolás Plaza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Sebastián Ramírez-Araya
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Carlos J Blondel
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Gino Corsini
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Roberto Bastías
- Laboratory of Microbiology, Institute of Biology, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Víctor Jaña
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Leonardo Pavez
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
29
|
Wagley S, Borne R, Harrison J, Baker-Austin C, Ottaviani D, Leoni F, Vuddhakul V, Titball RW. Galleria mellonella as an infection model to investigate virulence of Vibrio parahaemolyticus. Virulence 2018; 9:197-207. [PMID: 28960137 PMCID: PMC5801645 DOI: 10.1080/21505594.2017.1384895] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 11/24/2022] Open
Abstract
Non-toxigenic V. parahaemolyticus isolates (tdh-/trh-/T3SS2-) have recently been isolated from patients with gastroenteritis. In this study we report that the larvae of the wax moth (Galleria mellonella) are susceptible to infection by toxigenic or non-toxigenic clinical isolates of V. parahaemolyticus. In comparison larvae inoculated with environmental isolates of V. parahaemolyticus did not succumb to disease. Whole genome sequencing of clinical non-toxigenic isolates revealed the presence of a gene encoding a nudix hydrolase, identified as mutT. A V. parahaemolyticus mutT mutant was unable to kill G. mellonella at 24 h post inoculation, indicating a role of this gene in virulence. Our findings show that G. mellonella is a valuable model for investigating screening of possible virulence genes of V. parahaemolyticus and can provide new insights into mechanisms of virulence of atypical non-toxigenic V. parahaemolyticus. These findings will allow improved genetic tests for the identification of pathogenic V. parahaemolyticus to be developed and will have a significant impact for the scientific community.
Collapse
Affiliation(s)
- Sariqa Wagley
- Biosciences College of life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 S4QD, UK
| | | | - Jamie Harrison
- Biosciences College of life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 S4QD, UK
| | - Craig Baker-Austin
- Centre for Environment, Fisheries, and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset DT4 8UB UK
| | - Donatella Ottaviani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Laboratorio Nazionale di Riferimento Contaminazioni Batteriologiche dei Molluschi Bivalvi, Ancona, Italy
| | - Francesca Leoni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Laboratorio Nazionale di Riferimento Contaminazioni Batteriologiche dei Molluschi Bivalvi, Ancona, Italy
| | - Varaporn Vuddhakul
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Richard W. Titball
- Biosciences College of life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 S4QD, UK
| |
Collapse
|
30
|
de Souza Santos M, Salomon D, Orth K. T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus. PLoS Pathog 2017. [PMID: 28640881 PMCID: PMC5481031 DOI: 10.1371/journal.ppat.1006438] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH) oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS) production using the Type III Secretion System 2 (T3SS2) effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.
Collapse
Affiliation(s)
- Marcela de Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dor Salomon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Ghenem L, Elhadi N, Alzahrani F, Nishibuchi M. Vibrio Parahaemolyticus: A Review on Distribution, Pathogenesis, Virulence Determinants and Epidemiology. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2017; 5:93-103. [PMID: 30787765 PMCID: PMC6298368 DOI: 10.4103/sjmms.sjmms_30_17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative, halophilic bacterium isolated from marine environments globally. After the consumption of contaminated seafood, V. parahaemolyticus causes acute gastroenteritis. To initiate infection, a wide range of virulence factors are required. A complex group of genes is known to participate in the pathogenicity of V. parahaemolyticus; however, to understand the full mechanism of infection, extensive research is yet required. V. parahaemolyticus has become the leading cause of seafood-related gastroenteritis in Japan, the United States and several other parts of the world. In addition, outbreaks caused by the pandemic clone of this organism are escalating and spreading universally. To minimize the risk of V. parahaemolyticus infection and warrant the safety of seafood, collaboration between governments and scientists is required. We herein provide an updated review of the pathogenicity determinants and distribution of V. parahaemolyticus to deliver a better understanding of the significance of V. parahaemolyticus and its host-pathogen interactions.
Collapse
Affiliation(s)
- Lubna Ghenem
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, 31441 Dammam, Kingdom of Saudi Arabia
| | - Nasreldin Elhadi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, 31441 Dammam, Kingdom of Saudi Arabia
| | - Faisal Alzahrani
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, 31441 Dammam, Kingdom of Saudi Arabia
| | - Mitsuaki Nishibuchi
- Center for Southeast Asian Studies, Kyoto University, 46 Shomoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
32
|
Hiyoshi H. Actin cytoskeleton-modulating T3SS2 effectors and their contribution to the Vibrio parahaemolyticus-induced diarrhea. Nihon Saikingaku Zasshi 2016; 71:199-208. [PMID: 27980291 DOI: 10.3412/jsb.71.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To understand how bacterial pathogens cause diseases is the most important step in order to prevent the infection and develop an effective treatment. However, the past proceeding studies make us aware of quite-complicated interactions between the host and pathogenic bacteria. Vibrio parahaemolyticus, a food-born pathogen that is a subject of our study, causes inflammatory diarrhea in human upon ingestion of contaminated raw or undercooked seafood. Many virulence factors has been proposed since its discovery in Osaka around 70 years ago, while our research group has revealed that one of these virulence factors, type 3 secretion system 2 (T3SS2), is necessary for diarrhea induced by this bacterium. In addition, we recently found two novel T3SS2 effectors (VopO and VopV) that manipulate the actin cytoskeleton in infected host cells. In this article, I would like to show our findings with regard to biological activities of the effectors and their contributions to the T3SS2-induced enterotoxicity.
Collapse
Affiliation(s)
- Hirotaka Hiyoshi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis
| |
Collapse
|
33
|
Shimizu T, Fujinaga Y, Takaya A, Ashida H, Kodama T, Hatakeyama M. [Molecular targets of bacterial effectors and toxins that underlie vulnerability to diseases]. Nihon Saikingaku Zasshi 2016; 70:319-28. [PMID: 26028212 DOI: 10.3412/jsb.70.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pathogenic bacteria produce a variety of effectors and/or toxins, which subvert target cell/tissue functions in the infected hosts. Some of those effectors/toxins also perturb host defense mechanism, thereby making up more complicated pathophysiological conditions. Such bacterial effectors/toxins may have been positively selected during evolution because they directly strike vulnerable points in the host system. In turn, this indicates that systemic exploration of molecules and signaling pathways targeted by bacterial effectors/toxins provides a powerful tool in digging up an unexpected Achilles' heel(s), malfunctioning of which gives rise to disorders not restricted to infectious diseases. Based on this viewpoint, this review shows molecular basis underlying host susceptibility and vulnerability to diseases through the studies of host molecules targeted by bacterial effectors and toxins.
Collapse
|
34
|
Miller KA, Chaand M, Gregoire S, Yoshida T, Beck LA, Ivanov AI, Dziejman M. Characterization of V. cholerae T3SS-dependent cytotoxicity in cultured intestinal epithelial cells. Cell Microbiol 2016; 18:1857-1870. [PMID: 27302486 DOI: 10.1111/cmi.12629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/01/2016] [Indexed: 12/22/2022]
Abstract
AM-19226 is a pathogenic, non-O1/non-O139 serogroup strain of Vibrio cholerae that uses a Type 3 Secretion System (T3SS) mediated mechanism to colonize host tissues and disrupt homeostasis, causing cholera. Co-culturing the Caco2-BBE human intestinal epithelial cell line with AM-19226 in the presence of bile results in rapid mammalian cell death that requires a functional T3SS. We examined the role of bile, sought to identify the mechanism, and evaluated the contributions of T3SS translocated effectors in in vitro cell death. Our results suggest that Caco2-BBE cytotoxicity does not proceed by apoptotic or necrotic mechanisms, but rather displays characteristics consistent with osmotic lysis. Cell death was preceded by disassembly of epithelial junctions and reorganization of the cortical membrane skeleton, although neither cell death nor cell-cell disruption required VopM or VopF, two effectors known to alter actin dynamics. Using deletion strains, we identified a subset of AM-19226 Vops that are required for host cell death, which were previously assigned roles in protein translocation and colonization, suggesting that they function other than to promote cytotoxicity. The collective results therefore suggest that cooperative Vop activities are required to achieve cytotoxicity in vitro, or alternatively, that translocon pores destabilize the membrane in a bile dependent manner.
Collapse
Affiliation(s)
- Kelly A Miller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mudit Chaand
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Stacy Gregoire
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lisa A Beck
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Andrei I Ivanov
- Gastroenterology and Hepatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
35
|
Abstract
Vibrio parahaemolyticus is the most common cause of seafood-borne gastroenteritis worldwide and a blight on global aquaculture. This organism requires a horizontally acquired type III secretion system (T3SS2) to infect the small intestine, but knowledge of additional factors that underlie V. parahaemolyticus pathogenicity is limited. We used transposon-insertion sequencing to screen for genes that contribute to viability of V. parahaemolyticus in vitro and in the mammalian intestine. Our analysis enumerated and controlled for the host infection bottleneck, enabling robust assessment of genetic contributions to in vivo fitness. We identified genes that contribute to V. parahaemolyticus colonization of the intestine independent of known virulence mechanisms in addition to uncharacterized components of T3SS2. Our study revealed that toxR, an ancestral locus in Vibrio species, is required for V. parahaemolyticus fitness in vivo and for induction of T3SS2 gene expression. The regulatory mechanism by which V. parahaemolyticus ToxR activates expression of T3SS2 resembles Vibrio cholerae ToxR regulation of distinct virulence elements acquired via lateral gene transfer. Thus, disparate horizontally acquired virulence systems have been placed under the control of this ancestral transcription factor across independently evolved human pathogens.
Collapse
|
36
|
Regulation by ToxR-Like Proteins Converges on vttRB Expression To Control Type 3 Secretion System-Dependent Caco2-BBE Cytotoxicity in Vibrio cholerae. J Bacteriol 2016; 198:1675-1682. [PMID: 27021561 DOI: 10.1128/jb.00130-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Genes carried on the type 3 secretion system (T3SS) pathogenicity island of Vibrio cholerae non-O1/non-O139 serogroup strain AM-19226 must be precisely regulated in order for bacteria to cause disease. Previously reported results showed that both T3SS function and the presence of bile are required to cause Caco2-BBE cell cytotoxicity during coculture with strain AM-19226. We therefore investigated additional parameters affecting in vitro cell death, including bacterial load and the role of three transmembrane transcriptional regulatory proteins, VttRA, VttRB, and ToxR. VttRA and VttRB are encoded on the horizontally acquired T3SS genomic island, whereas ToxR is encoded on the ancestral chromosome. While strains carrying deletions in any one of the three transcriptional regulatory genes are unable to cause eukaryotic cell death, the results of complementation studies point to a hierarchy of regulatory control that converges on vttRB expression. The data suggest both that ToxR and VttRA act upstream of VttRB and that modifying the level of either vttRA or vttRB expression can strongly influence T3SS gene expression. We therefore propose a model whereby T3SS activity and, hence, in vitro cytotoxicity are ultimately regulated by vttRB expression. IMPORTANCE In contrast to O1 and O139 serogroup V. cholerae strains that cause cholera using two main virulence factors (toxin-coregulated pilus [TCP] and cholera toxin [CT]), O39 serogroup strain AM-19226 uses a type 3 secretion system as its principal virulence mechanism. Although the regulatory network governing TCP and CT expression is well understood, the factors influencing T3SS-associated virulence are not. Using an in vitro mammalian cell model to investigate the role of three ToxR-like transmembrane transcriptional activators in causing T3SS-dependent cytotoxicity, we found that expression levels and a hierarchical organization were important for promoting T3SS gene expression. Furthermore, our results suggest that horizontally acquired, ToxR-like proteins act in concert with the ancestral ToxR protein to orchestrate T3SS-mediated pathogenicity.
Collapse
|
37
|
Abstract
Bacterial pathogens encode a wide variety of effectors and toxins that hijack host cell structure and function. Of particular importance are virulence factors that target actin cytoskeleton dynamics critical for cell shape, stability, motility, phagocytosis, and division. In addition, many bacteria target organelles of the general secretory pathway (e.g., the endoplasmic reticulum and the Golgi complex) and recycling pathways (e.g., the endolysosomal system) to establish and maintain an intracellular replicative niche. Recent research on the biochemistry and structural biology of bacterial effector proteins and toxins has begun to shed light on the molecular underpinnings of these host-pathogen interactions. This exciting work is revealing how pathogens gain control of the complex and dynamic host cellular environments, which impacts our understanding of microbial infectious disease, immunology, and human cell biology.
Collapse
Affiliation(s)
- Alyssa Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Didi Chen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| |
Collapse
|
38
|
Lee SJ, Jung YH, Ryu JM, Jang KK, Choi SH, Han HJ. VvpE mediates the intestinal colonization of Vibrio vulnificus by the disruption of tight junctions. Int J Med Microbiol 2016; 306:10-9. [DOI: 10.1016/j.ijmm.2015.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/17/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023] Open
|
39
|
Caburlotto G, Suffredini E, Toson M, Fasolato L, Antonetti P, Zambon M, Manfrin A. Occurrence and molecular characterisation of Vibrio parahaemolyticus in crustaceans commercialised in Venice area, Italy. Int J Food Microbiol 2015; 220:39-49. [PMID: 26773255 DOI: 10.1016/j.ijfoodmicro.2015.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/08/2015] [Accepted: 12/20/2015] [Indexed: 02/09/2023]
Abstract
Infections due to the pathogenic human vibrios, Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus, are mainly associated with consumption of raw or partially cooked bivalve molluscs. At present, little is known about the presence of Vibrio species in crustaceans and the risk of vibriosis associated with the consumption of these products. The aim of the present study was to evaluate the prevalence and concentration of the main pathogenic Vibrio spp. in samples of crustaceans (n=143) commonly eaten in Italy, taking into account the effects of different variables such as crustacean species, storage conditions and geographic origin. Subsequently, the potential pathogenicity of V. parahaemolyticus strains isolated from crustaceans (n=88) was investigated, considering the classic virulence factors (tdh and trh genes) and four genes coding for relevant proteins of the type III secretion systems 2 (T3SS2α and T3SS2β). In this study, the presence of V. cholerae and V. vulnificus was never detected, whereas 40 samples (28%) were positive for V. parahaemolyticus with an overall prevalence of 41% in refrigerated products and 8% in frozen products. The highest prevalence and average contamination levels were detected in Crangon crangon (prevalence 58% and median value 3400 MPN/g) and in products from the northern Adriatic Sea (35%), with the samples from the northern Venetian Lagoon reaching a median value of 1375 MPN/g. While genetic analysis confirmed absence of the tdh gene, three of the isolates contained the trh gene and, simultaneously, the T3SS2β genes. Moreover three possibly clonal tdh-negative/trh-negative isolates carried the T3SS2α apparatus. The detection of both T3SS2α and T3SS2β apparatuses in V. parahaemolyticus strains isolated from crustaceans emphasised the importance of considering new genetic markers associated with virulence besides the classical factors. Moreover this study represents the first report dealing with Vibrio spp. in crustaceans in Italy, and it may provide useful information for the development of sanitary surveillance plans to prevent the risk of vibriosis in seafood consumers.
Collapse
Affiliation(s)
- Greta Caburlotto
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy.
| | - Elisabetta Suffredini
- Istituto Superiore di Sanità, Department of Veterinary Public Health and Food Safety, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marica Toson
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy
| | - Luca Fasolato
- University of Padova, Department of Comparative Biomedicine and Food Science, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
| | - Paolo Antonetti
- Azienda Ulss 12 Veneziana, Department of Prevention - Veterinary Service, P.le San Lorenzo Giustiniani 11/d, 30174 Venezia Mestre, VE, Italy
| | - Michela Zambon
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy
| | - Amedeo Manfrin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy
| |
Collapse
|
40
|
He Y, Wang H, Chen L. Comparative secretomics reveals novel virulence-associated factors of Vibrio parahaemolyticus. Front Microbiol 2015; 6:707. [PMID: 26236293 PMCID: PMC4505105 DOI: 10.3389/fmicb.2015.00707] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/26/2015] [Indexed: 01/03/2023] Open
Abstract
Vibrio parahaemolyticus is a causative agent of serious human seafood-borne gastroenteritis disease and even death. In this study, for the first time, we obtained the secretomic profiles of seven V. parahaemolyticus strains of clinical and food origins. The strains exhibited various toxic genotypes and phenotypes of antimicrobial susceptibility and heavy metal resistance, five of which were isolated from aquatic products in Shanghai, China. Fourteen common extracellular proteins were identified from the distinct secretomic profiles using the two-dimensional gel electrophoresis (2-DE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) techniques. Of these, half were involved in protein synthesis and sugar transport of V. parahaemolyticus. Strikingly, six identified proteins were virulence-associated factors involved in the pathogenicity of some other pathogenic bacteria, including the translation elongation factor EF-Tu, pyridoxine 5′-phosphate synthase, σ54 modulation protein, dihydrolipoyl dehydrogenase, transaldolase and phosphoglycerate kinase. In addition, comparative secretomics also revealed several extracellular proteins that have not been described in any bacteria, such as the ribosome-recycling factor, translation elongation factor EF-Ts, phosphocarrier protein HPr and maltose-binding protein MalE. The results in this study will facilitate the better understanding of the pathogenesis of V. parahaemolyticus and provide data in support of novel vaccine candidates against the leading seafood-borne pathogen worldwide.
Collapse
Affiliation(s)
- Yu He
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University Shanghai, China
| | - Hua Wang
- Department of Food Science and Technology, The Ohio State University Columbus, OH, USA
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University Shanghai, China
| |
Collapse
|
41
|
Nishimura M, Fujii T, Hiyoshi H, Makino F, Inoue H, Motooka D, Kodama T, Ohkubo T, Kobayashi Y, Nakamura S, Namba K, Iida T. A repeat unit of Vibrio diarrheal T3S effector subverts cytoskeletal actin homeostasis via binding to interstrand region of actin filaments. Sci Rep 2015; 5:10870. [PMID: 26039684 PMCID: PMC4650670 DOI: 10.1038/srep10870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/05/2015] [Indexed: 11/09/2022] Open
Abstract
A novel bacterial type III secretion effector, VopV, from the enteric pathogen Vibrio parahaemolyticus has been identified as a key factor in pathogenicity due to its interaction with cytoskeletal actin. One of the repeat units in the long repetitive region of VopV, named VopVrep1, functions as an actin-binding module. Despite its importance in pathogenesis, the manner in which the effector binds to actin and the subsequent effects on actin dynamics remain unclear. Here, we report the molecular basis of the VopVrep1/actin interaction. VopVrep1 exists as an unstructured protein in solution but potently and specifically binds filamentous actin (F-actin) and not globular actin (G-actin). The F-actin/VopVrep1 complex was directly visualized at 9.6-Å resolution using electron cryomicroscopy (cryoEM) and helical image reconstitution. The density map revealed the binding site of VopVrep1 at the interface between two actin strands, which is close to the binding site of the bicyclic heptapeptide toxin phalloidin. Consistent with this observation, VopVrep1 alone prevented the depolymerization of F-actin. Overall, VopVrep1 demonstrated unique characteristics in comparison to known actin-binding proteins, but was relatively similar to phalloidin. The phalloidin-like behavior, targeting the interstrand region of actin filaments to stabilize the filament structure, likely contributes to the pathogenicity of V. parahaemolyticus.
Collapse
Affiliation(s)
- Mitsuhiro Nishimura
- 1] Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan [2] Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Takashi Fujii
- 1] Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan [2] Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirotaka Hiyoshi
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumiaki Makino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hajime Inoue
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Daisuke Motooka
- 1] Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan [2] Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka 565-0871, Japan
| | - Toshio Kodama
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka 565-0871, Japan
| | - Yuji Kobayashi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- 1] Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan [2] Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Iida
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
42
|
Type 3 Secretion System Island Encoded Proteins Required for Colonization by Non-O1/non-O139 Serogroup Vibrio cholerae. Infect Immun 2015; 83:2862-2869. [PMID: 25939511 DOI: 10.1128/iai.03020-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vibrio cholerae is a genetically diverse species, and pathogenic strains can encode different virulence factors that mediate colonization and secretory diarrhea. Although the toxin co-regulated pilus (TCP) is the primary colonization factor in epidemic causing V. cholerae strains, other strains do not encode TCP and instead promote colonization via the activity of a type three secretion system (T3SS). Using the infant mouse model and T3SS-positive O39 serogroup strain AM-19226, we sought to determine which of 12 previously identified, T3SS translocated proteins (Vops) are important for host colonization. We constructed in frame deletions in each of the 12 loci in strain AM-19226, and identified five Vop deletion strains, including ΔVopM, which were severely attenuated for colonization. Interestingly, a subset of deletion strains was also incompetent for effector protein transport. Our collective data therefore suggest that several translocated proteins may also function as components of the structural apparatus or translocation machinery, and indicate that while VopM is critical for establishing an infection, the combined activities of other effectors may also contribute to the ability of T3SS-positive strains to colonize host epithelial cell surfaces.
Collapse
|
43
|
Characterization of trh2 harbouring Vibrio parahaemolyticus strains isolated in Germany. PLoS One 2015; 10:e0118559. [PMID: 25799574 PMCID: PMC4370738 DOI: 10.1371/journal.pone.0118559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/11/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Vibrio parahaemolyticus is a recognized human enteropathogen. Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) as well as the type III secretion system 2 (T3SS2) are considered as major virulence factors. As tdh positive strains are not detected in coastal waters of Germany, we focused on the characterization of trh positive strains, which were isolated from mussels, seawater and patients in Germany. RESULTS Ten trh harbouring V. parahaemolyticus strains from Germany were compared to twenty-one trh positive strains from other countries. The complete trh sequences revealed clustering into three different types: trh1 and trh2 genes and a pseudogene Ψtrh. All German isolates possessed alleles of the trh2 gene. MLST analysis indicated a close relationship to Norwegian isolates suggesting that these strains belong to the autochthonous microflora of Northern Europe seawaters. Strains carrying the pseudogene Ψtrh were negative for T3SS2β effector vopC. Transcription of trh and vopC genes was analyzed under different growth conditions. Trh2 gene expression was not altered by bile while trh1 genes were inducible. VopC could be induced by urea in trh2 bearing strains. Most trh1 carrying strains were hemolytic against sheep erythrocytes while all trh2 positive strains did not show any hemolytic activity. TRH variants were synthesized in a prokaryotic cell-free system and their hemolytic activity was analyzed. TRH1 was active against sheep erythrocytes while TRH2 variants were not active at all. CONCLUSION Our study reveals a high diversity among trh positive V. parahaemolyticus strains. The function of TRH2 hemolysins and the role of the pseudogene Ψtrh as pathogenicity factors are questionable. To assess the pathogenic potential of V. parahaemolyticus strains a differentiation of trh variants and the detection of T3SS2β components like vopC would improve the V. parahaemolyticus diagnostics and could lead to a refinement of the risk assessment in food analyses and clinical diagnostics.
Collapse
|
44
|
Wang R, Zhong Y, Gu X, Yuan J, Saeed AF, Wang S. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol 2015; 6:144. [PMID: 25798132 PMCID: PMC4350439 DOI: 10.3389/fmicb.2015.00144] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/07/2015] [Indexed: 12/02/2022] Open
Abstract
Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems and two type VI secretion systems, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Yanfang Zhong
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Xiaosong Gu
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Jun Yuan
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Abdullah F Saeed
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
45
|
Hiyoshi H, Okada R, Matsuda S, Gotoh K, Akeda Y, Iida T, Kodama T. Interaction between the type III effector VopO and GEF-H1 activates the RhoA-ROCK pathway. PLoS Pathog 2015; 11:e1004694. [PMID: 25738744 PMCID: PMC4349864 DOI: 10.1371/journal.ppat.1004694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/22/2015] [Indexed: 12/11/2022] Open
Abstract
Vibrio parahaemolyticus is an important pathogen that causes food-borne gastroenteritis in humans. The type III secretion system encoded on chromosome 2 (T3SS2) plays a critical role in the enterotoxic activity of V. parahaemolyticus. Previous studies have demonstrated that T3SS2 induces actin stress fibers in various epithelial cell lines during infection. This stress fiber formation is strongly related to pathogenicity, but the mechanisms that underlie T3SS2-dependent actin stress fiber formation and the main effector have not been elucidated. In this study, we identified VopO as a critical T3SS2 effector protein that activates the RhoA-ROCK pathway, which is an essential pathway for the induction of the T3SS2-dependent stress fiber formation. We also determined that GEF-H1, a RhoA guanine nucleotide exchange factor (GEF), directly binds VopO and is necessary for T3SS2-dependent stress fiber formation. The GEF-H1-binding activity of VopO via an alpha helix region correlated well with its stress fiber-inducing capacity. Furthermore, we showed that VopO is involved in the T3SS2-dependent disruption of the epithelial barrier. Thus, VopO hijacks the RhoA-ROCK pathway in a different manner compared with previously reported bacterial toxins and effectors that modulate the Rho GTPase signaling pathway. Many bacterial pathogens manipulate the actin cytoskeleton of mammalian cells to establish pathogenesis via invasion, to evade killing by phagocytes, to disrupt a barrier function, and to induce inflammation caused by translocation type III secretion (T3S) effector proteins. We demonstrated that the T3S effector protein (VopO) of the enteric pathogen Vibrio parahaemolyticus induced robust actin stress fiber formation in infected host cells. Furthermore, this actin rearrangement induced barrier disruption in a colon epithelial cell line. Although many types of effector proteins have been reported, VopO does not share homology with previously reported effector proteins, and no putative functional motifs could be identified. Finally, we determined that the direct binding of VopO to a RhoA guanine nucleotide exchange factor (GEF) is a key step in the induction of stress fiber formation. These findings indicate that VopO plays a unique role in the pathogenicity of V. parahaemolyticus.
Collapse
Affiliation(s)
- Hirotaka Hiyoshi
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ryu Okada
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shigeaki Matsuda
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kazuyoshi Gotoh
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yukihiro Akeda
- Laboratory of Clinical Research on Infectious Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tetsuya Iida
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshio Kodama
- Microbe Repository Unit, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
46
|
Kuda T, Kosaka M, Hirano S, Kawahara M, Sato M, Kaneshima T, Nishizawa M, Takahashi H, Kimura B. Effect of sodium-alginate and laminaran on Salmonella Typhimurium infection in human enterocyte-like HT-29-Luc cells and BALB/c mice. Carbohydr Polym 2015; 125:113-9. [PMID: 25857966 DOI: 10.1016/j.carbpol.2015.01.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 02/07/2023]
Abstract
Brown algal polysaccharides such as alginate, polymers of uronic acids, and laminaran, beta-1,3 and 1,6-glucan, can be fermented by human intestinal microbiota. To evaluate the effects of these polysaccharides on infections caused by food poisoning pathogens, we investigated the adhesion and invasion of pathogens (Salmonella Typhimurium, Listeria monocytogenes and Vibrio parahaemolyticus) in human enterocyte-like HT-29-Luc cells and in infections caused in BALB/c mice. Both sodium Na-alginate and laminaran (0.1% each) inhibited the adhesion of the pathogens to HT-29-Luc cells by approximately 70-90%. The invasion of S. Typhimurium was also inhibited by approximately 70 and 80% by Na-alginate and laminaran, respectively. We observed that incubation with Na-alginate for 18 h increased the transepithelial electrical resistance of HT-29-Luc monolayer cells. Four days after inoculation with 7 log CFU/mouse of S. Typhimurium, the faecal pathogen count in mice that were not fed polysaccharides (control mice) was about 6.5 log CFU/g while the count in mice that were fed Na-alginate had decreased to 5.0 log CFU/g. The liver pathogen count, which was 4.1 log CFU/g in the control mice, was also decreased in mice that were fed Na-alginate. In contrast, the mice that were fed laminaran exhibited a more severe infection than that exhibited by control mice.
Collapse
Affiliation(s)
- Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan.
| | - Misa Kosaka
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Shino Hirano
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Miho Kawahara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Masahiro Sato
- Kaigen Pharma Co. Ltd., 1-25-18, Okusawa, Otaru 047-0013, Japan
| | - Tai Kaneshima
- Department of Food and Cosmetic Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Makoto Nishizawa
- Department of Food and Cosmetic Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| |
Collapse
|
47
|
de Souza Santos M, Orth K. Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria, Salmonella and Vibrio. Cell Microbiol 2015; 17:164-73. [PMID: 25440316 PMCID: PMC5806695 DOI: 10.1111/cmi.12399] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/29/2014] [Accepted: 11/07/2014] [Indexed: 12/18/2022]
Abstract
Entry into host cells and intracellular persistence by invasive bacteria are tightly coupled to the ability of the bacterium to disrupt the eukaryotic cytoskeletal machinery. Herein we review the main strategies used by three intracellular pathogens to harness key modulators of the cytoskeleton. Two of these bacteria, namely Listeria monocytogenes and Salmonella enterica serovar Typhimurium, exhibit quite distinct intracellular lifestyles and therefore provide a comprehensive panel for the understanding of the intricate bacteria-cytoskeleton interplay during infections. The emerging intracellular pathogen Vibrio parahaemolyticus is depicted as a developing model for the uncovering of novel mechanisms used to hijack the cytoskeleton.
Collapse
Affiliation(s)
- Marcela de Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
48
|
Kodama T, Hiyoshi H, Okada R, Matsuda S, Gotoh K, Iida T. Regulation of Vibrio parahaemolyticus T3SS2 gene expression and function of T3SS2 effectors that modulate actin cytoskeleton. Cell Microbiol 2015; 17:183-90. [PMID: 25495647 DOI: 10.1111/cmi.12408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022]
Abstract
Vibrio parahaemolyticus is a leading causative agent of seafood-borne gastroenteritis worldwide. Most clinical isolates from patients with diarrhoea possess two sets of genes for the type III secretion system (T3SS) on each chromosome (T3SS1 and T3SS2). T3SS is a protein secretion system that delivers effector proteins directly into eukaryotic cells. The injected effectors modify the normal cell functions by altering or disrupting the normal cell signalling pathways. Of the two sets of T3SS genes present in V. parahaemolyticus, T3SS2 is essential for enterotoxicity in several animal models. Recent studies have elucidated the biological activities of several T3SS2 effectors and their roles in virulence. This review focuses on the regulation of T3SS2 gene expression and T3SS2 effectors that specifically target the actin cytoskeleton.
Collapse
Affiliation(s)
- Toshio Kodama
- Pathogenic Microbes Repository Unit, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Mazel D, Colwell R, Klose K, Oliver J, Crumlish M, McDougald D, Bland MJ, Austin B. VIBRIO 2014 meeting report. Res Microbiol 2014; 165:857-64. [PMID: 25463383 DOI: 10.1016/j.resmic.2014.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 10/15/2014] [Accepted: 10/15/2014] [Indexed: 11/16/2022]
Affiliation(s)
- Didier Mazel
- Unité Plasticité du Génome bactérien and CNRS UMR 3525, Département de Génomes et Génétique, Institut Pasteur, Paris, France.
| | - Rita Colwell
- Maryland Pathogen Research Institute and Center of Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Karl Klose
- Department of Biology, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - James Oliver
- Department of Biology, University North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Mags Crumlish
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | - Diane McDougald
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, The University of New South Wales, Sydney 2052, Australia
| | - Michael J Bland
- Unité Plasticité du Génome bactérien and CNRS UMR 3525, Département de Génomes et Génétique, Institut Pasteur, Paris, France
| | - Brian Austin
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
50
|
Livny J, Zhou X, Mandlik A, Hubbard T, Davis BM, Waldor MK. Comparative RNA-Seq based dissection of the regulatory networks and environmental stimuli underlying Vibrio parahaemolyticus gene expression during infection. Nucleic Acids Res 2014; 42:12212-23. [PMID: 25262354 PMCID: PMC4231756 DOI: 10.1093/nar/gku891] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vibrio parahaemolyticus is the leading worldwide cause of seafood-associated gastroenteritis, yet little is known regarding its intraintestinal gene expression or physiology. To date, in vivo analyses have focused on identification and characterization of virulence factors—e.g. a crucial Type III secretion system (T3SS2)—rather than genome-wide analyses of in vivo biology. Here, we used RNA-Seq to profile V. parahaemolyticus gene expression in infected infant rabbits, which mimic human infection. Comparative transcriptomic analysis of V. parahaemolyticus isolated from rabbit intestines and from several laboratory conditions enabled identification of mRNAs and sRNAs induced during infection and of regulatory factors that likely control them. More than 12% of annotated V. parahaemolyticus genes are differentially expressed in the intestine, including the genes of T3SS2, which are likely induced by bile-mediated activation of the transcription factor VtrB. Our analyses also suggest that V. parahaemolyticus has access to glucose or other preferred carbon sources in vivo, but that iron is inconsistently available. The V. parahaemolyticus transcriptional response to in vivo growth is far more widespread than and largely distinct from that of V. cholerae, likely due to the distinct ways in which these diarrheal pathogens interact with and modulate the environment in the small intestine.
Collapse
Affiliation(s)
- Jonathan Livny
- The Broad Institute, Cambridge, MA, USA Division of Infectious Diseases, Department of Microbiology and Immunobiology, Brigham & Women's Hospital, Harvard Medical School and HHMI, 181 Longwood Ave., Boston, MA, USA
| | - Xiaohui Zhou
- Division of Infectious Diseases, Department of Microbiology and Immunobiology, Brigham & Women's Hospital, Harvard Medical School and HHMI, 181 Longwood Ave., Boston, MA, USA
| | - Anjali Mandlik
- Division of Infectious Diseases, Department of Microbiology and Immunobiology, Brigham & Women's Hospital, Harvard Medical School and HHMI, 181 Longwood Ave., Boston, MA, USA
| | - Troy Hubbard
- Division of Infectious Diseases, Department of Microbiology and Immunobiology, Brigham & Women's Hospital, Harvard Medical School and HHMI, 181 Longwood Ave., Boston, MA, USA
| | - Brigid M Davis
- Division of Infectious Diseases, Department of Microbiology and Immunobiology, Brigham & Women's Hospital, Harvard Medical School and HHMI, 181 Longwood Ave., Boston, MA, USA
| | - Matthew K Waldor
- The Broad Institute, Cambridge, MA, USA Division of Infectious Diseases, Department of Microbiology and Immunobiology, Brigham & Women's Hospital, Harvard Medical School and HHMI, 181 Longwood Ave., Boston, MA, USA
| |
Collapse
|