1
|
Singh RK, Dhama K, Malik YS, Ramakrishnan MA, Karthik K, Khandia R, Tiwari R, Munjal A, Saminathan M, Sachan S, Desingu PA, Kattoor JJ, Iqbal HMN, Joshi SK. Ebola virus - epidemiology, diagnosis, and control: threat to humans, lessons learnt, and preparedness plans - an update on its 40 year's journey. Vet Q 2017; 37:98-135. [PMID: 28317453 DOI: 10.1080/01652176.2017.1309474] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ebola virus (EBOV) is an extremely contagious pathogen and causes lethal hemorrhagic fever disease in man and animals. The recently occurred Ebola virus disease (EVD) outbreaks in the West African countries have categorized it as an international health concern. For the virus maintenance and transmission, the non-human primates and reservoir hosts like fruit bats have played a vital role. For curbing the disease timely, we need effective therapeutics/prophylactics, however, in the absence of any approved vaccine, timely diagnosis and monitoring of EBOV remains of utmost importance. The technologically advanced vaccines like a viral-vectored vaccine, DNA vaccine and virus-like particles are underway for testing against EBOV. In the absence of any effective control measure, the adaptation of high standards of biosecurity measures, strict sanitary and hygienic practices, strengthening of surveillance and monitoring systems, imposing appropriate quarantine checks and vigilance on trade, transport, and movement of visitors from EVD endemic countries remains the answer of choice for tackling the EBOV spread. Herein, we converse with the current scenario of EBOV giving due emphasis on animal and veterinary perspectives along with advances in diagnosis and control strategies to be adopted, lessons learned from the recent outbreaks and the global preparedness plans. To retrieve the evolutionary information, we have analyzed a total of 56 genome sequences of various EBOV species submitted between 1976 and 2016 in public databases.
Collapse
Affiliation(s)
- Raj Kumar Singh
- a ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kuldeep Dhama
- b Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Yashpal Singh Malik
- c Division of Biological Standardization, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | | | - Kumaragurubaran Karthik
- e Divison of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Rekha Khandia
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Ruchi Tiwari
- g Department of Veterinary Microbiology and Immunology , College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Ashok Munjal
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Mani Saminathan
- b Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Swati Sachan
- h Immunology Section, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | | | - Jobin Jose Kattoor
- c Division of Biological Standardization, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Hafiz M N Iqbal
- i School of Engineering and Science, Tecnologico de Monterrey , Monterrey , Mexico
| | - Sunil Kumar Joshi
- j Cellular Immunology Lab , Frank Reidy Research Center for Bioelectrics , School of Medical Diagnostics & Translational Sciences, Old Dominion University , Norfolk , VA , USA
| |
Collapse
|
2
|
Banerjee A, Pal A, Pal D, Mitra P. Ebolavirus interferon antagonists—protein interaction perspectives to combat pathogenesis. Brief Funct Genomics 2017; 17:392-401. [DOI: 10.1093/bfgp/elx034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
3
|
Fischer RJ, Bushmaker T, Judson S, Munster VJ. Comparison of the Aerosol Stability of 2 Strains of Zaire ebolavirus From the 1976 and 2013 Outbreaks. J Infect Dis 2016; 214:S290-S293. [PMID: 27503365 PMCID: PMC5050463 DOI: 10.1093/infdis/jiw193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The largest outbreak of Ebola virus disease began in Guéckédou, Guinea, West Africa, in December 2013 and rapidly spread to major population centers in 3 West African countries. Early reports in some scientific and public media speculated that the virus had evolved to more effectively transmit between humans. One route of transmission postulated was aerosol transmission, although there was little epidemiological evidence to support this claim. This study investigates the viability of 2 Zaire ebolavirus strains within aerosols at 22°C and 80% relative humidity over time. The results presented here indicate that there is no difference in virus stability between the 2 strains and that viable virus can be recovered from an aerosol 180 minutes after it is generated.
Collapse
Affiliation(s)
- Robert J Fischer
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | | | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| |
Collapse
|
4
|
Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses. Sci Rep 2016; 6:23743. [PMID: 27009368 PMCID: PMC4806318 DOI: 10.1038/srep23743] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 03/14/2016] [Indexed: 12/23/2022] Open
Abstract
Reston viruses are the only Ebolaviruses that are not pathogenic in humans. We analyzed 196 Ebolavirus genomes and identified specificity determining positions (SDPs) in all nine Ebolavirus proteins that distinguish Reston viruses from the four human pathogenic Ebolaviruses. A subset of these SDPs will explain the differences in human pathogenicity between Reston and the other four ebolavirus species. Structural analysis was performed to identify those SDPs that are likely to have a functional effect. This analysis revealed novel functional insights in particular for Ebolavirus proteins VP40 and VP24. The VP40 SDP P85T interferes with VP40 function by altering octamer formation. The VP40 SDP Q245P affects the structure and hydrophobic core of the protein and consequently protein function. Three VP24 SDPs (T131S, M136L, Q139R) are likely to impair VP24 binding to human karyopherin alpha5 (KPNA5) and therefore inhibition of interferon signaling. Since VP24 is critical for Ebolavirus adaptation to novel hosts, and only a few SDPs distinguish Reston virus VP24 from VP24 of other Ebolaviruses, human pathogenic Reston viruses may emerge. This is of concern since Reston viruses circulate in domestic pigs and can infect humans, possibly via airborne transmission.
Collapse
|
5
|
Olabode AS, Jiang X, Robertson DL, Lovell SC. Ebolavirus is evolving but not changing: No evidence for functional change in EBOV from 1976 to the 2014 outbreak. Virology 2015; 482:202-7. [PMID: 25880111 PMCID: PMC4503884 DOI: 10.1016/j.virol.2015.03.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/11/2015] [Accepted: 03/15/2015] [Indexed: 01/05/2023]
Abstract
The 2014 epidemic of Ebola virus disease (EVD) has had a devastating impact in West Africa. Sequencing of ebolavirus (EBOV) from infected individuals has revealed extensive genetic variation, leading to speculation that the virus may be adapting to humans, accounting for the scale of the 2014 outbreak. We computationally analyze the variation associated with all EVD outbreaks, and find none of the amino acid replacements lead to identifiable functional changes. These changes have minimal effect on protein structure, being neither stabilizing nor destabilizing, are not found in regions of the proteins associated with known functions and tend to cluster in poorly constrained regions of proteins, specifically intrinsically disordered regions. We find no evidence that the difference between the current and previous outbreaks is due to evolutionary changes associated with transmission to humans. Instead, epidemiological factors are likely to be responsible for the unprecedented spread of EVD.
Collapse
Affiliation(s)
- Abayomi S Olabode
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Xiaowei Jiang
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK; Department of Genetics, University of Cambridge, Cambridge, UK
| | - David L Robertson
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Simon C Lovell
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|